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Abstract

Object detection and forecasting are fundamental com-
ponents of embodied perception. These two problems, how-
ever, are largely studied in isolation by the community. In
this paper, we propose an end-to-end approach for detection
and motion forecasting based on raw sensor measurement
as opposed to ground truth tracks. Instead of predicting the
current frame locations and forecasting forward in time, we
directly predict future object locations and backcast to de-
termine where each trajectory began. Our approach not
only improves overall accuracy compared to other modular
or end-to-end baselines, it also prompts us to rethink the
role of explicit tracking for embodied perception. Addition-
ally, by linking future and current locations in a many-to-
one manner, our approach is able to reason about multiple
futures, a capability that was previously considered difficult
for end-to-end approaches. We conduct extensive experi-
ments on the popular nuScenes dataset and demonstrate the
empirical effectiveness of our approach. In addition, we in-
vestigate the appropriateness of reusing standard forecast-
ing metrics for an end-to-end setup, and find a number of
limitations which allow us to build simple baselines to game
these metrics. We address this issue with a novel set of joint
forecasting and detection metrics that extend the commonly
used AP metrics from the detection community to measur-
ing forecasting accuracy. Our code is available on GitHub.

1. Introduction

Object detection and forecasting are fundamental com-
ponents of embodied perception that are often studied inde-
pendently. In this paper we rethink the methods and metrics
for trajectory forecasting from LiDAR sensor data. Trajec-
tory forecasting is a critical perception task for autonomous
robot navigation, thus building meaningful evaluation met-
rics and robust methods is of utmost importance.

Traditional trajectory forecasting methods [6, 9, 47] de-
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Figure 1. (a) Current stage-wise methods independently address
the problems of detection, tracking, and forecasting, allowing for
compounding errors in the full pipeline. Each sub-module incor-
rectly assumes that its input will be perfect, leading to further inte-
gration errors. In contrast to current forecasting methods that use
object tracks as input, end-to-end forecasting directly from LiDAR
sensory data (b) streamlines forecasting pipelines. To this end, we
propose FutureDet (c), an end-to-end model capable of forecasting
multiple-future trajectories directly from LiDAR via future object
detection. We show that our end-to-end pipeline improves upon
state-of-the-art three-stage and end-to-end methods.

tect [44–46] and track [23, 48, 50] objects in 3D LiDAR
scans to obtain past trajectories (Fig. 1a). These can be
used in conjunction with auto-regressive forecasting meth-
ods [1, 20, 22, 43] to estimate the future actions of sur-
rounding agents. Recent efforts [33,37,51] streamline such
multi-stage perception stacks and train multi-task neural
networks to jointly detect, track and forecast object posi-
tions directly from raw sensor data (Fig. 1b). However,
such end-to-end approaches tend to predict only a single
future trajectory for each object, not accounting for future
uncertainty. This is not surprising as estimating multiple fu-
tures is a significant challenge in forecasting, requiring ma-
chinery such as multiple-choice-loss [5] or generative mod-
els [2, 10, 11, 20, 22, 25, 29, 42].

We rethink the forecasting task and propose FutureDet,
an approach that reframes forecasting as the task of fu-

17202



ture object detection (Fig. 1c). Importantly, existing de-
tectors [27, 53, 56] already learn to predict heatmaps that
capture distributions over possible object locations. We re-
purpose this machinery to represent possible future object
states. To this end, we encode an accumulated sequence
of past raw LiDAR scans using standard backbones for 3D
LiDAR-based object detection and train our network to (i)
detect objects multiple timesteps into the future and (ii) es-
timate trajectories for these future detections back in time
(i.e., back-cast) to the current frame. By matching back-
casted future detections to current detections in a many-to-
one manner, our approach can represent a distribution over
multiple plausible future states. Our extensive evaluation on
the large-scale nuScenes [6] dataset for trajectory forecast-
ing reveals that our proposed FutureDet outperforms state-
of-the-art methods, without requiring object tracks or HD-
maps as inputs to the model. We posit that tracking may
emerge from our network (since tracking objects from accu-
mulated past LiDAR scans may make them easier to fore-
cast), similar to the emergence of tracking and forecasting
in streaming perception [31].

Furthermore, we investigate the utility of current metrics
[33,49] for evaluating forecasting directly from raw LiDAR
data. We find that existing metrics are not well suited for the
task of joint detection and forecasting, allowing them to be
gamed by trivial forecasters. Current metrics for end-to-end
LiDAR forecasting adapt trajectory-based forecasting met-
rics, such as average/final displacement error (ADE/FDE).
These metrics were designed for evaluating forecasting in
a setting where perfect tracks are given as input, and ob-
jects don’t have to be detected. However, these metrics
don’t adapt well to the end-to-end setting. We demonstrate
that such metrics can be gamed by baselines that simply
rank all stationary objects (which are trivially easy to fore-
cast) with high confidence, dramatically outperforming all
prior art. Moreover, these evaluation metrics detach two in-
herently inter-connected tasks of detection and forecasting.
Consequentially, they do not penalize false forecasts, i.e.,
forecasts that do not actually belong to any objects. In this
sense, the end-to-end setup and evaluation is more realistic.

To address these short-comings, we rethink the evalua-
tion procedure for joint object detection and forecasting di-
rectly from sensor data. Our key insight is that the versatile
average precision (AP) metric, a gold standard for assess-
ing object detection performance, can be generalized to the
task of joint detection and forecasting. The key feature of
our novel forecasting mAP is that a forecast is correct only
if the object is both correctly detected and forecasted. Our
forecasting mAP is then calculated by simply using the ma-
chinery of AP, but using this joint detection and forecasting
definition of a true positive. Furthermore, our forecasting
mAP can be extended to evaluating multiple-future forecasts
for each object by simply evaluating w.r.t. the top-K most

confident forecasts per-detection. Our metric appropriately
adapts forecasting metrics for end-to-end evaluation: fore-
casting mAP jointly assesses forecasting and detection, pe-
nalizing both missed forecasts as well as false forecasts. It
assesses forecasting performance on the full set of object
detections and embraces the inherent multi-future nature of
forecasting.

Contributions: We (i) repurpose object detectors for
the task of end-to-end trajectory forecasting and propose a
model that can predict multiple forecasts for each current
detection, (ii) rethink trajectory forecasting evaluation and
show that detection and forecasting can be jointly evalu-
ated using a generalization of well-accepted object detec-
tion metrics, and (iii) thoroughly analyze the performance
of our model on the challenging nuScenes dataset [7], show-
ing that it outperforms both previous end-to-end trainable
methods and more traditional multi-stage approaches.

2. Related Work

Object Detection and Tracking. Due to recent advances
in supervised deep learning [26] and community efforts in
dataset collection and benchmarking [4, 6, 12, 16, 47], the
research community has witnessed rapid improvement in
LiDAR-based 3D object detection [27, 39, 44, 45], track-
ing [48, 53], and segmentation [3, 4, 54]. Several meth-
ods [44, 45] follow a well-established two-stage object de-
tection pipeline using point-cloud encoder backbones and
a 3D variant of a region proposal network [40], or detect
objects as points, followed by classification and bounding
box regression [53]. Due to the sparsity of LiDAR point
clouds, recent methods accumulate multiple scans over time
to improve object detection [27, 53] and LiDAR panoptic
segmentation performance [3]. To understand how trajecto-
ries of detected objects evolve over time, multi-object track-
ing methods associate detections using Kalman filters [48],
learned object descriptors [14,50] or regress frame-to-frame
offsets [53, 55], typically followed by greedy or combina-
torial optimization to resolve ambiguous data association.
The latter approach can be interpreted as a single frame
forecast for track association. However, autonomous vehi-
cles must account for likely future positions of surrounding
agents at longer temporal horizons to safely navigate and
avoid collisions in dynamic environments.

Trajectory Forecasting. Vision-based trajectory forecast-
ing has been posed as the task of predicting future trajecto-
ries of agents, given perfect past trajectories and a top-down
image (recorded e.g. using drones) as input [30, 38, 41].
Early physics-based models [21] explicitly model agent-
agent and agent-environment interactions and have been
successfully used to enhance object trackers [28, 52]. Re-
cent methods use auto-regressive data-driven models that
leverage recurrent neural networks (RNNs) and encoder-
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decoder-based architectures to encode the past trajectory
and estimate its evolution in future frames [1]. To deal
with the inherent multi-modal nature of the problem, several
methods leverage generative models [18, 24] to learn a dis-
tribution over future trajectories [2,10,11,20,22,25,29,42].
However, these methods and benchmarks tackle forecast-
ing in idealized scenarios, in which the entire visual scene
is directly observed, and perfect input trajectories are pro-
vided. Both are unrealistic assumptions in automotive and
robotics applications. Due to the importance of forecasting
for automotive path planning, recent large-scale automotive
benchmarks [6,9,47] explicitly focus on the trajectory fore-
casting task. Similar to vision-based methods, these bench-
marks pose the forecasting problem as trajectory estimation
given past trajectories and a high-definition map of the en-
vironment. These benchmarks have facillitated a wide suite
of HD-map-based forecasting methods, which either repre-
sent the HD-map as rasterized images [8,17], graphs or vec-
tors [15, 19, 32]. However, both algorithms and the evalua-
tion protocol make the unrealistic assumption that detection
and tracking outputs are perfect.

Forecasting from Sensor Data. Prior methods [33,37,51]
tackle object detection, tracking, and forecasting jointly by
training a single convolutional neural network in a multi-
task fashion from accumulated stacks of LiDAR sweeps.
Alternatively, [49] directly forecasts future LiDAR scans
and leverages off-the-shelf LiDAR object detectors to de-
tect objects in these forecasted scans. We believe that this
approach of end-to-end joint detection and forecasting is a
step in the right direction. However, none of the aforemen-
tioned end-to-end methods are able to reason about multiple
future trajectories. To embrace the inherently uncertain fu-
ture, we present an end-to-end forecasting model (Sec. 4)
that simultaneously detects objects in the current and fu-
ture timesteps given a history of LiDAR scans, anchoring
multiple possible future detections to current scan detec-
tions. This approach not only outperforms the aforemen-
tioned methods w.r.t. forecasting accuracy but also allows
for multiple future interpretations. Finally, we observe that
ad-hoc adaptations of forecasting metrics [33, 37, 51] do
not appropriately characterize certain types of forecasting
errors. As a remedy, we propose a generalization of the
average precision (AP) [13] metric for joint detection and
forecasting in Sec. 3. Note that our adoption of AP is also
inspired by the work of streaming perception [31], where
AP is used to measure the joint performance of 2D object
detection, tracking, and short-term forecasting without con-
sidering multiple futures.

3. Rethinking Forecasting Evaluation

Since we are tackling the task of forecasting future po-
sitions of cars directly from LiDAR scans, we assume an

observed sequence of past LiDAR sensor data, up to the
most recent observation Stobs at time tobs, as input. We
pose joint object detection and forecasting as the task of
estimating a set of object locations (parametrized as 3D
cuboids) in the current scan Stobs as well as their future tra-
jectory continuations in the future, unobserved scans i.e.,
{St, t ∈ [tobs + 1, . . . , T ]}.

3.1. Preliminaries

Prior work [1,20,22,30,38,41,43] presents forecasting as
the task of estimating the “correct” continuation of a given
ground-truth track. In particular, given past trajectory ob-
servations Xi = {(xt

i, y
t
i) ∈ R2, t = 1, . . . , tobs}, the task

is to estimate future positions Yi = {(xt
i, y

t
i) ∈ R2, t =

tobs + 1, . . . , tT } for all agents present in the scene. This
formalization is also adopted by recent automotive forecast-
ing benchmarks [6, 9, 47]. However, as the ego-vehicle is
moving, methods are given high-definition (HD) maps of
the surrounding environment and ego-vehicle positions to
account for the geometry of the surroundings. First, we dis-
cuss existing metrics for forecasting evaluation.

ADE and FDE. Average displacement error (ADE) and
final displacement error (FDE) are commonly used evalu-
ation metrics for assessing trajectory prediction. Both are
measured as the L2 distance between model predictions
{Yi} and ground truth trajectories {Gi}. To account for the
inherent uncertainty in trajectory continuation, methods are
evaluated over the set of top-K model predictions (w.r.t. the
confidence score of each predicted forecast). These met-
rics assume that the set of true positives are the same for
all methods. This assumption does not hold when compar-
ing end-to-end methods, which can produce different sets
of true positives, making comparison unreliable.

Miss Rate. If the final displacement error between a
ground-truth trajectory and a prediction is above a center
distance threshold, we count the forecast as a miss (sim-
ilarly evaluated w.r.t. the set of top-K predictions). This
metric evaluates the proportion of misses over all forecasts
in a scene.

ADE/FDE w.r.t. Recall. The standard forecasting setup
allows us to build models in isolation from other fac-
tors and has sparked rapid progress in this field of re-
search [1,10,11,20,22,43]. However, the standard assump-
tion of having perfect input trajectories is not feasible in
practice as it critically depends on perfect object tracks as
inputs, which are nearly impossible to obtain in practice.
To this end, [33, 37, 51] study end-to-end trajectory fore-
casting directly from raw sensor data, and propose an eval-
uation setup for end-to-end forecasting models using the
aforementioned ADE and FDE at fixed recall thresholds,
i.e., ADE/FDE at 60% or 90%. This evaluation setting has
two major short-comings:
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Evaluated only on a subset of matched detections. A large
number of agents are not moving and prediction of their fu-
ture positions is trivial. Models that rank stationary objects
higher than moving objects can obtain higher forecasting
performance by specializing on trivial predictions. We pro-
vide empirical evidence for this in Sec. 5.1 and show that
such recall-based metrics can be “gamed” using a simple
constant position prediction model.
No penalty for false positives. The current evaluation pro-
tocol detaches the inter-linked tasks of detection and fore-
casting. As a consequence, models can predict an arbi-
trary number of forecasts that are not anchored to any de-
tections. In other words, this approach does not penalize
false forecasts, i.e., forecasts not anchored to any detec-
tion, and missed forecasts as commonly characterized by
the miss rate.

3.2. Average Precision is All You Need

Average Precision (AP ). AP is defined as the area under
the precision-recall curve [13], commonly averaged over
multiple spatial overlap thresholds [34]. To compute AP
we first determine the set of true positives (TP) and false
positives (FP) to evaluate precision and recall. In stan-
dard object detection, TPs are considered to be successful
matches between model predictions and ground-truth, typ-
ically determined based on 2D/3D intersection-over-union
(IoU) [13] or distance from the object center [6] in the ref-
erence image or LiDAR point cloud, respectively. We can
extend AP for joint detection and forecasting by (a) evaluat-
ing detection accuracy on the current frame or (b) evaluating
detection accuracy T seconds into the future. However, (a)
completely ignores forecasts and (b) doesn’t ensure that fu-
ture trajectories are correctly associated to the right current
detection.

Forecasting Average Precision (APf ). For the task of
joint detection and forecasting, all future forecasts need to
be anchored to objects, present (and detected) in Stobs . A
robust metric must correctly penalize trajectories with cor-
rect first frame detections and incorrect forecasts (false fore-
casts), and trajectories with incorrect first frame detections
(missed forecasts).

To characterize both types of errors, we define a true pos-
itive with reference to the current frame tobs if there is a
positive match in both the current timestamp (tobs) and the
future (final) timestep tobs+T . Otherwise, a forecast is con-
sidered to be a false positive. A successful match in the cur-
rent frame is determined based on the distance from the cen-
ter, averaged over distance thresholds of {0.5, 1, 2, 4}m [7].
Similarly, a successful match in the final timestep is deter-
mined based on the distance from object center, averaged
over distance thresholds of {1, 2, 4, 8}m respectively. In
contrast to ADE @ Recall % and FDE @ Recall %, this

evaluation setting (i) takes all detections (not just true posi-
tives) into account, and (ii) penalizes missed forecasts (typ-
ically characterized by the miss-rate).

Forecasting Mean Average Precision (mAPf ). Forecast-
ing AP is evaluated on the full set of detections and cannot
be “gamed” by a simple constant position model. However,
we note that the data itself is imbalanced: over 60% of cars
in the nuScenes dataset are parked, and are therefore sta-
tionary. To this end, we define three sub-classes: static car,
linearly moving car and non-linearly moving car. Com-
puting sub-class APf can be difficult; we do not require
forecasts to output sub-class labels, but assume all ground-
truth objects have sub-class labels. We follow the protocol
for large-vs-small object subclass evaluation from COCO
[35], described further in the appendix. We then evaluate
mAPf as 1

3 (AP stat.
f + AP lin.

f + AP non-lin.
f ) to ensure our

metric cannot be “gamed” by trivial forecasters, as well as
discuss fine-grained analysis on the three cases separately.
Similarly, mAPdet is evaluated as the average APdet over
the three sub-classes.

Metrics: Embracing Multiple Futures. As described,
mAPf would be suitable for evaluating forecasting for
scenes with multiple future ground truth trajectories. How-
ever, this is not feasible in the practice when forecasting
directly from historical sensor data. To this end, we adopt
a top-K based forecasting evaluation [30, 38, 41], that does
not penalize models for hypothesizing possible future tra-
jectories anchored from a single detection. In particular, we
first match predictions to ground-truth detections in tobs and
take the top-K highest ranked forecasts for each detection.
Based on this set, we determine the best-matching forecast
in terms of FDE and evaluate APf as explained above.

4. Forecasting as Future Object Detection
FutureDet addresses the forecasting problem by predict-

ing the future locations of objects observed at tobs. We can
repurpose existing LiDAR detectors to predict object loca-
tions for T future (unobserved) LiDAR scans, for which
ground truth supervision is given. We first describe our
method and discuss our implementation based on the re-
cently proposed CenterPoint LiDAR detector. [53].

Future object detection and forecasting are related tasks.
Forecasting requires predicting consistent trajectories in ev-
ery frame between the current frame and T future frames.
To estimate forecasts from future detections we train our
network to additionally estimate velocity offset vectors for
every future detection. We do so for all frames between
the current timestep and the final future timestep where the
future detection occurs.

Backcasting vs. Forecasting. Fast and Furious [37] pro-
poses a similar architecture that forecasts position offsets
into the future directly from current-frame detections. Our
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Figure 2. FutureDet. Based on an accumulated LiDAR sequence, FutureDet detects objects in the current frame t and in a future frames
up to t + T . We then cast these future detections back-in-time (i.e., back-cast) to the current-frame where they are matched to current
frame object detections. Such matching of multiple future detections to current-frame detections is a a natural mechanism for a multi-future
interpretation of the observed evidence.

method considers the inverse setup where we detect in both
the current and future frames and predict offsets back in
time. We posit that future object detection requires the net-
work to learn forecasted feature representations [36], di-
rectly optimizing for future object positions. Our experi-
mental evaluation and visual inspection confirm this intu-
ition (Sec. 3).

Method: Embracing Multiple Futures. The task of
forecasting is inherently ambiguous: while there are many
plausible outcomes given an input trajectory, only one fu-
ture is realized for training supervision and evaluation.
Traditional forecasting methods and benchmarks facilitate
multiple future predictions via top-K based evaluation,
leveraging multiple-choice-loss [5] and generative mod-
els [2, 10, 11, 20, 22, 25, 29, 42] to learn a (possibly multi-
modal [10,11]) distribution over future trajectories. Future-
Det allows for natural multi-future forecasting to emerge.
We first point out that detection networks can be easily
repurposed for future detection by giving target bounding
boxes T seconds into the future. Since future objects are
detected independently from current-frame detections, we
posit that the network will produce multiple future detec-
tions for every object in the scene, effectively placing “mul-
tiple bets” where the objects may end up in the future. As
all future detections are modeled by Gaussian heat maps,
we implicitly obtain a multi-modal distribution over possi-
ble future locations (see Fig. 2).

Matching Multiple Forecasts. The task of forecasting re-
quires all trajectories to be anchored to the set of object de-
tections in the current (observed) LiDAR scan. For every
future detection i, we backcast and compute the distance
to each detection j from the previous timestep. For each
i, we pick the best j (allowing for many-to-one matching).
This framework naturally allows potentially multiple future
forecasts to belong to each current timestep detection.

Ranking Multiple Forecasts. For all forecasts anchored
at a single detection, we rank trajectories according to their
forecasting score, derived using the detection confidence
score of the last detection in a predicted trajectory. As
shown in Table 2, we find there is a slight increase in per-
formance between K = 1 and K = 5, indicating that better
ranking strategies can further improve FutureDet.

Implementation. We train CenterPoint to detect objects
in future scans. The underlying detection network sim-
ply thinks it’s finding T times as many object classes (e.g.,
cars and future-cars) with additional regression off-
sets (analogous to existing velocity regressors). In addition,
we repurpose the ground truth sampling (a.k.a. copy-paste)
augmentation [57] to increase the diversity of training tra-
jectories. This provides considerable improvement in linear
and non-linear forecasting performance. We use the Py-
Torch toolbox to train all models for 20 epochs with the
Adam optimizer and a one-cycle learning rate scheduler.

CenterPoint is already a one-frame forecaster. It detects
objects and predicts one-frame future velocity vectors that
are used as cues for tracking. It does this by accumulating T
previous LiDAR scans and encodes the accumulated point
cloud sequences using a VoxelNet [56] backbone. Such a
tracker could be used as input to auto-regressive forecasting
methods, e.g., [43], however, we argue that we can use such
a spatiotemporal representation to directly forecast.

CenterPoint models object locations as Gaussians. It
does so by producing a 2D bird’s-eye-view (BEV) heatmap,
which models the continuous likelihood of detections at
each point in the BEV space. Detections are obtained by
finding local maxima in these heatmaps via non-maximum
suppression (NMS). By reusing this representation for fu-
ture detection, our detection heatmaps are effectively a fore-
cast of a continuous likelihood field for the locations of ob-
jects. This continuous field naturally encodes the uncer-
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tainty of future detections, accounts for multi-modality, and
provides a continuous representation for forecasting.

5. Experimental Evaluation

We conduct our experimental analysis on the
nuScenes [6] dataset. As we are tackling end-to-end
forecasting from sensor data, we do not follow the es-
tablished evaluation protocol that provides ground-truth
trajectories and HD maps as input (as explained in Sec. 3.1).
First, we perform breakdown analysis of evaluation metrics
proposed in [33] and our forecasting mAP by analyzing the
performance of a simple constant position model (Sec. 5.1).
After verifying that our proposed evaluation setting is not
easily “gamable”, as discussed in Sec. 3.1, we thoroughly
ablate our model and compare its performance to other
state-of-the-art methods (Sec. 5.2).

Repurposing NuScenes Tracking Dataset. nuScenes [6]
recently introduced a large-scale multi-modal dataset
recorded in Boston and Singapore. It provides 1000 twenty-
second logs that are fully annotated with 3D bounding
boxes. This work explicitly focuses on forecasting based
on LiDAR data, obtained with a 32 beam LiDAR sensor
recorded at 20 Hz, covering 360-degree view. We follow the
official protocol and evaluate forecasting on the car class up
to 3 seconds in the future. We evaluate forecasting perfor-
mance on the pedestrian class in the appendix. As the test
set is hidden, we follow [33] and conduct our analysis on
the official validation split.

5.1. Metric Breakdown Analysis

In this section, we analyze different evaluation metrics
by comparing a trivial constant position model to several
state-of-the-art forecasting methods [33, 37, 43]. For the
task of end-to-end forecasting from raw data, methods re-
port both detection and forecasting confidence scores. For
the simple constant position model, we threshold trajecto-
ries such that we only report those where the final position
overlaps with the initial position (i.e the object is stationary)
with high confidence. A good forecasting evaluation met-
ric should indicate that the trivial constant position baseline
is not a good predictor, as it only correctly predicts future
locations of stationary objects and explicitly assumes a sta-
tionary world. Do existing metrics reveal this?

To answer this question, we report the results of our anal-
ysis in Table 1. We analyze the results using average and
final displacement (ADE and FDE) errors at {60, 90}% re-
call [33], and a variant that averages results over all recall
thresholds [49] (see Sec. 3.1 for a discussion of these met-
rics). Our trivial constant position baseline yields state-of-
the-art results under the aforementioned evaluation settings.
Current metrics are “gameable” by this trivial forecaster.

What about our forecasting mAP (Sec. 3.2)? We ana-

lyze these methods both through the lens of each motion
class (AP stat.

f , AP lin.
f and APnon−lin.

f ), and as an aggre-
gate. First, we observe that the constant position model
APf evaluated over static cars performs better than FaF*,
a state-of-the-art end-to-end forecaster. However, when we
evaluate on the subset of cars that are in motion, AP lin.

f

and APnon−lin.
f confirms that our metric behaves as ex-

pected: we obtain 0AP with the constant position model,
indicating that it fails to predict the motion of moving cars.
On the other hand, FaF∗ obtains 7.5 APnon−lin.

f , indicating
that motion forecasting from the raw sensory data is a very
challenging problem. We observe that Trajectron++ outper-
forms the constant position model for moving objects (8.1
AP lin.

f ), but does not reach the performance of the constant
position model or FaF∗ on stationary objects.

A good metric should summarize the performance on the
full set of cars, i.e., in addition to predicting the motion of
moving cars, a good model should correctly predict that
parked cars are unlikely to move in the near future. This
is achieved by our forecasting mAP that averages AP stat.

f ,
AP lin.

f and APnon−lin.. Our mAPf ranks state-of-the-art
FaF∗ (31.5 mAPf ) favourably over the constant position
baseline (22.1 mAPf ), as expected. Based on this analysis,
we are confident we have the right tools to analyze Future-
Det thoroughly!

5.2. Ablation and Comparison to State-of-the-Art

After confirming that our proposed forecasting mAP is
a suitable metric for joint object detection and forecasting,
we compare FutureDet to a number of baselines and two
state-of-the-art methods.

Detection + Constant Velocity. We begin with an surpris-
ingly simple, yet strong baseline which is often overlooked
in forecasting literature. This baseline takes the detections,
as well as the estimated velocity from our CenterPoint de-
tector [53], and simply extrapolated forecasts as if objects
are moving with constant velocity. Since CenterPoint is
such a strong detector, this baseline produces strong results.
Most of the ground-truth objects are approximately moving
with a constant velocity, either moving directly forward or
are stationary. We expect this model to under-perform on
non-linear trajectories.

Detection + Forecast (FaF∗, cf. [37]). This variant predicts
a different velocity offset at every time step into the future
for each detection, and derives trajectories by integrating
velocities in the forward direction. This is precisely what
Fast and Furious (FaF) does [37]. For an apples-to-apples
comparison, we re-implement FaF using a CenterPoint-
backbone and denote this model as FaF∗. This method pre-
dicts a single trajectory per detection.

Trajectron++. We compare all of the aforementioned vari-
ants and ablations of our method to the state-of-the-art auto-
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ADE@60 (↓)FDE@60 (↓)ADE@90 (↓)FDE@90 (↓)ADE avg. (↓)FDE avg. (↓)AP stat.
f (↑)AP lin.

f (↑)APnon−lin.
f (↑)mAPf (↑)

Constant Position (CP) 0.38 0.63 0.48 0.76 0.37 0.64 66.3 0 0 22.1
PnPNet [33] 0.58 0.93 0.68 1.04 - - - - - -
PnPNet w/o Tracker [33] 0.69 1.09 0.75 1.14 - - - - - -
Trajectron++ [43] 1.13 2.54 1.25 2.71 1.08 2.42 59.2 8.1 2.8 23.4
SPF2 [49] - - - - 1.04 1.04 - - - -
Fast and Furious∗ (FaF) [37] 0.74 1.59 0.83 1.69 0.73 1.56 64.8 22.2 7.5 31.5

Table 1. Metric Breakdown Analysis: We compare our simple constant position model to state-of-the-art prediction models, highlighting
differences among various proposed metrics. ADE/FDE based metrics measured at different recall rates favor our trivial constant position
baseline over state-of-the-art methods [33, 37, 43]. Only our proposed forecasting mAP (mAPf ) favors state-of-the-art models over the
constant position baseline. We report numbers for PnPNet [33] and SPF2 [49] from their respective papers. Note: Lower ADE/FDE is
better and higher APf is better.

K=1 K=5

AP stat. AP lin. APnon−lin. mAP AP stat. AP lin.. APnon−lin. mAP

APdet. APf APdet. APf APdet. APf mAPdet. mAPf APdet. APf APdet. APf APdet. APf mAPdet. mAPf

Detection + Constant Velocity 70.3 66.0 65.8 21.2 90.0 6.5 75.4 31.2 70.3 66.0 65.8 21.2 90.0 6.5 75.4 31.2
Detection + Forecast (cf . [37]) 69.1 64.7 66.1 22.2 86.3 7.5 73.8 31.5 69.1 64.7 66.1 22.2 86.3 7.5 73.8 31.5
Trajectron++ [43] 70.3 59.2 65.8 8.1 90.0 2.8 75.4 23.4 70.3 61.7 65.8 9.8 90.0 4.3 75.4 25.3

FutureDet 70.1 65.5 62.9 24.9 91.8 10.1 74.9 33.5 70.1 67.3 62.9 27.7 91.7 11.7 74.9 35.6
FutureDet-PointPillars 70.1 64.1 63.4 24.8 92.4 9.6 75.4 32.8 70.7 67.5 63.4 28.8 92.0 11.9 75.4 36.1
FutureDet + Map 70.2 65.5 62.7 24.3 91.7 9.4 74.9 33.1 70.2 67.5 62.7 27.1 91.7 11.0 74.9 35.2

Table 2. Joint car detection and forecasting evaluation on nuScenes. We adopt top-K evaluation for forecasting and evaluate under two
settings of K = 1 and K = 5 (for forecasting only). We further breakdown the performance of each model by examining the detection AP
(APdet.) and forecasting AP (APf ) on static, linear, and non-linearly moving sub-categories. First, we find that methods that are trained
to detect objects in the current frame have higher overall APdet. (Detection + Constant Velocity, row 1), while methods that are trained to
detect objects in future frames have higher overall APf (c.f. FutureDet, row 4), which is expected by design. For forecasting, surprisingly,
Trajectron++ (row 3) is outperformed by constant velocity predictions (row 1), suggesting that this is indeed a challenging problem and
constant velocity is a strong baseline. FutureDet consistently outperforms other baselines on non-linear trajectories. Notably, for K = 5,
we improve the non-linear object forecasting accuracy by 4% over FaF*. FutureDet trained with a PointPillars backbone provides modest
improvement across metrics, and performs best overall.

regressive trajectory prediction model, Trajectron++ [43].
This model is indicative of current state-of-the-art ap-
proaches for the traditional forecasting task where ground
truth tracks are given. With this comparison, we wish
to outline how the standard three-stage detection-tracking-
forecasting approach compares with our end-to-end fore-
casting method. To construct this baseline, we begin with
off-the-shelf detection and tracking results from Center-
Point [53]. CenterPoint performs tracking using the veloc-
ity offset estimates to match detections in each frame using
a greedy matching between the current frame detections and
previous frame detections. Trajectron++ then takes these
predicted trajectories as input for forecasting.

FutureDet. . We detect objects directly in future frames and
backcast these future detections to the reference frame. In-
tuitively, the advantage of this variant over simple forecast-
ing (FaF) is in that it encourages the network to learn a bet-
ter feature representation for forecasting by placing ”mul-
tiple bets” on the future position of objects in the current
frame. As shown in Figure 2, this method naturally allows

for a multiple-future interpretation of the observed sensory
data (as discussed in Sec. 4). In Figure 3, we show quali-
tatively that our method can represent multiple futures. We
note that the highest confidence future trajectories looks like
constant velocity predictions as the training data is biased
towards static and linearly moving objects. FutureDet is
able to learn road geometries without map information, as
indicated by the curved trajectories.

Discussion. We compare the results of the aforementioned
variants to FutureDet as well as Trajectron++ [43] in Ta-
ble 2. First, we notice that moving object forecasting un-
der our end-to-end setting is a challenging problem — none
of the methods we study have high APf , suggesting the
need for the community to focus on this problem. Sec-
ond, despite the constant velocity model being conceptually
simple, it performs on par with our FaF re-implementation
and improves on Trajectron++ by +7.8 mAPf . Unfor-
tunately, this constant velocity baseline is usually under-
emphasized in the literature. We argue here that it still
serves as an important baseline. The poor performance of
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Figure 3. We qualitatively evaluate forecasts from FutureDet. We denote ground-truth trajectories with green and multiple future predic-
tions with blue for the highest confidence forecast and cyan for the remaining multiple-future predictions. Since we repurpose CenterPoint,
a state-of-the-art detector, current frame detection performs well. Often, our model predicts that moving objects may be moving with con-
stant velocity with high confidence. Given the data bias, where most objects are either stationary or are moving with constant velocity, this
is a reasonable output. We highlight the multiple-future detection output in the top left.

Trajectron++ might also hint that performing direct end-to-
end forecasting is advantageous over a three-stage approach
of detection-tracking-forecasting, where errors can easily
compound. FutureDet takes a different approach compared
to existing methods. Our method improves upon all other
baselines in terms non-linear object APf and the motion
category-averaged mAPf (our primary metric). In addition,
this multi-future interpretation also allows the performance
to be improved in the K = 5 evaluation, where the forecast
with minimum FDE from the top 5 ranked forecasts for each
detection is evaluated. Note that for FutureDet AP static

f ,
K = 1 results slightly decrease because bundling multi-
ple trajectory estimates into one multi-future prediction for
a single object reduces recall. However this is more than
made up for in the increase in performance for detection and
forecasting moving objects at K = 5. We train a version of
our model with road masks as an additional input channel
into the BEV feature representation (after the sparse-voxel
backbone). This brings very little change to the results. We
hypothesize that adding the map information does not pro-
vide additional information as it can be easily be learnt from
the raw LiDAR input. However, further exploration is re-
quired to evaluate how to best fuse map information.

6. Conclusion
This paper presents a new end-to-end method for tra-

jectory forecasting directly from LiDAR sensor data. Our
proposed FutureDet is a natural forecasting-by-detection
framework that allows for a multi-future interpretation of
the observed evidence and establishes a new state-of-the-
art. We provide thorough analysis of existing evaluation
metrics for end-to-end forecasting and reveal that they can
be gamed by a simple constant position model. To this end,
we propose a new set of evaluation metrics based on the av-
erage precision metric that comprehensively evaluates joint
detection and forecasting performance. This allows us to
conduct a thorough analysis that reveals that a constant ve-
locity model is a surprisingly strong baseline that should be
considered in future forecasting work.

Limitations. As we do not explicitly enforce diverse tra-
jectory generation, many of our multiple-futures are closely
clustered. While FutureDet presents the first method for
end-to-end forecasting from raw sensory data, capable of
multi-future predictions, generation of diverse, multi-modal
predictions remains an open challenge.
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