
Recall@k Surrogate Loss with Large Batches and Similarity Mixup

Yash Patel Giorgos Tolias Jiřı́ Matas
Visual Recognition Group, Czech Technical University in Prague

{patelyas,toliageo,matas}@fel.cvut.cz

Abstract

This work focuses on learning deep visual representa-
tion models for retrieval by exploring the interplay between
a new loss function, the batch size, and a new regulariza-
tion approach. Direct optimization, by gradient descent,
of an evaluation metric, is not possible when it is non-
differentiable, which is the case for recall in retrieval. A
differentiable surrogate loss for the recall is proposed in this
work. Using an implementation that sidesteps the hardware
constraints of the GPU memory, the method trains with a
very large batch size, which is essential for metrics com-
puted on the entire retrieval database. It is assisted by an ef-
ficient mixup regularization approach that operates on pair-
wise scalar similarities and virtually increases the batch
size further. The suggested method achieves state-of-the-art
performance in several image retrieval benchmarks when
used for deep metric learning. For instance-level recogni-
tion, the method outperforms similar approaches that train
using an approximation of average precision.

1. Introduction

Minimization of a loss that is a function of the test-time
evaluation metric has shown to be beneficial in deep learn-
ing for numerous computer vision and natural language pro-
cessing tasks. Examples include intersection-over-union as
a loss that boosts performance for object detection [48, 70]
and semantic segmentation [37], and structural similar-
ity [34], peak signal-to-noise ratio [4] and perceptual [40] as
reconstruction losses for image compression that give better
results according to the respective evaluation metrics.

Training deep networks via gradient descent on the
evaluation metric is not possible when the metric is non-
differentiable. Deep learning methods resort to a proxy
loss, a differentiable function, as a workaround, which em-
pirically leads to a reasonable performance but may not
align well with the evaluation metric. Examples exist in ob-
ject detection [70], scene text recognition [42, 43], machine
translation [3] and image retrieval [6, 41].

Query Ranked Database Images

Similarity: 0.940 0.870 0.850 0.800 0.775 0.650 0.570 0.430 0.400 0.320

recall@4 = 0.33, recall@8 = 0.67	 	 	 rs@4 = 0.310, rs@8 = 0.616

Similarity: 0.940 0.870 0.850 0.800 0.775 0.774 0.570 0.430 0.400 0.320

recall@4 = 0.33, recall@8 = 0.67	 	 	 rs@4 = 0.315, rs@8 = 0.632

Similarity: 0.940 0.870 0.850 0.800 0.790 0.775 0.570 0.430 0.400 0.320

recall@4 = 0.33, recall@8 = 0.67	 	 	 rs@4 = 0.334, rs@8 = 0.666

Similarity: 0.940 0.880 0.870 0.850 0.820 0.800 0.775 0.570 0.430 0.320

recall@4 = 0.67, recall@8 = 1.0	 	 	 rs@4 = 0.577, rs@8 = 0.957

 1 2 3 4 5 6 7 8 9 10

Figure 1. A comparison between recall@k and rs@k, the pro-
posed differentiable recall@k surrogate. Examples show a query,
the ranked database images sorted according to the similarity and
the corresponding values for recall@k and rs@k and their depen-
dence on similarity score change. Note that the values of recall@k
and rs@k are close. Changes to similarity and ranking in some
cases may not affect the original recall@k but can affect the surro-
gate, with the latter having a more significant impact than the for-
mer. Similarity values of all negatives are fixed for ease of under-
standing. The similarity values of the positives that were changed
in rows 2, 3 and 4 are underlined.

This paper deals with the training of image retrieval
posed as deep metric learning and Euclidean search in the
learned image embedding space. It is the task of rank-
ing all database examples according to the relevance to a
query, which is of vital importance for many applications.
The standard evaluation metrics are precision and recall in
the top retrieved results and the mean Average Precision
(mAP). These metrics are standard in information retrieval,
they reflect the quality of the retrieved results and allow for
flexibility to focus either on the few top results or the whole
ranked list of examples, respectively. Recall at top-k re-
trieved results, denoted by recall@k in the following, is the
primary focus of this work.

7502

The problem related to the optimization of non-
differentiable evaluation metrics applies to recall@k as
well. Estimating the position of positive images in the
list of retrieved results and counting how many positives
appear inside a short-list of a fixed size involves non-
differentiable operations. Note that methods for training
on non-differentiable losses, such as actor-critic [3] and
learning surrogates [42] are not directly applicable to re-
call@k. This is due to the fact that these methods are lim-
ited to decomposable functions, where a per-example per-
formance measure is available. Such an attempt is made by
Engilberge et al. [13], where an LSTM learns sorting-based
metrics, but is not adapted in consequent work due to slow
training. As an alternative, deep metric learning approaches
for image retrieval often use ranking proxy losses, termed
pairwise losses. In the embedding space, loss functions
such as contrastive [18], triplet [53], and margin [69] pull
the examples from the same class closer to one another and
push the examples from a different class away. These losses
are hand-crafted to reflect the objectives of the retrieval task
and, consequently, the evaluation metric. The loss value de-
pends on the image-to-image similarity for image pairs or
triplets and does not take into account the whole ranked list
of examples. Changes in the similarity value without any
change in the overall ranking alter the loss value indicate
that they are not well correlated with ranking [6]. Recent
methods focus on optimizing Average Precision (AP) and
use a surrogate function as a loss [6, 7, 19, 47, 49]. A surro-
gate of an evaluation metric is a function that approximates
it in a differentiable manner.

The proposed method attains state-of-the-art results for 4
fine-grained retrieval datasets, namely iNaturalist [61], Ve-
hicleID [61], SOP [39] and Cars196 [27], and 2 instance-
level retrieval datasets, namely Revisited Oxford and
Paris [45]. This is accomplished by the demonstrated syn-
ergy between the three following elements. First, a new loss
that is proposed as a surrogate of an established retrieval
evaluation metric, namely recall at top k, and is experi-
mentally shown to consistently outperform existing com-
petitors. A comparison between the evaluation metric and
the proposed loss is shown in Figure 1. Second, the use
of a very large batch size, in the order of several thousand
large resolution images on a single GPU. This is inspired by
the instance-level retrieval literature [47] and is introduced
for the first time in the context of fine-grained categoriza-
tion. In a recent work of verifying prior results in deep met-
ric learning for fine-grained categorization [36] the batch-
size is considered fixed to a single and small value among
a large set of comparisons for different losses; in this work
we reach batch-sizes that are two orders of magnitude larger
than in the work of Musgrave et al. [36]. The third ele-
ments is the proposed mixup regularization technique that
is computationally efficient and that virtually enlarges the

batch. Its efficiency is obtained by operating on the very
last stage of similarity estimation, i.e. scalar similarities are
mixed, while its applicability goes beyond the combination
with the proposed loss in this work. The proposed loss is
used for training widely used ResNet architectures [20] but
also recent vision-transformers (ViT) [10]. The superior-
ity of this loss compared to existing losses is demonstrated
with both architectures, while with ViT-B/16 top results are
achieved at lower throughput than with ResNet.

2. Related work
In this section, the related work is reviewed for two dif-

ferent families of deep metric learning approaches regard-
ing the type of loss that is optimized, namely classification
losses and pairwise losses. Given an embedding network
that maps input images to a high dimensional space, in the
former, the loss is a function of the embedding and the cor-
responding category label of a single image, while in the
latter, the loss is a function of the distance, or similarity,
between two embeddings and the corresponding pairwise
label. Prior work for mixup [72] techniques related to em-
bedding learning is reviewed too.
Classification losses. The work of Zhai and Wu [71] sup-
ports that the standard classification loss, i.e. cross-entropy
(CE) loss is a strong approach for deep metric learning.
Their finding is supported by the use of layer normaliza-
tion and class-balanced sampling. In the domain of met-
ric learning for faces, several different classification losses
are proposed, such as SphereFace [30], CosFace [64] and
ArcFace [8], where contributions are in the spirit of large
margin classification. Despite the specificity of the domain,
such losses are applicable beyond faces. Another variant is
the Neighborhood Component Analysis (NCA) loss that is
used in the work of Movshovitz-Attias et al. [35], which is
later improved [58] by temperature-based scaling and faster
update of the class prototype vectors, also called proxies in
their work. The restriction of a single prototype vector per
class is dropped by Qian et al. [44] who stores multiple rep-
resentatives per category.

Classification losses, in contrast to pairwise losses, per-
form the optimization independently per image. An ex-
ception is the work of Elezi et al. [12] where a similar-
ity propagation module captures group interactions within
the batch. Then, cross-entropy loss is used, which now
comes with significant improvements by taking into account
such interactions. This is recently improved [54] by re-
placing the propagation module with an attention model.
The relation between CE loss and some of the widely used
pairwise losses is studied from a mutual information point
of view [5]. CE loss is viewed as approximate bound-
optimization for minimizing pairwise losses; CE maximizes
mutual information, and so do these pairwise losses, which

7503

are reviewed in the following.
Pairwise losses. The first pairwise loss introduced for this
task is the so-called contrastive loss [18], where embed-
dings of relevant pairs are pushed as close as possible, while
those of non-relevant ones are pushed far enough. Since the
target task is typically a ranking one, the triplet loss [53],
a popular and widely used loss, improves that by forming
training triplets in the form of anchor, positive and negative
examples. The loss is a function of the difference between
anchor-to-positive and anchor-to-negative distances and is
zero if such a difference is large enough, therefore satisfying
the objectives of a ranking task for this triplet. Optimization
over all pairs or triplets is not tractable and is observed to
be sub-optimal [69]. As a result, a lot of attention is paid
to finding informative pairs and triplets [32, 36, 51, 55, 56],
which typically includes heuristics. Several other losses are
suggested in the literature [56, 65, 69] and are added to the
long list of hand-designed proxy losses which target to learn
embeddings that transfer well to a ranking or a similar task.

A few cases follow a principled approach for obtaining
a loss that is appropriate for ranking tasks. This is the case
with the work of Ustinova et al. [60] where the goal is to
minimize the probability that the similarity between embed-
dings of a non-relevant pair is larger than that of a relevant
one. This probability is approximated by the quantization
of the range of possible similarities and the histogram loss,
which is estimated within a single batch. Their work dis-
penses with the need for any kind of sampling for mini-
batch construction. An information-theoretic loss function,
called RankMI [25], maximizes the mutual information be-
tween the samples within the same semantic class using a
neural network. Another principled approach focuses on
optimizing AP, which is a standard retrieval evaluation met-
ric. A smooth approximation of it is often used in the lit-
erature [19, 47, 49], while the work of Brown et al. [6] is
the closest to ours. In combination with such AP-based
losses, a large batch size is crucial, which meets the limi-
tations set by the hardware. Such limitations are overcome
in the work of Revaud et al. [47] who uses a batch of 4, 000
high-resolution images.
Embedding mixup. Manifold mixup [63], which involves
mixing [72] intermediate representations and labels of two
examples, has demonstrated to improve generalizability
for supervised learning by encouraging smoother decision
boundaries. Such techniques are investigated for embed-
ding learning and image retrieval by mixing the embedding
of two examples. Duan et al. [11] uses adversarial training
to synthesize additional negative samples from the observed
negatives. Kalantidis et al. [24] synthesize hard-negatives
for contrastive self-supervised learning by mixing the em-
bedding of the two hardest negatives and also mixing them
with the query itself. Zheng et al. [74] uses a linear interpo-
lation between the embeddings to manipulate the hardness

levels. In the work of Gu et al. [15], two embedding vec-
tors from the same class are used to generate symmetrical
synthetic examples and hard-negative mining is performed
within the set of original and the synthetic examples. This
is further extended to proxy-based losses, where the em-
bedding of examples from different classes and labels is
mixed to generate synthetic proxies [16]. Linearly inter-
polating labels entails the risk of generating false negatives
if the interpolation factor is close to 0 or 1. Such limitations
are overcome in the work of Venkataramanan et al. [62],
which generalizes mixing examples from different classes
for pairwise loss functions. The proposed SiMix approach
differs from the aforementioned techniques as it operates on
the similarity scores instead of the embedding vectors, does
not require training an additional model, making it compu-
tationally efficient. Furthermore, unlike the existing mixup
techniques, it uses a synthetic sample in the roles of a query,
positive and negative example.

3. Method
This section presents the task of image retrieval and the

proposed approach for learning image embeddings.
Task. We are given a query example q ∈ X and a collec-
tion of examples Ω ⊂ X , also called database, where X is
the space of all images. The set of database examples that
are positive or negative to the query are denoted by Pq and
Nq , respectively, with Ω = Pq∪Nq . Ground-truth informa-
tion for the positive and negative sets per query is obtained
according to discrete class labels per example, i.e. if two
examples come from the same class, then they are consid-
ered positive to each other, otherwise negative. This is the
case for all (training or testing) databases used in this work.
Terms example and image are used interchangeably in the
following text. In image retrieval, all database images are
ranked according to similarity to the query q, and the goal
is to rank positive examples before negative ones.
Deep image embeddings. Image embeddings, otherwise
called descriptors, are generated by function fθ : X → Rd.
In this work, function fθ is a deep fully convolutional neu-
ral network or a vision transformer mapping input images of
any size or aspect ratio to an L2-normalized d-dimensional
embedding. Embedding for image x is denoted by x =
fθ(x). Parameter set θ of the network is learned during the
training. Similarity between a query q and a database im-
age x is computed by the dot product of the corresponding
embeddings and is denoted by s(q, x) = q⊤x, also denoted
as sqx for brevity.
Evaluation metric. Recall@k is one of the standard met-
rics to evaluate image retrieval methods. For query q, it is
defined as a ratio of the number of relevant (positive) exam-
ples within the top-k ranked examples to the total number
of relevant examples for q given by |Pq|. It is denoted by
Rk

Ω(q) when computed for query q and database Ω and can

7504

be expressed as

Rk
Ω(q) =

∑
x∈Pq

H(k − rΩ(q, x))

|Pq|
, (1)

where rΩ(q, x) is the rank of example x when all database
examples in Ω are ranked according to similarity to query
q. Function H(.) is the Heaviside step function, which is
equal to 0 for negative values, otherwise equal to 1. The
rank of example x is computed by

rΩ(q, x) = 1 +
∑

z∈Ω,z ̸=x

H(sqz − sqx), (2)

Therefore, (1) can now be expressed as

Rk
Ω(q) =

∑
x∈Pq

H(k − 1−
∑

z∈Ω,z ̸=x

H(sqz − sqx))

|Pq|
. (3)

Recall@k surrogate loss. The computation of recall in (3)
involves the use of the Heaviside step function. The gradi-
ent of the Heaviside step function is a Dirac delta function.
Hence, direct optimization of recall with back-propagation
is not feasible. A common smooth approximation of the
Heaviside step function is provided by the logistic func-
tion [21, 22, 28], a common sigmoid function στ : R → R
controlled by temperature τ , which is given by

στ (u) =
1

1 + e−
u
τ
, (4)

where large (small) temperature value leads to worse (bet-
ter) approximation and denser (sparser) gradient. This ap-
proximation is common in the machine learning literature
for several tasks [17, 33, 52] and also appears in the ap-
proximation of the Average Precision evaluation metric [6],
which is used for the same task as ours. By replacing the
step function with the sigmoid function, a smooth approxi-
mation of recall is obtained as

R̃k
Ω(q) =

∑
x∈Pq

στ1(k − 1−
∑
z∈Ω
z ̸=x

στ2(sqz − sqx))

|Pq|
, (5)

which is differentiable and can be used for training with
back-propagation. The two sigmoids have different func-
tion domains and, therefore, different temperatures (see Fig-
ure 2). The minimized single-query loss in a mini-batch B,
with size M = |B|, and query q ∈ B is given by

Lk(q) = 1− R̃k
B\q(q). (6)

while incorporation of multiple values of k is performed in
the loss given by

LK(q) =
1

|K|
∑
k∈K

Lk(q). (7)

−5 0 5

0

0.2

0.4

0.6

0.8

1

u = k − 1 − rΩ(q, x)

g(u) = στ1
(u), τ1 = 1

g(u)

dg(u)
du

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

u = sqz − sqx

g(u) = στ2
(u), τ2 = 0.01

Figure 2. The two sigmoid functions which replace the Heaviside
step function for counting the positive examples in the short-list of
size k (left) and for estimating the rank of examples (right).

1 3 5 7 9

0

0.2

0.4

0.6

r

d
σ
τ
1
(
u
)

d
u

,
u

=
k
−

r

k = 1

k = 2

k = 4

K = {1, 2, 4}

Figure 3. Gradient magnitude of the sigmoid used to count the
positive examples in the short-list of size k versus the rank r (equal
to rΩ(q, x), see (2)) of a positive example x. It shows how much a
positive example is pushed towards lower ranks depending on its
current rank. In the case of multiple values for k, the total gradient
is equivalent to the sum of the separate ones.

Figure 3 shows the impact of using single or multiple values
for k.

All examples in the mini-batch are used as queries and
the average loss over all queries is minimized during the
training. The proposed loss is referred to as Recall@k Sur-
rogate loss, or RS@k loss for brevity.

To allow for 0 loss when k is smaller than the number
of positives (note that exact recall@k is less than 1 by def-
inition), we slightly modify (5) during the training. Instead
of dividing by |Pq|, we divide by min(k, |Pq|), and, con-
sequently, we clip values larger than k in the numerator to
avoid negative loss values.
Similarity mixup (SiMix). Given original batch B, virtual
batch B̂ is created by mixing all pairs of positive examples
in the original batch. Embeddings of examples x ∈ B and
z ∈ B are used to generate mixed embedding

vxzα = αx+ (1− α)z | α ∼ U(0, 1), (8)

for a virtual example that is denoted by xzα ∈ B̂. The sim-
ilarity of an original example w ∈ B to the virtual example
xzα ∈ B̂ is given by

s(w, xzα) = w⊤vxzα = αswx + (1− α)swz, (9)

7505

where the original and virtual examples can be the query
and database examples, respectively, or vice versa. In case
both examples are virtual, e.g. xzα1 ∈ B̂ used as a query
and ywα2 ∈ B̂ as a part of the database, then their similarity
is given by

s(xzα1, ywα2) = v⊤
xzα1

vywα2

= α1α2sxy + (1− α1)(1− α2)szw

+ α1(1− α2)sxw + (1− α1)α2szy.
(10)

The pairwise similarities that appear on the right-hand side
of the previous formulas, e.g. swx and swz in (9), are com-
puted from the embeddings of the original, non-virtual ex-
amples and are also required for the computation of the
RS@k without any virtual examples. Therefore, the mini-
batch is expanded to B∪B̂ by adding virtual examples with-
out the need for explicit construction of the corresponding
embeddings or computation of the similarity via dot prod-
uct; simple mixing of the corresponding pairwise scalar
similarities is enough. SiMix reduces to mixing pairwise
similarities due to the lack of re-normalization of the mixed
embeddings, which is different to existing practice in prior
work [15, 16, 24, 62] and brings training efficiency benefits.

Virtual examples are created only between examples of
the same classes and are labeled according to the class of the
original examples that are mixed. Virtual examples are used
both as queries and as database examples, while mixing is
applied to all pairs of positive examples inside a mini-batch.
Overview. An overview of the training process with the
proposed loss and SiMix is given in Algorithm 1. In case
SiMix is not used, then lines 11, 13, 14 and 15 are skipped.
It is assumed that each image in training is labeled to a
class. Mini-batches of size M are generated by randomly
sampling m images per class out of M/m sampled classes.

4. Experiments
4.1. Datasets

The training and evaluation is performed on four widely
used image retrieval benchmarks, namely iNaturalist [61],
PKU VehicleID [29], Stanford Online Products [39] (SOP)
and Stanford Cars [27] (Cars196). Recall at top k retrieved
images, denoted by r@k, is one of the standard evaluation
metrics in these benchmarks. Metric r@k is 1 if at least
one positive image appears in the top k list, otherwise 0.
The metric is averaged across all queries. Note that this is
different from the standard definition of recall in (1).

iNaturalist [61] is firstly used by Brown et al. [6], whose
setup we follow: 5, 690 classes for training and 2, 452
classes for testing. For VehicleID, according to the stan-
dard setup [29], 13, 134 classes are used for training, and
the evaluation is conducted on the predefined small (800

Algorithm 1 Training with RS@k and SiMix.
1: procedure TRAIN-RS@K(X , Y , M , m)
2: X : training images
3: Y : class labels
4: M : mini-batch size
5: m : number of images per class in mini-batch
6:
7: θ ← initialize according to pre-training ▷ use ImageNet
8: for iteration ∈ [1, . . . , number-of-iterations] do
9: loss← 0 ▷ set batch loss to zero

10: B ← BATCH-SAMPLER(X , Y , M , m)
11: B̂ ← VIRTUAL-BATCH(B) ▷ enumerate virtual examples
12: for (x, z) ∈ B ×B do compute s(x, z) ▷ use x⊤z

13: for (x, z) ∈ B × B̂ do compute s(x, z) ▷ use (9)
14: for (x, z) ∈ B̂ × B̂ do compute s(x, z) ▷ use (10)
15: B ← B ∪ B̂ ▷ expand batch with virtual examples
16: for q ∈ B do ▷ use each image in the batch as query
17: loss← loss+ LK(q) ▷ Recall@k loss (7)
18: end for
19: θ ← MINIMIZE(loss|B|) ▷ SGD update
20: end for
21: end procedure

Dataset #Images #Classes #Avg

iNaturalist Train [61] 325, 846 5, 690 57.3

iNaturalist Test [61] 136, 093 2, 452 55.5

VehicleID Train [29] 110, 178 13, 134 8.4

VehicleID Test [29] 40, 365 4, 800 8.4

SOP Train [39] 59, 551 11, 318 5.3

SOP Test [39] 60, 502 11, 316 5.3

Cars196 Train [27] 8, 054 98 82.1

Cars196 Test [27] 8, 131 98 82.9

ROxford [45] 4, 993 11 n/a
RParis [45] 6, 322 11 n/a
GLDv1 [38] 1, 060, 709 12, 894 82.3

Table 1. Dataset composition for training and evaluation.

classes), medium (1600 classes) and large (2400 classes)
test sets. For SOP [39] and Cars196 [27], the standard ex-
perimental setup of Song et al. [56] is followed. The first
half of the classes are used for training and the rest for test-
ing, resulting in 11, 318 classes for SOP and 98 for Cars196.

The method is evaluated for instance-level search on
Revisited Oxford (ROxford) and Paris (RParis) bench-
mark [45], where the evaluation metric is mean Average
Precision (mAP). The training uses the Google Landmarks
dataset (GLDv1) [38] to perform a comparison with the
work of Revaud et al. [47] and their AP loss. The validation
is performed according to the work of Tolias et al. [59].

The number of examples, classes, and average number of
examples per class can be found in Table. 1. Note that these
datasets are diverse in the number of training examples, the
number of classes, and the number of examples per class,
ranging from class balanced [27] to long-tailed [61].

7506

4.2. Implementation details

Implementation details are identical for the four image
retrieval benchmarks but differ for ROxford/RParis to fol-
low and compare to prior work [47]. Differences are clari-
fied when needed.
Architecture. An ImageNet [9] pre-trained ResNet-50 [20]
is used as the backbone for deep image embeddings. Build-
ing on the standard implementation of [51], the Batch-
Norm parameters are kept frozen during the training. Af-
ter the convolutional layers, Generalized mean pooling [46]
and layer normalization [1] are used, similar to [58]. For
vision transformers [10] ViT-B/32 and ViT-B/16 with an
ImageNet-21k initialization from the timm library [68] are
used. The last layer of the model is a d dimensional fully
connected (FC) layer with L2 normalization. In the case of
ROxford/RParis, ResNet-101 [20] is used, layer normal-
ization is not added, while the FC layer is initialized with
the result of whitening [46].
Training hyper-parameters. For ResNet architectures,
Adam optimizer [26] is used and for vision transformers,
AdamW [31] is used. This paper follows the standard class-
balanced-sampling [6, 36, 58] with 4 samples per class for
all the datasets, while classes with less than 4 samples are
not used for training. Unless stated otherwise, the batch size
for training is set 4, 000 for all datasets but Cars196 where
it is equal to 4 × #classes = 392. Following the setup
of ProxyNCA++ [58], the training set is split into training
and validation by using the first half of the classes for train-
ing and the other half for validation. With this split, a grid
search determines the learning rate, decay steps, decay size
and the total number of epochs. Once the hyper-parameters
are fixed, training is conducted once on the entire train-
ing set and evaluated on the test set. When training on
GLDv1 and testing on ROxford/RParis, the batch size is
set to 4096 [47], and training is performed for 500 batches,
while other training hyper-parameters are set as in the work
and GitHub implementation of Radenovic et al. [46]. Note
that the hyper-parameters for each dataset will be released
with the implementation.
RS@k hyper-parameters. The proposed Recall@k Sur-
rogate (RS@k) loss (5) contains three hyper-parameters:
sigmoid temperature τ2 - applied on similarity differences,
sigmoid temperature τ1 - applied on ranks and the set of
values for k for which the loss is computed. Both sig-
moid temperatures are kept fixed across all the experiments
as τ2 = 0.01 (same as [6]) and τ1 = 1. The values
of k are kept fixed as k = {1, 2, 4, 8, 16} without SiMix
and k = {1, 2, 4, 8, 12, 16, 20, 24, 28, 32} with SiMix. For
GLDv1 [38], this is k = {1, 2, 4}, and k = {1, 2, 4, 8}, re-
spectively. The values of k are studied in the supplementary
materials and the sigmoid temperature τ1 are investigated in
Section 4.4, where it is observed that the method is not very
sensitive to these hyper-parameters.

Large batch size. To dispense with the GPU hardware
constraints and manage to train with the large batch size,
we follow the multistage back-propagation of Revaud et
al. [47]. A forward pass is performed to obtain all embed-
dings while intermediate tensors are discarded from mem-
ory. Then, the loss is computed, and so are the gradients
w.r.t. the embeddings. Finally, each of the embeddings is
recomputed, this time allowing the propagation of the gra-
dients. Note that there is no implementation online of this
approach and that the code of this work will become pub-
licly available. Algorithm 1 does not include such imple-
mentation details, but it is compatible with such an exten-
sion. The batch-size impact for the proposed RS@k loss
function is validated in Section 4.4.
Discussion. The methods in the literature use different
embedding sizes, d, therefore, the models for the RS@k
loss are trained with two embedding sizes of d = 128 and
d = 512 for image retrieval benchmarks [27,29,39,61], and
d = 2048 for ROxford/RParis [45], to allow a fair com-
parison. In the standard split, the image retrieval bench-
marks [27, 29, 39, 61] do not contain an explicit valida-
tion set; as a result, image retrieval methods often tune
the hyper-parameters on the test set, leading to the issue
of training with test set feedback. This issue has been stud-
ied in [36], which proposes to train different methods with
identical hyper-parameters. The setup of [36] is not directly
usable for experiments with the RS@k loss, as large batch
sizes are crucial to estimate recall@k accurately. Further-
more, their setup does not allow mixup. Therefore, instead
of following [36], the issue is eliminated by using a part of
the training set for validation as described above.

4.3. Evaluation

Unless otherwise stated, the results of the competing
methods are taken from the original papers. Methods
marked with a † were trained by the authors of this paper,
using the same implementation as used for the RS@k loss.
The results on image retrieval benchmarks [27, 29, 39, 61]
are compared with the methods that use either ResNet-
50 [20] or Inception network [57]. ResNet-50 [20] is repre-
sented as Rd

50 in the tables and the standard Inception net-
work [57] as Id1 , the Inception network with BatchNorm
as Id3 (same as [58]). Here d is the embedding size. On
all the datasets, the performance of the baseline, Smooth-
AP (SAP) [6], is also reported with Generalized mean pool-
ing [46] and layer normalization [1], shown as SAP† (+Gem
+LN). This is to eliminate any performance boost in the
comparisons that were caused by the architecture. Note that
unless otherwise stated in our experiments, the batch size
for SAP is set as 384, the same as the original implementa-
tion [6]. Further, we demonstrate the performance of SAP
and RS@k on ViT-B architectures. The variant of ViT-B
that uses a patch size of 32×32 is denoted by ViT-B/32 and

7507

Method Arch.dim
iNaturalist [61] SOP [39] VehicleID [29] Cars196 [27]

r@k
Small Medium Large

1 4 16 32 100 101 102 103 1 5 1 5 1 5 1 2 4 8
ProxyNCA [35] I128

1 61.6 77.4 87.0 90.6 73.7 - - - - - - - - - 73.2 82.4 86.4 88.7
Margin [69] R128

50 58.1 75.5 86.8 90.7 72.7 86.2 93.8 98.0 - - - - - - 79.6 86.5 91.9 95.1
Divide [53] R128

50 - - - - 75.9 88.4 94.9 98.1 87.7 92.9 85.7 90.4 82.9 90.2 - - - -
MIC [50] R128

50 - - - - 77.2 89.4 95.6 - 86.9 93.4 - - 82.0 91.0 - - - -
Cont. w/M [67] R128

50 - - - - 80.6 91.6 96.2 98.7 94.7 96.8 93.7 95.8 93.0 95.8 - - - -
RS@k† R128

50 69.3 82.9 90.6 93.1 80.6 91.6 96.4 98.8 95.6 97.8 94.4 96.8 93.5 96.6 78.1 85.8 91.1 94.5
RS@k† +SiMix R128

50 69.6 83.3 91.2 93.8 80.9 91.7 96.5 98.8 95.4 97.5 93.8 96.6 93.0 96.2 84.7 90.9 94.7 96.9
+21% +26% +32% +33% +1.5% +1.2% +7.9% +7.7% +17% +31% +11% +24% +7.1% +19% +25% +33% +35% +37%

FastAP [7] R512
50 60.6 77.0 87.2 90.6 76.4 89.0 95.1 98.2 91.9 96.8 90.6 95.9 87.5 95.1 - - - -

MS [66] I512
3 - - - - 78.2 90.5 96.0 98.7 - - - - - - 84.1 90.4 94.0 96.1

NormSoftMax [71]R512
50 - - - - 78.2 90.6 96.2 - - - - - - - 84.2 90.4 94.4 96.9

Blackbox AP [49] R512
50 62.9 79.0 88.9 92.1 78.6 90.5 96.0 98.7 - - - - - - - - - -

Cont. w/M [67] I512
3 - - - - 79.5 90.8 96.1 98.7 94.6 96.9 93.4 96.0 93.0 96.1 - - - -

HORDE [23] R512
50 - - - - 80.1 91.3 96.2 - - - - - - - 86.2 91.9 95.1 97.2

ProxyNCA++ [58] R512
50 - - - - 80.7 92.5 96.7 98.9 - - - - - - 86.5 92.5 95.7 97.7

SAP [6] R512
50 67.2 81.8 90.3 93.1 80.1 91.5 96.6 99.0 94.9 97.6 93.3 96.4 91.9 96.2 76.1 84.3 89.8 93.8

SAP† [6] +GeM +LN R512
50 68.7 82.7 90.9 93.5 80.3 92.0 96.9 99.0 94.2 97.2 92.7 96.2 91.0 95.8 78.2 85.6 90.8 94.3

RS@k† R512
50 71.2 84.0 91.3 93.6 82.8 92.9 97.0 99.0 95.7 97.9 94.6 96.9 93.8 96.6 80.7 88.3 92.8 95.7

RS@k† +SiMix R512
50 71.8 84.7 91.9 94.3 82.1 92.8 97.0 99.1 95.3 97.7 94.2 96.5 93.3 96.4 88.2 93.0 95.9 97.4

+14% +16% +16% +17% +11% +5.3% +12% +10% +16% +13% +18% +14% +11% +10% +13% +6.7% +4.7% −13%

SAP† [6] ViT-B/32512 72.2 84.6 91.6 93.9 83.7 94.0 97.8 99.3 94.8 97.7 93.5 96.8 92.1 96.3 78.1 85.7 91.0 94.8
RS@k† ViT-B/32512 75.9 87.1 93.1 95.1 85.1 94.6 98.0 99.3 95.1 97.7 94.1 96.7 93.2 96.5 78.1 86.4 92.3 95.6

SAP† [6] ViT-B/16512 79.1 89.0 94.2 95.8 86.6 95.4 98.4 99.5 95.5 97.7 94.2 96.9 93.1 96.6 86.2 92.1 95.1 97.2
RS@k† ViT-B/16512 83.9 92.1 95.9 97.2 88.0 96.1 98.6 99.6 96.2 98.0 95.2 97.2 94.7 97.1 89.5 94.2 96.6 98.3

Table 2. Recall@k(%) on iNaturalist [61], Stanford Online Products (SOP) [39], PKU VehicleID [29] and Stanford Cars (Cars196) [27].
Best results are shown with bold, previous state-of-the-art with underline and relative gains over the state-of-the-art in % of error reduction
with blue and relative declines in red. Methods marked with † were trained using the same pipeline by the authors of this paper.

the one that uses a patch size of 16× 16 by ViT-B/16.
iNaturalist. The results on iNaturalist [61] species recog-
nition are presented in Table 2. The performances of the
competing methods are taken from [6], which uses the of-
ficial implementations of these methods. It can be clearly
seen that the RS@k outperforms classification and pairwise
losses, including the three AP approximation losses, reach-
ing the recall@1 score of 71.8% with SiMix, an error re-
duction of 14%.
SOP. The performance on SOP [39] is presented in Table
2, along with the comparisons with the competing methods.
The proposed RS@k loss demonstrates clear state-of-the-
art results, surpassing ProxyNCA++ [58] by 2.0% on re-
call@1, an error reduction of 10.4%. If a smaller batch size,
equal to 384, is used for RS@k, it reaches a performance of
81.2%, 92.2%, 96.9% and 99.0% on r@100, r@101, r@102

and r@103 respectively. This result shows that large batch
size helps in improving the performance, but RS@k outper-
forms the competing methods even with smaller batch size.
VehicleID. The results on VehicleID [29] are presented in
Table 2. RS@k outperforms the competing methods both
with and without SiMix. Better results were observed with-
out SiMix where RS@k reaches recall@1 performance of
95.7%, 94.6% and 93.8% on the small, medium, and large
test sets, respectively.
Cars196. Evaluation on a small scale dataset, Cars196 [27]
is presented in the Table 2. We train SAP with a batch size

of 392; it provides a performance of 79.5%, 86.6%, 91.2%,
and 94.4% and when combined with SiMix a performace of
85.4%, 91.0%, 94.3% and 96.7% on r@1, r@2, r@4 and
r@8 respectively. SiMix makes a large difference in perfor-
mance for both RS@k and SAP [6], primarily because of a
smaller batch size (392), as constrained by the low number
of classes. With SiMix, RS@k reaches the state-of-the-art
results on three out of four recall@k values. If the batch
size is further increased to 588 by changing the number of
samples per class from 4 to 6, then RS@k provides a larger
gain with performance 88.3%, 93.3%, 95.9% and 97.6%.
Results with ViT-B. The results by replacing the ResNet-
50 [20] backbone with a ViT-B [10] for SAP [6] and the pro-
posed RS@k are also shown in Table 2. With an exception
of ViT-B/32 on VehicleID and Cars196 datasets, the use of
ViT-B backbone leads to better performance for both meth-
ods, compared to the ResNet counterpart. It can be clearly
seen that RS@k outperforms SAP [6] on all datasets. ViT-
B/16 when trained with RS@k shows unprecedented per-
formance on all datasets reaching recall@1 score of 83.9%
on iNaturalist [61], 88.0% on SOP [39], 96.2% on Vehi-
cleID [29] (small) and 89.5% on Cars196 [27]. Note that
while ResNet-50 has 24.5 M parameters and operates with
8.12 GMac/image, ViT-B has 87.8 M parameters and op-
erates with 4.36 and 16.8 GMac/image for ViT-B/32 and
ViT-B/16 respectively.
Concurrent work. The method of learning intra-batch

7508

Arch. Loss Train-set
Mean RO RO+R1M RPar RP+R1M

all R1M med hard med hard med hard med hard
GeM∗ AP [19] Landmarks-clean [2] [14] [47]/ [59] 49.7 36.7 67.1 42.3 47.8 22.5 80.3 60.9 51.9 24.6
GeM∗ AP [19] GLDv1 [38] [47]/github - - 66.3 42.5 - - 80.2 60.8 - -
GeM† SAP [6] GLDv1 [38] [6] 52.7 40.6 67.9 46.3 49.5 25.8 81.7 63.3 57.4 29.8
GeM† RS@k GLDv1 [38] ours 53.1 41.0 68.3 46.1 50.1 25.8 82.1 63.9 57.9 30.2
GeM+SiMix† RS@k GLDv1 [38] ours 53.1 41.8 68.4 45.3 51.0 26.4 81.2 62.4 58.7 31.1

Table 3. Performance comparison (mAP%) on ROxford and RParis with 1m distractor images (R1m). Mean performance is reported
across all setups or the large-scale setups only. ∗ denotes that the FC layer is not part of the training but is added afterward to implement
whitening. Batch size is 4096 for all methods; SiMix virtually increases it to 10240. ResNet101 is used as a backbone for all methods.

connections for deep metric learning [54] achieves r@1 of
81.4% on the SOP and 88.1% on Cars196 dataset. The ap-
proach for Grouplet embedding learning [73] obtains r@1
of 82.0% on SOP and 91.5% on Cars196. The metric mixup
approach [62] reports the best results of 81.3% r@1 on
SOP in combination with ProxyNCA++ [58] and 89.6% on
Cars196 which is in combination with MS [66].

ROxford/RParis. Table 3 summarizes a comparison with
AP-based losses in the literature on ROxford/RParis with
and without distractor images. The comparison is per-
formed with GLDv1 as a training set whose performance is
reported for the work of Revaud et al. [47] in their GitHub
page, while the landmarks-clean dataset is avoided as all
initial images are not publicly available at the moment. Dur-
ing the training performed by us, training images are down-
sampled to have a maximum resolution of 1024 × 1024.
The inference is performed with multi-resolution descrip-
tors at three scales with up-sampling and down-sampling
by a factor of

√
2. Note that SAP is not evaluated on these

datasets in the original work and this experiment is per-
formed by us, which outperforms the previously used AP
loss [19]. RS@k, with or without the SiMix, increases the
performance by a small margin.

4.4. Effect of hyper-parameters

We study the impact of hyper-parameter on the Cars196
dataset [27] since it is the smallest compared to the others
and has the lowest training time.

Sigmoid temperature τ1 - applied on ranks. The effect of
the sigmoid temperature τ1 is summarized in Figure 4 (left).
For both setups of with and without SiMix, τ1 = 1.0 gives
best results while higher and lower values lead to a decline.

Batch size. The effect of the varying batch size is shown
in Figure 4 (right). It demonstrates that large batch size
leads to better results. A significant performance boost is
observed with the use of SiMix, especially in the small
batch size regime, which comes at a small extra computa-
tion. A comparison with SAP [6] is also shown in this fig-
ure. Note that on smaller batch sizes, the proposed RS@k
outperforms SAP with a larger margins.

0.1 0.5 1.0 2.0 5.0
70

75

80

85

90

τ1

r@
1

varying temperature

RS@k†

RS@k+SiMix†

24 25 26 27 28 29

70

75

80

85

90

batch size

r@
1

varying batch size

SAP†

Figure 4. The effect of sigmoid temperature τ1 applied on ranks
(left) and of batch size (right). Results are shown on Cars196 [27].

5. Conclusions

This work has presented image embedding learning for
retrieval using a novel surrogate loss function for the re-
call@k metric. State-of-the-art results were achieved on a
number of standard benchmarks. Training with very large
batch size, up to 4k images, has shown to be highly bene-
ficial. The batch size is further increased, in a virtual way,
with a newly proposed mixup approach that acts directly
on the scalar similarities. This approach offers a boost in
performance at a small increase of the computational cost,
while its applicability goes beyond the proposed loss. The
implementation of the proposed Recall@k Surrogate loss,
proposed similarity mixup, along with the training proce-
dure that allows the use of large batch sizes on a single
GPU by sidestepping memory constraints, is available at
https://github.com/yash0307/RecallatK surrogate.

Acknowledgements

The authors thank Kristı́na Cinová for proofreading.
This research was supported by Research Center for Infor-
matics (project CZ.02.1.01/0.0/0.0/16 019/0000765 funded
by OP VVV), by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS20/171/OHK3/3T/13,
by Project StratDL in the realm of COMET K1 center Soft-
ware Competence Center Hagenberg, Amazon Research
Award, and Junior Star GACR, grant No. GM 21-28830M.

7509

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 6

[2] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and
Victor Lempitsky. Neural codes for image retrieval. In
ECCV, 2014. 8

[3] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh
Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. An actor-critic algorithm for sequence pre-
diction. In ICLR, 2017. 1, 2

[4] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. In ICLR, 2018. 1

[5] Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric
Granger, Marco Pedersoli, Pablo Piantanida, and Ismail Ben
Ayed. Metric learning: cross-entropy vs. pairwise losses. In
ECCV, 2020. 2

[6] Andrew Brown, Weidi Xie, Vicky Kalogeiton, and Andrew
Zisserman. Smooth-ap: Smoothing the path towards large-
scale image retrieval. In ECCV, 2020. 1, 2, 3, 4, 5, 6, 7,
8

[7] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan
Sclaroff. Deep metric learning to rank. In CVPR, 2019. 2, 7

[8] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In CVPR, 2019. 2

[9] Wei Dong, Richard Socher, Li Li-Jia, Kai Li, and Li Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In CVPR, 2009. 6

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 2, 6,
7

[11] Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and
Jie Zhou. Deep adversarial metric learning. In CVPR, 2018.
3

[12] Ismail Elezi, Sebastiano Vascon, Alessandro Torcinovich,
Marcello Pelillo, and Laura Leal-Taixé. The group loss for
deep metric learning. In ECCV, 2020. 2

[13] Martin Engilberge, Louis Chevallier, Patrick Pérez, and
Matthieu Cord. Sodeep: a sorting deep net to learn ranking
loss surrogates. In CVPR, 2019. 2

[14] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Lar-
lus. End-to-end learning of deep visual representations for
image retrieval. IJCV, 2017. 8

[15] Geonmo Gu and Byungsoo Ko. Symmetrical synthesis for
deep metric learning. In AAAI, 2020. 3, 5

[16] Geonmo Gu, Byungsoo Ko, and Han-Gyu Kim. Proxy syn-
thesis: Learning with synthetic classes for deep metric learn-
ing. AAAI, 2021. 3, 5

[17] Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy
Mnih. Muprop: Unbiased backpropagation for stochastic
neural networks. In ICLR, 2016. 4

[18] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In CVPR,
2006. 2, 3

[19] Kun He, Yan Lu, and Stan Sclaroff. Local descriptors opti-
mized for average precision. In CVPR, 2018. 2, 3, 8

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2, 6, 7

[21] A Iliev, Nikolay Kyurkchiev, and S Markov. On the ap-
proximation of the step function by some sigmoid functions.
Mathematics and Computers in Simulation, 2017. 4

[22] Anton Iliev Iliev, Nikolay Kyurkchiev, and Svetoslav
Markov. On the approximation of the cut and step functions
by logistic and gompertz functions. Biomath, 2015. 4

[23] Pierre Jacob, David Picard, Aymeric Histace, and Edouard
Klein. Metric learning with horde: High-order regularizer
for deep embeddings. In ICCV, 2019. 7

[24] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion,
Philippe Weinzaepfel, and Diane Larlus. Hard negative mix-
ing for contrastive learning. NeurIPS, 2020. 3, 5

[25] Mete Kemertas, Leila Pishdad, Konstantinos G Derpanis,
and Afsaneh Fazly. Rankmi: A mutual information maxi-
mizing ranking loss. In CVPR, 2020. 3

[26] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[27] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
ICCV workshops, 2013. 2, 5, 6, 7, 8

[28] Nikolay Kyurkchiev and Svetoslav Markov. Sigmoid func-
tions: some approximation and modelling aspects. LAP
LAMBERT Academic Publishing, Saarbrucken, 2015. 4

[29] Hongye Liu, Yonghong Tian, Yaowei Wang, Lu Pang, and
Tiejun Huang. Deep relative distance learning: Tell the dif-
ference between similar vehicles. In CVPR, 2016. 5, 6, 7

[30] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
Raj, and Le Song. Sphereface: Deep hypersphere embedding
for face recognition. In CVPR, 2017. 2

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 6

[32] Jing Lu, Chaofan Xu, Wei Zhang, Ling-Yu Duan, and Tao
Mei. Sampling wisely: Deep image embedding by top-k
precision optimization. In ICCV, 2019. 3

[33] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. In ICLR, 2017. 4

[34] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,
Radu Timofte, and Luc Van Gool. Conditional probability
models for deep image compression. In CVPR, 2018. 1

[35] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Le-
ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-
ric learning using proxies. In ICCV, 2017. 2, 7

[36] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A met-
ric learning reality check. In ECCV, 2020. 2, 3, 6

[37] Gattigorla Nagendar, Digvijay Singh, Vineeth N Balasubra-
manian, and CV Jawahar. Neuro-iou: Learning a surrogate
loss for semantic segmentation. In BMVC, 2018. 1

7510

[38] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand,
and Bohyung Han. Large-scale image retrieval with attentive
deep local features. In ICCV, 2017. 5, 6, 8

[39] Eng-Jon Ong, Sameed Husain, and Miroslaw Bober.
Siamese network of deep fisher-vector descriptors for image
retrieval. In arXiv, 2017. 2, 5, 6, 7

[40] Yash Patel, Srikar Appalaraju, and R Manmatha. Saliency
driven perceptual image compression. In WACV, 2021. 1

[41] Yash Patel, Lluis Gomez, Marçal Rusiñol, Dimosthenis
Karatzas, and CV Jawahar. Self-supervised visual represen-
tations for cross-modal retrieval. In ICMR, 2019. 1

[42] Yash Patel, Tomáš Hodaň, and Jiřı́ Matas. Learning surro-
gates via deep embedding. In ECCV, 2020. 1, 2

[43] Yash Patel and Jiri Matas. Feds–filtered edit distance surro-
gate. In ICDAR, 2021. 1

[44] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong
Jin. Softtriple loss: Deep metric learning without triplet sam-
pling. In ICCV, 2019. 2

[45] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis
Avrithis, and Ondřej Chum. Revisiting oxford and paris:
Large-scale image retrieval benchmarking. In CVPR, 2018.
2, 5, 6

[46] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-
tuning cnn image retrieval with no human annotation. PAMI,
2019. 6

[47] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar
Roberto de Souza. Learning with average precision: Train-
ing image retrieval with a listwise loss. In ICCV, 2019. 2, 3,
5, 6, 8

[48] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In CVPR, 2019. 1

[49] Michal Rolı́nek, Vı́t Musil, Anselm Paulus, Marin Vlastel-
ica, Claudio Michaelis, and Georg Martius. Optimizing rank-
based metrics with blackbox differentiation. In CVPR, 2020.
2, 3, 7

[50] Karsten Roth, Biagio Brattoli, and Bjorn Ommer. Mic: Min-
ing interclass characteristics for improved metric learning. In
ICCV, 2019. 7

[51] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta,
Bjorn Ommer, and Joseph Paul Cohen. Revisiting train-
ing strategies and generalization performance in deep metric
learning. In ICML, 2020. 3, 6

[52] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hash-
ing. International Journal of Approximate Reasoning, 2009.
4

[53] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015. 2, 3, 7

[54] Jenny Seidenschwarz, Ismail Elezi, and Laura Leal-Taixé.
Learning intra-batch connections for deep metric learning.
In ICML, 2021. 2, 8

[55] Kihyuk Sohn. Improved deep metric learning with multi-
class n-pair loss objective. In NeurIPS, 2016. 3

[56] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In arXiv, 2015. 3, 5

[57] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 6

[58] Eu Wern Teh, Terrance DeVries, and Graham W Taylor.
Proxynca++: Revisiting and revitalizing proxy neighbor-
hood component analysis. In ECCV, 2020. 2, 6, 7, 8

[59] Giorgos Tolias, Tomas Jenicek, and Ondřej Chum. Learn-
ing and aggregating deep local descriptors for instance-level
recognition. In ECCV, 2020. 5, 8

[60] Evgeniya Ustinova and Victor Lempitsky. Learning deep
embeddings with histogram loss. In NeurIPS, 2016. 3

[61] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and de-
tection dataset. In CVPR, 2018. 2, 5, 6, 7

[62] Shashanka Venkataramanan, Bill Psomas, Yannis Avrithis,
Ewa Kijak, Laurent Amsaleg, and Konstantinos Karantzalos.
It takes two to tango: Mixup for deep metric learning. In
ICLR, 2022. 3, 5, 8

[63] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolating
hidden states. In ICML, 2019. 3

[64] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition. In CVPR,
2018. 2

[65] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing
Lin. Deep metric learning with angular loss. In ICCV, 2017.
3

[66] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and
Matthew R Scott. Multi-similarity loss with general pair
weighting for deep metric learning. In CVPR, 2019. 7, 8

[67] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R
Scott. Cross-batch memory for embedding learning. In
CVPR, 2020. 7

[68] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 6

[69] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and
Philipp Krahenbuhl. Sampling matters in deep embedding
learning. In ICCV, 2017. 2, 3, 7

[70] Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and
Thomas Huang. Unitbox: An advanced object detection net-
work. In ACM-MM, 2016. 1

[71] Andrew Zhai and Hao-Yu Wu. Classification is a
strong baseline for deep metric learning. arXiv preprint
arXiv:1811.12649, 2018. 2, 7

[72] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 2, 3

[73] Yanfu Zhang, Lei Luo, Wenhan Xian, and Heng Huang.
Learning better visual data similarities via new grouplet non-
euclidean embedding. In ICCV, 2021. 8

[74] Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou.
Hardness-aware deep metric learning. In CVPR, 2019. 3

7511

