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Abstract

This paper is about the old Wahba problem in its more
general form, which we call “simultaneous rotation and
correspondence search”. In this generalization we need
to find a rotation that best aligns two partially overlapping
3D point sets, of sizes m and n respectively with m > n.
We first propose a solver, ARCS, that i) assumes noiseless
point sets in general position, ii) requires only 2 inliers, iii)
uses O(mlogm) time and O(m) space, and iv) can suc-
cessfully solve the problem even with, e.g., m,n =~ 10°
in about 0.1 seconds. We next robustify ARCS to noise,
for which we approximately solve consensus maximization
problems using ideas from robust subspace learning and in-
terval stabbing. Thirdly, we refine the approximately found
consensus set by a Riemannian subgradient descent ap-
proach over the space of unit quaternions, which we show
converges globally to an s-stationary point in O(s™%) it-
erations, or locally to the ground-truth at a linear rate in
the absence of noise. We combine these algorithms into
ARCS+, to simultaneously search for rotations and corre-
spondences. Experiments show that ARCS+ achieves state-
of-the-art performance on large-scale datasets with more
than 108 points with a 10* time-speedup over alternative
methods. https://github.com/liangzu/ARCS

1. Introduction

The villain Procrustes forced his victims to sleep on an
iron bed; if they did not fit the bed he cut off or
stretched their limbs to make them fit [27].

Richard Everson

Modern sensors have brought the classic Wahba problem
[75], or slightly differently the Procrustes analysis problem
[31], into greater generality that has increasing importance
to computer vision [34, 50], computer graphics [58], and
robotics [12]. We formalize this generalization as follows.

Problem 1 (simultaneous rotation and correspondence
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search). Consider point sets Q = {q1,...,q,} C R® and
P = {p1,...,pn} C R3 withm > n. Let C* be a subset
of [m] x [n] :={1,...,m} x {1,...,n} of size k*, called
the inlier correspondence set, such that all pairs (i1, j1) and
(2, j2) of C* satisfy i1 # i9 and j; # jo. Assume that

g =R'p; +¢;, if(i,j)eC” 9]

where €; ; ~ N(0,02I3) is noise, R* is an unknown 3D
rotation, and (g;, p;) is called an inlier. If (i,j) ¢ C* then
(@i, pj) is arbitrary and is called an outlier. The goal of the
simultaneous rotation and correspondence search problem
is to simultaneously estimate the 3D rotation R* and the
inlier correspondence set C* from point sets Q and P.

We focus on Problem 1 for two reasons. First, it al-
ready encompasses several vision applications such as im-
age stitching [16]. Second, the more general and more
important simultaneous pose and correspondence problem,
which involves an extra unknown translation in (1), reduces
to Problem 1 by eliminating the translation parameters (at
the cost of squaring the number of measurements) [80]. As
surveyed in [38], whether accurate and fast algorithms exist
for solving the pose and correspondence search is largely
an open question. Therefore, solving the simpler Problem 1
efficiently is an important step for moving forward.

For Problem 1 or its variants, there is a vast literature
of algorithms that are based on 1) local optimization via it-
erative closest points (ICP) [13,20, 66] or graduated non-
convexity (GNC) [1,76,85] or others [23,41,59], ii) global
optimization by branch & bound [18,21,50, 54,55, 64,70,

], iii) outlier removal techniques [16, 62, 63, 69, 80], iv)
semidefinite programming [39,58,71,77,79], v) RANSAC
[28,51,52,72], vi) deep learning [4,9,22,37], and vii) spher-
ical Fourier transform [12]. But all these methods, if able
to accurately solve Problem 1 with the number k£* of inliers
extremely small, take Q2(mn) time. Yet we have:

Theorem 1 (ARCS). Suppose there are at least two inliers,
k* > 2, and that the point sets Q and P of Problem I are
noiseless “in general position”. Then there is an algorithm
that solves Problem 1 in O(mlogm) time and O(m) space.
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Remark 1 (general position assumption). In Theorem 1,
by “in general position” we mean that i) for any outlier
(gi, pj), we have ||q1H2 #* ||ij2, ii) there exists some in-
lier pairs (gq;, , pj, ) and (g;,, p;,) such that g;, and g;, are
not parallel. If point sets Q and P are randomly sampled
from IR3, these two conditions hold true with probability 1.

A numerical illustration of Theorem 1 is that our ARCS
solver, to be described in §3, can handle the case where
m = 105, n = 8 x 10° and k* = 2, in about 0.1 seconds
(cf. Table 1).! However, like other correspondence-based
minimal solvers for geometric vision [29,45-47,61], ARCS
might be fragile to noise. That being said, it can be extended
to the noisy case, leading to a three-step algorithm called
ARCS+, which we summarize next.

The first step ARCS+y of ARCS+ extends ARCS by es-
tablishing correspondences under noise. ARCS+y outputs
in O(¢+mlogm) time a candidate correspondence set C of
size ¢ that contains C*. Problem 1 then reduces to estimating
R* and C* from P, Q, and hypothetical correspondences C,
a simpler task of robust rotation search [16,63,77,85].

The second step ARCS+q of ARCS+ is to remove outliers
from the previous step 1. To do so we approximately max-
imize an appropriate consensus over SO(3) (§4.2). Instead
of mining inliers in SO(3) [10,34,43,50,64], we show that
the parameter space of consensus maximization can be re-
duced from SO(3) to S? and further to [0, 7] (see [16] for a
different reduction). With this reduction, ARCS+, removes
outliers via repeatedly solving in O(¢log¢) time a compu-
tational geometry problem, interval stabbing [24] (§4.2.1).
Note that ARCS+, only repeats for s =~ 90 times to reach
satisfactory accuracy. Therefore, conceptually, for ¢ > 106,
it is 10* times faster than the most related outlier removal
method GORE [16], which uses O(¢? log ) time (Table 4).

The third and final step ARCS+5 of our ARCS+ pipeline
is to accurately estimate the rotation, using the consensus
set from the second step (§4.3). In short, ARCS+x is a Rie-
mannian subgradient descent method. Our novelty here is
to descend in the space S* of unit quaternions, not SO(3)
[14]. This allows us to derive, based on [53], that ARCS+5
converges linearly though locally to the ground-truth unit
quaternion, thus obtaining the first to our knowledge con-
vergence rate guarantee for robust rotation search.

Numerical highlights are in order (§5). ARCS+, is an
outlier pruning procedure for robust rotation search that can
handle extremely small inlier ratios k* /¢ = 3000/107 =
0.03% in 5 minutes; ARCS+o + ARCS+g, or ARCS+cg for
short, accurately solves the robust rotation search prob-
lem with £*/¢ = 103/10° in 23 seconds (see Table 4).
ARCS+y + ARCS+qg, thatis ARCS+, solves Problem 1 with
m = 10*,n = 8000, k* = 2000 in 90 seconds (see Figure
2). To the best of our knowledge, all these challenging cases

'We run experiments on an Intel(R) i7-1165G7, 16GB laptop. In the
paper we consider random instead of adversarial outliers.

have not been considered in prior works. In fact, as we will
review soon (§2), applying state-of-the-art methods to those
cases either gives wrong estimates of rotations, or takes too
much time (> 8 hours), or exhausts the memory (Table 4).

2. Prior Art: Accuracy Versus Scalability

Early efforts on Problem 1 have encountered an accuracy
versus scalability dilemma. The now classic ICP algorithm
[13] estimates the rotation and correspondences in an al-
ternating fashion, running in real time but requiring a high-
quality and typically unavailable initialization to avoid local
and usually poor minima; the same is true for its succes-
sors [20,23,41,59,66]. The GO—ICP method [81,82] of the
branch & bound type enumerates initializations fed to ICP
to reach a global minimum—in exponential time; the same
running time bound is true for its successors [ 18,55, 64].

The above ICP versus GO—ICP dilemma was somewhat
alleviated by a two-step procedure: i) compute a candidate
correspondence set é, via hand-crafted [67] or learned [30]
feature descriptors, and ii) estimate the rotation from point
sets indexed by C. But, as observed in [80], due to the qual-
ity of the feature descriptors, there could be fewer than 2
inliers remaining in C, from which the ground-truth rotation
can never be determined. An alternative and more conserva-
tive idea is to use all-ro-all correspondences C := [m] x [n],
although now the inlier ratio becomes extremely small.

This justifies why researchers have recently focused on
designing robust rotation search algorithms for extreme out-
lier rates, e.g., > 90 outliers out of 100. One such de-
sign is GORE [16], a guaranteed outlier removal algorithm
of O(£?log /) time complexity that heavily exploits the ge-
ometry of SO(3). The other one is the semidefinite relax-
ation QUASAR of [77], which involves sophisticated manip-
ulation on unit quaternions; ¢ ~ 1000 constitutes the cur-
rent limit on the number of points this relaxation can han-
dle. Yet another one is TEASER++ [80]; its robustness to
outliers comes mainly from finding via parallel branch &
bound [65] a maximum clique of the graph whose vertices
represent point pairs and whose edges indicate whether two
point pairs can simultaneously be inliers. This maximum
clique formulation was also explored by [62] where it was
solved via a different branch & bound algorithm. Since
finding a maximum clique is in general NP-hard, their al-
gorithms take exponential time in the worst case; in addi-
tion, TEASER++ was implemented to trade O(¢?) space for
speed. One should also note though that if noise is small
then the graph is sparse so that the otherwise intractable
branch & bound algorithm can be efficient. Since construct-
ing such a graph entails checking (%) point pairs, recent
follow-up works [51, 56, 69,71, 72] that use such a graph
entail O(¢?) time complexity. While all these methods are
more accurate than scalable, the following two are on the
other side. FGR [85] combines graduated non-convexity
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(GNC) and alternating minimization, while GNC-TLS [76]
combines truncated least squares, iteratively reweighted
least-squares, and GNC. Both of them scale gracefully with
£, while being robust against up to 80/100 = 80% outliers.

Is such accuracy versus scalability dilemma of an inher-
ent nature of the problems here, or can we escape from it?

3. ARCS: Accuracy & Scalability

Basic Idea. Although perhaps not explicitly mentioned in
the literature, it should be known that there is a simple algo-
rithm that solves Problem | under the assumptions of The-
orem 1. This algorithm first computes the /2 norm of each
point in Q and P and the difference d; ; := quHZ — Hpj H2
Since Q and P are in general position (Remark 1), we have
that (g;, p;) is an inlier pair if and only if d; ; = 0. Based
on the d; ;’s, extract all such inlier pairs. Since £* > 2, and
by the general position assumption (Remark 1), there exist
two inlier pairs say (q1,p1), (g2, p2) such that q; and g
are not parallel. As a result and as it has been well-known
since the 1980’s [3, 35, 36, 57], if not even earlier [68, 75],
R* can be determined from the two inlier pairs by SVD.

ARCS: Efficient Implementation. Not all the d; ;’s should
be computed in order to find the correspondence set C*,
meaning that the otherwise O(mn) time complexity can
be reduced. Our ARCS Algorithm 1 seeks all point pairs
(gi, p;)’s whose norms are close, i.e., they satisfy |d; ;| <
¢, for some sufficiently small ¢ > 0. Here c is provided as
an input of ARCS and set as 0 in the current context. It is
clear that, under the general position assumption of Theo-
rem 1, the set C returned by ARCS is exactly the ground-
truth correspondence set C*. It is also clear that ARCS takes
O(mlogm) time and O(m) space (recall m > n > |C*|).
We proved Theorem 1. It is operating in the noiseless
case that allows us to show that Problem | can be solved
accurately and at large scale. Indeed, ARCS can handle
more than 10° points with k* = 2 in about 0.1 seconds,
even though generating those points has taken more than
0.2 seconds, as shown in Table 1.2 Note that in the setting
of Table |1 we have only k* = 2 overlapping points, a sit-
uation where all prior methods mentioned in §1 and §2, if
directly applicable, in principle break down. One reason is
that they are not designed to handle the noiseless case. The
other reason is that the overlapping ratio k*/m of Table 1
is the minimum possible. While the achievement in Table 1
is currently limited to the noiseless case, it forms a strong
motivation that urges us to robustify ARCS to noise, while
keeping as much of its accuracy and scalability as possible.
Such robustification is the main theme of the next section.

2For experiments in Tables 1 and 2 we generate data as per Section 5.1.

Algorithm 1: ARCS
1 Input: @ = {q;}]21,P = {p;}j_1,¢ > 0;

2 Sort Q so that (w.l.o.g.) ||q1||2 <. < ||qm| 95
3 Sort P so that (w.l.o.g.) Hp1||2 <. < Hpn| 93
4i=17=1,C=g;

5 while : < mand j < ndo

6 | dig < [laill, = [lpsll;

7 if d; ; > cthen

8 | j+i+ 1L

9 end

10 if d; ; < —cthen

11 | it 1

12 end

13 if —c <d;; < cthen

14 | C+CU(,4); (4,4) « (i+1,j+1);
15 end

16 end

17 return C;

Table 1. Time (msec) of generating noiseless Gaussian point sets
(G) and solving Problem 1 by ARCS (100 trials, k™ = 2).

m 104 10° 109
n 8x10° 8x10* 8x10°
G 5.9 15.0 212.8
Brute Force 73.8 8304 8380441.5
ARCS 1.51 8.4 121.1

4. ARCS+: Robustifying ARCS to Noise

Here we consider Problem 1 with noise €; ;. We
will illustrate our algorithmic ideas by assuming €; ; ~
N (0, 0%13), although this is not necessary for actual imple-
mentation. As indicated in §1, ARCS+ has three steps. We
introduce them respectively in the next three subsections.

4.1. Step 1: Finding Correspondences Under Noise

A simple probability fact is Hqi — R*p; H2 < 5.540 for
any inlier (g;,p;), so |d; ;| < 5.54c with probability at
least 1—1076 (see, e. g., [80]). To establish correspondences
under noise, we need to modify® the while loop of Algo-
rithm 1, such that, in O(¢ + mlogm) time, it returns the
set C of all correspondences of size ¢ where each (i, j) € C
satisfies |d; ;| < ¢, with ¢ now set to 5.540. Note that, to
store the output correspondences, we need an extra O(¢)
time, which can not be simply ignored as ¢ is in general
larger than m in the presence of noise (Table 2). We call
this modified version ARCS+y. ARCS+y gives a set C that

3The details of this modification can be found at: https://
github.com/liangzu/ARCS/blob/main/ARCSplus_N.m
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Table 2. The number ¢ of candidate correspondences produced by
ARCS+y on synthetic noisy Gaussian point sets. A single trial.

m 1000 5000
n 800 4000 8000
k* 200 1000 2000

¢ 36622 931208 3762888
¢/(mn) 4.58% 4.66%  4.70%

10000

contains all inlier correspondences C* with probability at
least (1 — 10~%)%". This probability is larger than 99.9% if
k* < 103, or larger than 99% if k* < 10%.

Remark 2 (feature matching versus all-to-all correspon-
dences versus ARCS+y). Feature matching methods pro-
vide fewer than n hypothetical correspondences and thus
speed up the subsequent computation, but they might give
no inliers. Using all-to-all correspondences preserves all in-
liers, but a naive computation needs O(mn) time and leads
to a large-scale problem with extreme outlier rates. ARCS+y
strikes a balance by delivering in O (¢+m log m) time a can-
didate correspondence set C of size £ containing all inliers
with high probability and with ¢ < mn.

For illustration, Table 2 reports the number ¢ of corre-
spondences that ARCS+y typically yields. As shown, even
though ¢/ (mn) is usually smaller than 5%, yet ¢ itself could
be very large, and the inlier ratio k* /¢ is extremely small
(e.g., < 0.05%). This is perhaps the best we could do for
the current stage, because for now we only considered every
point pair individually, while any pair (g;, p;) is a potential
inlier if it satisfies the necessary (but no longer sufficient)
condition |d; ;| < c. On the other hand, collectively ana-
lyzing the remaining point pairs allows to further remove
outliers, and this is the major task of our next stage (§4.2).

4.2. Step 2: Outlier Removal

Let there be some correspondences given, by, e.g., either
ARCS+y or feature matching (cf. Remark 2). Then we ar-
rive at an important special case of Problem 1, called robust
rotation search. For convenience we formalize it below:

Problem 2. (robust rotation search) Consider ¢ pairs of 3D
points {(y;, ;) }¢_,, with each pair satisfying

y; =Rz +0; +¢€. ()

Here €; ~ N(0,02%I3) is noise, o, = 0 if i € Z* where
I* C [€] is of size k*, and if ¢ ¢ Z* then o; is nonzero and
arbitrary. The task is to find R* and Z*.

The percentage of outliers in Problem 2 can be quite
large (cf. Table 2), so our second step ARCS+, here is to
remove outliers. In §4.2.1, we shortly review the interval
stabbing problem, on which ARCS+, of §4.2.2 is based.

4.2.1 Preliminaries: Interval Stabbing

Consider a collection of subsets of R, {J; }~_,, where each
J: is an interval of the form [a, b]. In the interval stabbing
problem, one needs to determine a point w € R and a subset
T of {J;}£ ,, so that 7 is a maximal subset whose intervals
overlap at w. Formally, we need to solve

max |Z| (3)
IC[L],w€eR
st. weJ;, Viel

For this purpose, the following result is known.

Lemma 1 (interval stabbing). Problem (3) can be solved in
O(Llog L) time and O(L) space.

Actually, the interval stabbing problem can be solved us-
ing sophisticated data structures such as interval tree [24] or
interval skip list [32]. On the other hand, it is a basic exer-
cise to find an algorithm that solves Problem (3), which,
though also in O(L log L) time, involves only a sorting op-
eration and a for loop (details are omitted, see, e.g., [17]).
Finally, note that the use of interval stabbing for robust rota-
tion search is not novel, and can be found in GORE [16,63].
However, as the reader might realize after §4.2.2, our use of
interval stabbing is quite different from GORE.

4.2.2 The Outlier Removal Algorithm

We now consider the following consensus maximization:

max |Z|
ZC[0],ReSO(3) (4)
s.t. Hyl - RaciH2 <e¢ Viel.

It has been shown in [73] that for the very related robust
fitting problem, such consensus maximization is in general
NP-hard*. Thus it seems only prudent to switch our com-
putational goal from solving (4) exactly to approximately.

From SO(3) to S?. Towards this goal, we first shift our
attention to S? where the rotation axis b* of R* lives. An
interesting observation is that the axis b* has the following
interplay with data, independent of the rotation angle of R*.

Proposition 1. Let v; := y; — ;. Recall €; ~ N(0,0°I3).
If (y;, ;) is an inlier pair, then v, b* ~ N(0,0?), and so
|v,) b*| < 4.90 with probability at least 1 — 1075,

Proposition 1 (cf. Appendix C) leads us to Problem (5):

max |Z|
ZC[e],bes?
st. |vfb<é VieT )
by > 0.

“4Interestingly, consensus maximization over SO(2), i.e., the 2D ver-
sion of (4), can be solved in O(¢log ¢) time; see [17].
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In (5) the constraint on the second entry by of b is to
eliminate the symmetry, and Proposition 1 suggests to set
¢ := 4.90. Problem (5) is easier than (4) as it has fewer de-
grees of freedom; see also [16] where a different reduction
to a 2 DoF (sub-)problem was derived for GORE.

Solving (5) is expected to yield an accurate estimate of
b*, from which the rotation angle can later be estimated.
Problem (5) reads: find a plane (defined by the normal b)
that approximately contains as much points v;’s as possible.
This is an instance of the robust subspace learning prob-
lem [25, 26,48, 74, 83, 86, 87], for which various scalable
algorithms with strong theoretical guarantees have been de-
veloped in more tractable formulations (e.g., /1 minimiza-
tion) than consensus maximization. Most notably, the so-
called dual principal component pursuit formulation [74]
was proved in [37] to be able to tolerate O ((k*)?) outliers.
Still, all these methods can not handle as many outliers as
we currently have (cf. Table 2), even though they can often
minimize their objective functions to global optimality.

From S? to [0, 7]. We can further “reduce” the degrees of
freedom in (5) by 1, through the following lens. Certainly
b € S?in (5) is determined by two angles 6 € [0, 7], ¢ €
[0, ]. Now consider the following problem:

max |Z|
ZC[4],0€[0,7)
st. |v'b|<¢ Viel (6)

b = [sin(f) cos(e), sin(f) sin(e), cos()] .

Problem (6) is a simplified version of (5) with ¢ given.
Clearly, to solve (5) it suffices to minimize the function
f [0, 7] — R which maps any ¢ € [0, 7] to the objective
value of (6) with ¢ = ¢g. Moreover, we have:

Proposition 2. Problem (6) can be solved in O(£1og () time
and O({) space via interval stabbing.

Proposition 2 gives an O({log ¢) time oracle to access
the values of f. Since computing the objective value of (5)
given 0, ¢ already needs O({) time, the extra cost of the log-
arithmic factor in Proposition 2 is nearly negligible. Since f
has only one degree of freedom, its global minimizer can be
found by one-dimensional branch & bound [42]. But this
entails exponential time complexity in the worst case, a sit-
uation we wish to sidestep. Alternatively, the search space
[0, 7] is now so small that the following algorithm ARCS+¢
turns out to be surprisingly efficient and robust: i) sampling
from [0, 7], ii) stabbing in S?, and iii) stabbing in SO(3).

Sampling from [0, 71]. Take s equally spaced points ¢; =
(25 —1)m/(2s),Vj € [s], on [0, 7]. The reader may find this
choice of ¢;’s similar to the uniform grid approach [60];
in the latter Nesterov commented that “the reason why it
works here is related to the dimension of the problem”.

= O k* /¢ = 10t /102
g X k* /0 = 10%/10*
s /€ =10%/10° 10-
= 10-
o
g 1-
S
m -
1- 1 1 1 | 0.1 1 I I I I
10 30 50 70 90 10 30 50 70 90
S S

(a) ARCS+o

(b) ARCS+or

Figure 1. Rotation errors (in degrees) of steps 2 and 3 for robust
rotation search methods with s varying (500 trials, o = 0.01).

Stabbing in S2. For each j € [s], solve (6) with ¢ = ¢; to
get s candidate consensus set Z;’s and s angles ¢;’s. From
each ¢; and 6; we obtain a candidate rotation axis b;.

Stabbing in SO(3). Since now we have estimates of rota-
tion axes, b;’s, there is one degree of freedom remaining,
the rotation angle w. For this we consider:

max |Z|
ZC[f),wel0,27)

s.t. ||yi—RwZ-H2 <ec Viel @)

R=0bb" 4 [b]ysin(w) + (Is — bb") cos(w)

Here [ b ]y € R3*3 denotes the matrix generating the cross
product x by b, thatis [ b]xa = b x a for all @ € R>.
Similarly to Proposition 2, we have the following result:

Proposition 3. Problem (7) can be solved in O({log {) time
and O(£) space via interval stabbing.

After solving (7) with b = b; for each j € [s], we obtain
s candidate consensus sets fl, .. ,fs, and we choose the
one with maximal cardinality as an approximate solution to
(4). Finally, notice that the time complexity O(sflog¢) of
ARCS+, depends on the hyper-parameter s. We set s = 90
as an invariant choice, as suggested by Figure 1.

This output consensus set 7 typically has very few out-
liers; see Table 3. Thus it will be used next in ARCS+g, our
final step for accurately estimating the rotation (§4.3).

Table 3. The output of ARCS+, with inputs from Table 2.

: : 200 1000 2000
Input Inlier Ratio 55555 537508 3762588
; : 199 993 1951
Output Inlier Ratio 513 314 o

4.3. Step 3: Rotation Estimation

The final step ARCS+5 of ARCS+ is a refinement proce-
dure that performs robust rotation search on the output cor-
respondences Z of ARCS+,. Since Z contains much fewer
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outlier correspondences than we previously had (cf. Table 2
and 3), in what follows we simplify the notations by focus-
ing on the point set {(y;, ;) }ic[, Which we assume has
few outliers (say < 50%). Then, a natural formulation is

min Z ||yZ - Rar,yH2 ©))

RESO(3) 4

Problem (8) appears easier to solve than consensus maxi-
mization (4), as it has a convex objective function at least.
Next we present the ARCS+y algorithm and its theory.
Algorithm. We start with the following equivalence.

Proposition 4. We have w' D;w = ||y; — Rar:z , where
w € S? is a quaternion representation of R of (8) and
D; € R*** is a positive semi-definite matrix whose entries

depend on x;, y;. So Problem (8) is equivalent to

4

h(w) = Z VwTDw. )

i=1

min h(w),

wes?

The exact relation between unit quaternions and rota-
tions is reviewed in Appendix A, where Proposition 4 is
proved and the expression of D); is given. For what follows,
it suffices to know that a unit quaternion is simply a unit
vector of R*, and that the space of unit quaternions is S3.

Note that the objective h of (9) is convex, while both
problems (8) and (9) are nonconvex (due to the constraint)
and nonsmooth (due to the objective). Though (8) and (9)
are equivalent, the advantage of (9) will manifest itself soon.
Before that, we first introduce the ARCS+y algorithm for
solving (9). ARCS+g falls into the general Riemannian sub-
gradient descent framework (see, e.g., [53]). Itis initialized
at some unit quaternion w(®) € S? and proceeds by

w®tD MOAVA h(w(t))), (10)

+ Projgs (w(t) -
where Projgs (+) projects a vector onto S?, ~® is some step—
size, V h(w®) is a Riemannian subgradient® of h at w®.

Theory. Now we are able to compare (8) and (9) from a the-
oretical perspective. As proved in [14], for any fixed outlier
ratio and k* > 0, Riemannian subgradient descent when
applied to (8) with proper initialization converges to RR* in
finite time, as long as i) £ is sufficiently large, ii) all points
y;’s and x;’s are uniformly distributed on S2, iii) there is
no noise. But in [14] no convergence rate is given. One
main challenge of establishing convergence rates there is
that projecting on SO(3) does not enjoy a certain kind of
nonexpansiveness property, which is important for conver-
gence analysis (cf. Lemma 1 of [53]). On the other hand,

5We follow [53] where a Riemannian subgradient V h(w) at w € S3
is defined as the projection of some subgradient Vs h(w) of h at w onto
the tangent space of S3 at w, i.e., Vs h(w) := (I4 — ww ) Vs h(w).
See [11] for how to compute a subgradient of some given function.

projection onto S? of (9) does satisfy such property. As a re-
sult, we are able to provide convergence rate guarantees for
ARCS+g. For example, it follows directly from Theorem 2
of [53] that ARCS+5 (10) converges to an e-stationary point
in O(e~%) iterations, even if initialized arbitrarily.

We next give conditions for ARCS+x to converge linearly
to the ground-truth unit quaternion +w™* that represents R*.
Let the distance between a unit quaternion w and w™* be

dist(w, +w*) := min {||w — w*||,,, ||w + w*||, }.
If dist(w, +w*) < p with p > 0 then w is called p-close
to Zw™*. We need the following notion of sharpness.

Definition 1 (sharpness [15,44,49,53]). We say that +w*
is an a-sharp minimum of (9) if @ > 0 and if there exists a
number p, > 0 such that any unit quaternion w € S that
is pa-close to Tw™* satisfies the inequality

h(w) — h(w™) > adist(w, tw"). (11)
We provide a condition below for w™* to be a*-sharp:

Proposition 5. If o* := k*Nmin/V2 — (£ — k*)max > 0
and if €; = 0 in Problem 2, then Problem (9) admits +w*
as an a*—sharp minimum. Here Nmin, Nmax are respectively

o ST
Nrmin ° = wes*nSS Z w' D;w, and (12)
Tlmax ‘= 7 — Z Vw'D;w, 13)

ZE[Z]\I*
where S* is the hyperplane of R* perpendicular to +w*.

Proposition 5 is proved in Appendix B.1. The condition
o > 0 defines a relation between the number of inliers
(k*) and outliers (¢ — k*), and involves two quantities 7,
and nyax Whose values depend on how D;’s are distributed
on the positive semi-definite cone. We offer probabilistic
interpretations for 7, and 1y,,x in Appendix B.2.

With Theorem 4 of [53] and Proposition 5 we have that
ARCS+g (10), if initialized properly and with suitable step-
sizes, converges linearly to the ground-truth unit quaternion
+w*, as long as £w™* is a*-sharp. A formal statement is:

Theorem 2. Suppose a* := k* Nimin/V2 — (£ — k*)Nmax >
0. Let Ly be a Lipschitz constant of h. Run Riemannian
subgradient descent ARCS+z (10) with initialization w(®)
satisfying dist(w®), +w*) < min{a* /Ly, pa~} and with
geometrically diminishing stepsizes Y*) = 5t where

.| 2eq(a* — Lpep) e
0) - 0 hEO 0
7 mln{ L? "2(a* — Lpeg) [’

1.2 (~(0)2
Lot - )y 4 BOO, 1),
€0

0

€p = min { max { dist(w(o), +w”), 202’ }, Pa }
1

5 e
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Table 4. Average errors in degrees | standard deviation | running times in seconds of various algorithms on synthetic data (20 trials).

Inlier Ratio %

10° _
105 — 1%

3
05 = 0.1%

3x10° — 0.06%

3x10° — (0.03%

o) — 0.01%

TEASER++ [80]

out-of-memory

RANSAC 0.39]0.20]29.1 > 8.4 hours
GORE [16,63] 3.432.10 | 1698 > 12 hours
FGR [85] 52.2|68.5]3.64 95.0]160.9|37.7 84.9]59.4|145 86.5|56.9|311 97.3|61.3|314
GNC-TLS [76]  3.86]9.51|0.13 63.4|50.5[2.26 49.9|31.1[15.9 90.2|45.6]40.1 120]34.3|36.3
ARCS+g 9.9213.1|0.12 65.2|48.9]0.96 55.6|38.3|5.58 88.4|36.2]12.6 98.2]36.0|12.2
ARCS+o 0.86]0.29|1.71  0.99]0.37[23.2 0.91|0.30|125 0.98]0.42|287 55.6|60.9|281
ARCS+og 0.03]0.03|1.72 0.09]0.07]23.2 0.11]0.07|125 0.22]0.15|287 55.4|60.1 281

In the noiseless case (€; = 0) we have each w®) satisfying

dist(w®, £w*) < Bleg. (14)

Remark 3 (a posteriori optimality guarantees). Theorem 2
endows ARCS+x (10) with convergence guarantee. On the
other hand, a posteriori optimality guarantees can be ob-
tained via semidefinite certification [5, 19,78, 80].

5. Experiments

In this section we evaluate ARCS+ via synthetic and
real experiments for Problem 1, simultaneous rotation and
correspondence search. We also evaluate its components,
namely ARCS+, (§4.2) and ARCS+g (§4.3) for Problem 2,
robust rotation search, as it is a task of independent interest.
For both of the two problems we compare the following
state-of-the-art methods (reviewed in §2): FGR [85], GORE
[16], RANSAC, GNC-TLS [76], and TEASER++ [80].

5.1. Experiments on Synthetic Point Clouds

Setup. We set 0 = 0.01, ¢ = ¢ = 5.540, n = |0.8m ], and
s = 90 unless otherwise specified. For all other methods
we used default or otherwise appropriate parameters. We
implemented ARCS+ in MATLAB. No parallelization was
explicitly used and no special care was taken for speed.

Robust Rotation Search. From N(0, I3) we randomly
sampled point pairs {(y;, x;)}¢_, with k* inliers and noise
€; ~ N(0,0%I3). Specifically, we generated the ground-
truth rotation R* from an axis randomly sampled from
S? and an angle from [0, 27], rotated k* points randomly
sampled from A (0, I3) by R*, and added noise to ob-
tain £* inlier pairs. Every outlier point y; or x; was ran-
domly sampled from N(0, I3) with the constraint —c <
HyjH2 — Hac]H2 < ¢; otherwise (y,, ;) might simply be
detected and removed by computing Hy] H 5~ ij H2

We compared ARCS+, and ARCS+g and their combi-
nation ARCS+or with prior works. The results are in Ta-
ble 4. We first numerically illustrate the accuracy ver-
sus scalability dilemma in prior works (§2). On the one

hand, we observed an extreme where accuracy overcomes
scalability: RANSAC performed well with error 0.39 when
k* /¢ = 103 /105, but its running time increased greatly with
decreasing inlier ratio, from 29 seconds to more than 8.4
hours. The other extreme is where scalability overcomes
accuracy: Both GNC-TLS and FGR failed in presence of
such many outliers—as expected—even though their run-
ning time scales linearly with /.

Table 4 also depicted the performance of our proposals
ARCS+, and ARCS+g. Our approximate consensus strategy
ARCS+, reached a balance between accuracy and scalabil-
ity. In terms of accuracy, it made errors smaller than 1 de-
gree, as long as there are more than 3 x 10%/107 = 0.03%
inliers; this was further refined by Riemannian subgradient
descent ARCS+g, so that their combination ARCS+z had
even lower errors. In terms of scalability, we observed that
ARCS+op is uniformly faster than FGR, and is at least 1800
times faster than GORE for k* /¢ = 103/10% = 0.1%. But it
had been harder to measure exactly how faster ARCS+qy is
than GORE and RANSAC for even larger point sets. Finally,
ARCS+og failed at k* /¢ = 10%/107 = 0.01%.
Simultaneous Rotation and Correspondence Search. We
randomly sampled point sets Q and P from N (0, I3) with
k* inlier pairs and noise €; ; ~ N (0, 02I3) (cf. Problem 1).
Each outlier point was randomly and independently drawn
also from N(0, I3). Figure 2 shows that ARCS+ accurately
estimated the rotations for £* > 2000 (in 90 seconds), and
broke down at £* = 1000, a situation where there were
k*/m = 10% overlapping points. We did not compare
methods like TEASER++, GORE, RANSAC here, because
giving them correspondences from ARCS+y would result
unsatisfactory running time or accuracy (recall Tables 2 and
4), while feature matching methods like FPFH do not per-
form well on random synthetic data.

5.2. Experiments on 3DMatch

The 3DMatch® dataset [84] contains more than 1000
point clouds for testing, representing 8 different scenes

SLicense info: https://3dmatch.cs.princeton.edu/
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Table 5. Success rates of methods run on the scene pairs of the 3DMatch dataset [
are provided (rotation error smaller than 10 degree means a success [

] for which the ground-truth rotation and translation
]; see also the first paragraph of Appendix E).

Scene Type  Kitchen Homel Home?2 Hotell Hotel2 Hotel3 Study Room MITLab Overall
# Scene Pairs 506 156 208 226 104 54 292 7 1623

TEASER++  99.0%  98.1% 94.7%  98.7% 99.0%  98.1% 97.0% 94.8%  97.72%
ARCS++0g 98.4%  97.4%  95.7%  98.7% 98.1%  100% 97.3% 96.1%  97.72%

3 Modern point clouds have more than 10° points, and are

g 15- naturally correspondences-less (cf. [17]). ARCS operates at

LE 10 - that scale in the absence of noise (Table 1), while ARCS+

% | can handle m, n ~ 10000 (Figure 2) and ARCS+05 can han-

E 3 dle ¢ =~ 107 correspondences (Table 4); all these are limited

0- to the rotation-only case. To find rotation (and translation)

1000 3000 5000 7000
# Inlier Pairs (k*)

Figure 2. Rotation errors of ARCS+ on synthetic Gaussian point
clouds. 20 trials, m = 10, n = |0.8m], o = 0.01.

(such as kitchen, hotel, etc.), while the number of point
clouds for each scene ranges from 77 to 506. Each point
cloud has more than 10° points, yet in [84] there are
5000 keypoints for each cloud. We used the pretrained
model” of the 3DSmoothNet [30] to extract descrip-
tors from these key points, and matched them using the
Matlab function pcmatchfeatures, with its parame-
ter MatchThreshold set to the maximum 1. We as-
sume that the ground-truth translation ¢* is given, and run
TEASER++ and ARCS+oz on (y; — t*,x;)’s; the perfor-
mance is comparable. We did not compare other methods
here, as TEASER++ currently has the best performance on
3DMatch (to the best of our knowledge); see [80] for com-
parison with optimization-based methods, and see [22] for
the success rates (recall) of deep learning methods.
See the supplementary materials for more experiments.

6. Discussion and Future Work

Despite of the progress that we made for robust rota-
tion search and simultaneous rotation and correspondence
search on large-scale point clouds, our ARCS+ pipeline has
a few limitations, and we discuss them next.

For small datasets (e.g., £ < 500), as in homography
fitting [16], other methods, e.g., MAGSAC++ [6—8], VSAC
[40], TEASER++ [80], and GORE [ 6] might be considered
with higher priority; they come with efficient C++ imple-
mentations. For more points, e.g., £ > 104, but with higher
inlier rates than in Table 4 (e.g., > 15%), GNC-TLS [76]
and RANSAC are our recommendations for what to use.

Thttps://github.com/zgojcic/3DSmoothNet

from such point sets “in the wild”, it seems inevitable to
downsample them. An interesting future work is to theoret-
ically quantify the tradeoff between downsampling factors
and the final registration performance. Another tradeoff to
quantify, as implied by Remark 2, is this: Can we design a
correspondence matching algorithm that better balances the
number of remaining points and the number of remaining
inliers? In particular, such matching should take specific
pose into consideration (cf. ARCS); many methods did not.
Like TEASER++, GORE, GNC—-TLS, RANSAC, our algo-
rithm relies on an inlier threshold c. While how to set this
hyper-parameter suitably is known for Gaussian noise with
given variance, in practice the distance threshold is usu-
ally chosen empirically, as Hartley & Zisserman wrote [33].
While mis-specification of c could fail the registration, cer-
tain heuristics have been developed to alleviate the sensi-
tivity to such mis-specification; see [2, 6—8]. Finally, our
experience is to set ¢ based on the scale of the point clouds.
Our outlier removal component ARCS+, presented good
performance (Table 3), yet with no optimality guarantees.
Note that, with s = 90 we have |¢; — ¢*| < 1 for some ¢;,
while Figure 1a shows that ARCS+, gave roughly 1 degree
error at s = 90. Theoretically justifying this is left as future
work. Without guarantees, registration could fail, which
might lead to undesired consequences in safety-critical ap-
plications. On the other hand, we believe that ARCS+ is a
good demonstration of trading optimality guarantees for ac-
curacy and scalability; enforcing all of the three properties
amounts to requiring solving NP hard problems efficiently
at large scale! In fact, since any solutions might get certified
for optimality (Remark 3), bold algorithmic design ideas
can be taken towards improving accuracy and scalability,
while relying on other tools for optimality certification.
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