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Abstract

While real world challenges typically define visual cat-
egories with language words or phrases, most visual clas-
sification methods define categories with numerical indices.
However, the language specification of the classes provides
an especially useful prior for biased and noisy datasets,
where it can help disambiguate what features are task-
relevant. Recently, large-scale multimodal models have
been shown to recognize a wide variety of high-level con-
cepts from a language specification even without additional
image training data, but they are often unable to distin-
guish classes for more fine-grained tasks. CNNs, in contrast,
can extract subtle image features that are required for fine-
grained discrimination, but will overfit to any bias or noise
in datasets. Our insight is to use high-level language specifi-
cation as advice for constraining the classification evidence
to task-relevant features, instead of distractors. To do this,
we ground task-relevant words or phrases with attention
maps from a pretrained large-scale model. We then use this
grounding to supervise a classifier’s spatial attention away
from distracting context. We show that supervising spatial
attention in this way improves performance on classifica-
tion tasks with biased and noisy data, including ~3—15%
worst-group accuracy improvements and ~41—45% relative
improvements on fairness metrics.

1. Introduction

When trained with limited or biased data, visual models
often learn unwanted correlations. For example, consider
building a classifier to distinguish two fine-grained cate-
gories of birds: “landbird” and “waterbird”. The background
features from their corresponding habitats such as forests
or beaches might be highly or perfectly correlated with the
numerical class labels. A baseline model may mistakenly
learn the unintended “location” task instead of the actual
task, and fail on examples of birds out of their usual habitat
(Fig. 1). However, knowledge that the task is about birds
can disambiguate what the model is meant to learn.
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Figure 1. Guiding attention with language. Sample attention
from the Waterbirds biased dataset. During training, Landbirds
mostly appear on land backgrounds and Waterbirds mostly appear
on water backgrounds. At testing, each class appears equally on
land or on water. A CNN trained on this task learns to look at
the background, but if we use a multimodal model to translate the
language specification “a photo of a bird” into spatial supervision,
we can ensure that our CNN learns task-relevant features.

Previous work has considered incorporating knowledge of
the task as language specifications in the form of class names
or class descriptions which can directly serve as a prior over
visual model parameters [33,47]. Several zero-shot meth-
ods condition models on attribute labels [17,26,49] (e.g.,
beak shape or wing color) or class descriptions [7, 19,32, 54]
(e.g., from Wikipedia) to enable transfer to unseen classes.
However, this relies on the language specification being
class-discriminative — an assumption which does not hold
for some real-world tasks where only high-level task specifi-
cation is given (e.g., in Fig. 1, we may only know that this is
a “bird” dataset, without the class names being provided or
even existing yet). Additionally, simply conditioning on lan-
guage embeddings may not prevent a model from attending
to spurious correlations in biased datasets.

Even when language specifications are class-
discriminative, such models will perform poorly when there
is insufficient image and text data to learn a multimodal
model for rare or fine-grained classes (e.g., a large-scale
model such as CLIP [33] may not have seen enough exam-
ples of the relatively rare “landbird” or “waterbird” classes
during pretraining to have good zero-shot performance).
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To address these limitations, we propose a new framework
called Guiding visual Attention with Language Specifi-
cation, or GALS, in which we translate available language
specification provided by the task metadata into spatial at-
tention that is used to supervise a CNN’s attention during
training. Fig. | displays how GALS is able to pull the model’s
attention away from the distractor features while retaining
enough flexibility to pick up on fine-grained features which
were not captured by the multimodal model.

Specifically, we first leverage an off-the-shelf pretrained
vision-language model to ground textual information into
each given image and obtain a respective saliency map. This
is efficient and involves no additional overhead (i.e., no need
for training or per-instance manual annotation). Next, we
aim to leverage the obtained saliency map to inform the vi-
sual classifier. To do this, we guide the classifier’s attention
towards the area highlighted by the saliency from the lan-
guage specification. Finally, the visual classifier still needs
to solve the more fine-grained task, after obtaining the high-
level attention guidance. It thus retains some flexibility, e.g.
it may even attend to some useful (non-harmful) context. In
practice, we use the recent powerful CLIP [33] model to
ground textual information into images. We leverage the
“Right for the Right Reasons” method [37] to enforce that
the classifier indeed attends according to the given guidance.
With this approach, we can incorporate language specifi-
cation via an auxiliary loss during training, and thus the
vision-language model is not needed during inference.

We show how GALS can assist in training on data with
explicit and implicit bias. On the synthetic Waterbirds
dataset [39] which contains a known, explicit bias (the im-
age backgrounds), our method is able to achieve ~2—7%
per-group accuracy improvements over baselines, includ-
ing a model which uses an unsupervised attention mecha-
nism instead of guidance from language. GALS also shows
a 15% improvement on the worst-group accuracy in the
challenging scenario where class labels are perfectly cor-
related with the distracting backgrounds (Sec. 4.2). For
implicit bias, where training and test distributions differ in
unknown ways, we see that GALS achieves ~41—45% rela-
tive improvements on fairness metrics for apparent gender
recognition (Sec. 4.4). We also show a 2% accuracy im-
provement on a red-meat classification task from a subset
of Food-101 [2], where an implicit bias emerges from noisy
training labels (Sec. 4.3). Lastly, we demonstrate that the
quality of classifiers’ explanations improves with the given
advice (12.8% improvement in Pointing Game [50] accuracy,
described in Sec. 4.5). Code and datasets can be found at
https://github.com/spetryk/GALS.

2. Related Work

Addressing bias with instance annotations. Most prior
works that address bias in visual classifiers assume that some

form of instance annotation is available. Some rely on ex-
pensive spatial annotations, such as object masks [11,20,34]
or bounding boxes [4]. Hendricks et al. [11] address the
image captioning task, where they want to reduce bias am-
plification and ensure a fair outcome for male and female
genders by using person masks at training time. Others use
slightly less expensive image-level annotations of the biased
feature [1, 15,39,42,46]. In contrast, in this work we do
not assume that instance-level bias information is available.
Instead, we rely on automatically generating attention guid-
ance with readily-available language specification.

Addressing bias without instance annotations. Several
works address bias without explicitly relying on instance-
level bias annotations [5,25,29,44]. Clark et al. [5] train
an ensemble of low and high capacity models, forcing them
to be conditionally independent, with the hope that the low
capacity model will learn bias features, and the high capacity
model will then learn the task-relevant features. Nam et
al. [29] also train two models, one “biased” and the other
“unbiased”, by amplifying samples “aligned” with the bias for
the first model (or easier to learn at the early stages), while
amplifying the more difficult samples for the second model
(where the first one fails). We view this line of research
as complementary to our effort, and envision potentially
combining these ideas with ours.

Language as information for visual tasks. Incorporat-
ing language in the zero/few-shot setting has been widely
explored. Embedding language from class names or de-
scriptions to obtain class “prototypes” is common in zero-
shot learning, when no visual samples of the class are avail-
able [7,8,18,32,33]. Several works also aim to learn classes
using their semantic attributes for better knowledge trans-
fer [17,26,49]. Mu et al. [28] use image captions for regular-
izing few-shot representations to hold semantically meaning-
ful information. Outside of zero/few-shot learning, Kim et
al. [16] incorporate language advice into an autonomous
driving controller, leading to a better performing and more
explainable model. Rupprecht et al. [38] use language in-
teractively to improve a pretrained CNN during inference
time on segmentation tasks. Ling et al. [23] use language
feedback to improve an image captioning model. To the best
of our knowledge, no works have explored using language
specification to improve visual attention in biased scenarios.

Information grounding with vision-language models.
One of the key components of our approach is to leverage
an off-the-shelf vision-and-language model to ground tex-
tual information into an image. There is a large body of
work on visual grounding, where the models are trained to
localize textual expressions in an image with a bounding
box [31, 36] or a segmentation mask [12]. Unfortunately,
these methods are constrained by the cost of providing these
extra labels for the training set. Others can handle more
open-ended queries, but the size of the available training
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data is small as they require costly localization supervision,
limiting the general application of these methods [14,31].
A recent vision-and-language model CLIP [33] has demon-
strated state-of-the-art image-text retrieval capabilities. CLIP
is trained on 400M image-caption pairs sourced from the
Web, making it a powerful general-purpose representation.
We use CLIP and obtain grounding information with the
help of salience visualization techniques [40].

Supervising spatial attention in visual classifiers. An-
other important component of our method is guiding the
spatial attention within the visual classifier away from the
spurious features. Several prior works have explored super-
vising spatial attention for, e.g., preventing catastrophic for-
getting [6], fine-grained recognition [9], domain transfer [55]
and generation of faithful explanations [37]. Specifically,
the Right for Right Reasons approach [37] penalizes large
input gradients in regions that are not allowed based on the
user-defined “right reasons”. We leverage this method to
guide the classifier’s attention towards the evidence pointed
out by the language specification.

3. Guiding Attention with Language

In the following we outline GALS, our framework for
incorporating language specification to guide a visual classi-
fier; Fig. 2 provides an overview of our approach.

Problem Definition. In this work, we consider the learn-
ing problem in which we are given an image classification
dataset {z;,y; },_, for a prediction task 7 with C classes.
Additionally, we assume we have a corresponding natural
language specification 7, of the task or language descrip-
tions of each class within the task 7,°. We also assume each
image x; € R"*%*4 may contain a region of pixels that is
irrelevant to 7, yet strongly correlated with y;.

To model the distinction between the relevant and spuri-
ously correlated pixels, we introduce a latent binary mask
2T € {0,1}"* for each image x;, which encodes the rel-
evance of each pixel to the task 7. That is, if ZLT(u,v) =1,
then the value of pixel xl(u;)) is informative for task 7 (and
0 if otherwise). Note that Z; is dependent on the prediction
task. However, for notational convenience, we will omit T~
from Z] in the following.

Next, consider an image classification model fy with pa-
rameters 6. Our goal is to learn an optimal classifier fg-,
which outputs predictions 3 that rely only on task-relevant
features (where Z; = 1). As Z; is unobserved, we cannot
learn fy+ by simply masking images according to locations
of relevant features. Instead, we want to estimate a probabil-
ity map over Z, where each entry x; (,, . corresponds to the
probability that pixel ; (,, . is relevant to 7.

Given this setup, our framework is three-fold: first, we
create the high-level natural language specification 7 de-
scribing the semantic concepts relevant to 7. This is based
on provided class names (e.g. “landbird”) or description

of the task (e.g. “bird species classification”). We then
use a pretrained vision-language model and a spatial atten-
tion function to compute an estimate of the task attention
Z for each image w.r.t. T. Lastly, we use these estimates
to supervise the spatial attention of fy, guiding it towards
task-relevant features and away from unwanted biases.

Language specification. We assume access to natural
language class names or a description of the task 7, but not
necessarily access to what biases exist in the data. We argue
that this is a safe assumption — in most real-world classifica-
tion tasks, it is expected that a user has knowledge of what
the categories are or what the task means. We then use the
provided natural language to create 7; — words or phrases
which are compatible with the choice of pretrained vision-
language model, described below. For example, we preface
task-relevant phrases with “a photo of” or “an image of” for
compatibility with CLIP [33]. The language specification
can be the same for each instance, or it can be class-specific
by using the labels provided during training. Note that 7
is created once, prior to the training of fy, and does not
require annotation of each image individually, allowing our
framework to easily scale to large datasets.

Generating an estimate of Z from language specifica-
tion. Consider a pretrained multimodal vision-and-language
model V L, which has a joint understanding of image fea-
tures and language phrases that correspond to them. For
example, V' L can be an image captioning or visual ground-
ing model, or a model trained at scale with joint image-text
supervision, such as OSCAR [21], VinVL [51], or CLIP [33],
the latter of which we use in our experiments.

For every image z; in the training dataset, we precom-
pute a spatial attention map AYL = AttVE(TYi, z;), with
AYL € R, This serves as a probability map over Z;,
where the attention value at location (u,v) estimates the
likelihood that pixel z; (,,.) is a task-relevant feature. The
quality of A"~ as an estimate of Z depends on the abil-
ity of the pretrained vision and language model to ground
text phrases in visual features. However, proper grounding
within vision-and-language models is a research question
on its own [24, 35]. Luckily, recent work on large-scale
image-language pretraining has led to promising improve-
ments [21,33,51]. Here, we use the saliency method Grad-
CAM [40] to obtain reasonable attention maps.

Generating an estimate of the true task attention Z in
this manner provides an automatic method for localizing
per-instance, task-relevant features according to user specifi-
cation 7. It requires only a high-level description of which
semantic concepts are relevant to a task, which we view as a
valid assumption for a user of a machine learning system.

Guiding the classifier with spatial attention. Next, for
each image x;, our objective is to guide the spatial attention
of the classifier fy away from spurious correlations and
towards task-relevant features. To do so, we would like to
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Figure 2. GALS overview. Our framework consists of three parts. First, we create a language specification 7, based on provided class
names or a description of the task. Next, for every training image x;, we use a pretrained vision and language model to ground the textual
information into an image, in the form of an attention map A} ~. Finally, when we train the classifier fs, we incorporate A}~ as attention
supervision. This encourages fy to align its attention Af ¢ with task-relevant concepts, and away from distractors.

supervise the spatial attention of fy with the 7 attention
maps A}~ computed in the previous step of our framework.
This requires a function Attfe (x;,v;), which computes a
differentiable attention map .A{ ?. The attention map specifies
spatial locations in x; that were relevant to the prediction ;.

We supervise the classifier’s attention for each training
image x; by computing a loss L between .AY'L and .Azf °.
The final training loss £(6, X, y, AV ¥) for a batch of train-
ing images X with m samples is given as:

1 m
L£(0.X,y, AF) = —— "yidog(§i) + MLan (AL ", AL)

i=1

ey
where A is a hyperparameter that controls the strength of the
attention supervision.

Our proposed framework does not require an architectural
change to the classifier fy, and only incorporates language-
guided spatial attention as an auxiliary loss term in Eq. (1)
during training time. Therefore, our framework requires no
additional knowledge at test time.

3.1. Model Design Choices

Vision-Language model. We use the CLIP (Constrastive
Language-Image Pre-training model) [33] as our multimodal
V' L model. CLIP is trained on 400M image-caption pairs
(Ztexts Timage) sourced from the Web. It consists of two
encoders for mapping Z¢c,¢ and X qge into a shared embed-
ding space. The contrastive objective encourages image and
text embeddings from the same pair to be close (as measured
by cosine distance), and embeddings from different pairs to
be pushed apart. We include ablations with CLIP-based mod-
els trained on open source datasets in the Appendix [13,48].

Generating attention. For the language specification 7y,
we define a set of CLIP-style prompts. These are framed
as short sentence descriptions, such as “an image of X” or
“a photo with X,” for the word or phrase X that describes
task-relevant concepts. We generate multiple such prompts

for each task and later combine (via average or max) the
corresponding attention maps for each image, which serves
as our estimate for Z. Once the prompts are defined, they are
embedded with CLIP’s text encoder into the shared image-
text latent space. For embedding images, we use the image
encoder of CLIP with the ResNet50 backbone provided by
Radford et al. [33]. For the attention function AttY'* (T, z;),
we use the saliency method GradCAM [40] between the
image-text similarity score and the feature maps after the
last convolutional block in the image encoder.

Attention incorporation. For supervising the classifier’s
attention, we adapt the framework Right for the Right Rea-
sons, or RRR [37]. The original goal of RRR was to provide
the correct explanation for each sample in addition to the
correct prediction. First, a user provides per-image binary
masks of regions that are irrelevant to the task. It then pe-
nalizes the input gradients in those regions (the gradient of
the output y with respect to the input ). Because our atten-
tion maps A} L specify relevant regions to the task, we take
1 — AYL to specify irrelevant regions. We then compute the
L1 loss between this and the input gradient. We normalize
AY'L to contain values between 0 and 1 (instead of using a
binary mask), as our intention is to estimate a probability
map over the true task attention Z.

Loss function. We apply GradCAM [40] to our chosen
V L model (CLIP with a ResNet50 backbone), to provide
AY'L, the input gradients for a ResNet50 model pretrained
on ImageNet as Af v = dd—)?i, and the RRR-based loss for
L1t Thus, our loss function used in the experiments is:

Classification loss

£00,X,y, A = — L 3" 4, - log (i)
= )
dd).(ui (1 - -AYL)

A m
+ o
i=1

Attention loss
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Our proposed framework is not restricted to a specific
choice of pretrained model V' L, classifier fy, mechanism of
generating attention maps A"~ and .A/¢, and attention loss
function L. GALS in the following section refers to the
particular choices described above. We include ablations in
Sec. 4.6 and Sec. C for other choices of VL, Afe, and L.

4. Experiments

Training. We use a ResNet50 [ 10] backbone pretrained
on ImageNet for all classification models, with an input im-
age resolution of (224, 224). The GradCAM attention maps
from CLIP are of size (7, 7), which is the spatial resolution
of the activations from the last convolutional block. We re-
size them up to the input resolution before computing the L1
loss. All error bars show standard deviation across 10 trials.
We report further details on training parameters (such as the
loss weight \) and hyperparameter sweeps in the Appendix.

Baselines. We compare our work with several baselines
that do not require per-instance knowledge of bias features.
All baselines use the same ResNet50 backbone for consis-
tency. Vanilla is trained in the same manner as fp in our
framework, except without the attention loss L. UpWeight
is the same as Vanilla, except it uses class labels to address
class imbalance. It computes a weighted average of per-
sample cross entropy. The weights are inversely propor-
tional to the frequency of the sample’s class in the training
data, assigning a weight of 1 to the class with fewest sam-
ples. Attention Branch Network, or ABN [9], learns a feed-
forward attention map before the last convolutional block of
ResNet50 and element-wise multiples it with the activations,
which is added back into the activations before passing to
the rest of the model. It also adds an additional cross-entropy
loss term based on features in the attention branch, to encour-
age the spatial attention to be class-specific'. We include
tabular results of plots in the Appendix.

Visualizations. For all visualizations, the attention from
language specification is generated with GradCAM (as in
Sec. 3.1), and classifier attentions are generated with the
black-box saliency method RISE [30]. More examples of
attention for each dataset are in the Appendix.

4.1. Datasets

We evaluate our approach on datasets with explicit and
implicit bias. Additional details are in the Appendix, includ-
ing dataset size and creation. The license, PII, and consent
details of each dataset are in the respective papers.

In the explicit bias setting, the distractor feature can be
clearly defined and (potentially) labeled. We experiment
with the synthetic Waterbirds dataset [39], where bias is easy
to control. Specifically, the images of birds from the CUB

'We also experimented with supervising the attention of ABN with lan-
guage specification. However, it under-performed the current formulation,
and we include it in ablations in Section 4.6.

dataset [45] are divided in two classes, landbirds and water-
birds. Next, birds are segmented out and pasted onto random
land or water backgrounds from the Places dataset [53]. Dur-
ing training, most waterbirds appear on water backgrounds
and landbirds on land backgrounds, while in validation/test
sets each class has an equal number of samples on land
and water backgrounds. We consider two scenarios, one
in which there is a small fraction of samples (5%) in the
training data that go against the bias (Waterbirds-95%) and a
more challenging one, where the bias and labels are perfectly
correlated during training (Waterbirds-100%).

The Food-101 dataset [2] presents a case of implicit bias,
as it was intentionally created such that the training images
were not cleaned — for example, the images contain noise
in the form of incorrect labels, bright colors, and visual
confusion. Certain other foods appear more frequently with
some classes than the others (e.g. sauce appears more often
with baby back ribs than with steak). The evaluation set, on
the other hand, was more thoroughly cleaned. We construct
a 5-way Red Meat classification task between baby back
ribs, filet mignon, pork chop, prime rib, and steak.

We present a second dataset with implicit bias,
MSCOCO-ApparentGender, which is constructed based
on MSCOCO Captions [3] and prior work [11,52]. In this
dataset, apparent gender labels are defined based on the peo-
ple’s outward appearance as reflected in image captions. As
defined in [1 1], when discussing people in captions, there
are three options: “Man”, “Woman” or a gender-neutral
term, e.g. “Person”. To follow that, we consider a three-way
classification task for apparent gender, using the provided
captions to generate labels for the classes “Man”, “Woman”,
and “Person” (the latter when the annotators did not use
gendered words in the captions). There are different types of
spurious correlations in this dataset, e.g. women appearing
in some environments more often than men, or a distractor
object co-occurring with men but not with women, etc.

4.2. Explicit bias on Waterbirds

Since the Waterbirds dataset is constructed to encourage
the model to pay attention to the background and not the
bird, high-level language specification should give direction
to attend to the bird, leaving the fine-grained discriminative
image features up to the classifier to discover. Specifically,
we generate attention from two CLIP prompts, to reduce
noise — “an image of a bird” and “a photo of a bird.” We
average together these per-sample attentions to obtain A} £2.

Following [39], we present test accuracy per-group, in
which accuracy is weighted equally over the groups (specific
combinations of class label and background, i.e. landbirds on
land, landbirds on water, waterbirds on land, and waterbirds
on water), and the worst-group accuracy. We are particularly

2In rare cases, the attention for a single prompt would be all-zero. In-
stead of averaging, we use the non-zero attention from the second prompt.
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Figure 3. Waterbirds. Test accuracy on Waterbirds-95% and
Waterbirds-100% datasets. Incorporating language specification
results in a higher accuracy than all other baselines, including zero-
shot CLIP and CLIP finetuned with logistic regression.

interested in the worst-group (usually waterbird on land)
performance, which suffers the most when a model makes
use of the spurious background correlations.

The concepts “landbird” and “waterbird” are rare with re-
spect to concepts that can be learned from the Web, as would
often be the case in new, real-world classification tasks. To
illustrate that large-scale models like CLIP may lack fine-
grained task-specific knowledge, we compare our method to
zero-shot CLIP, as well as logistic regression trained on top
of CLIP image-encoder features (following [33]). We find
that CLIP often underperforms even the Vanilla baseline,
demonstrating the value of taking the “best of both worlds”
by combining large-scale multimodal model attention with
CNNs on biased datasets with unfamiliar concepts.

Waterbirds-95%: As shown in Fig. 3a, our method out-
performs all baselines on both per-group and worst-group
accuracy. The strong bias in the data is evident when con-
sidering the worst-group accuracy, which drops the Vanilla
performance by about 14%. Our model drives up the worst-
group performance by 2.88% from the next-closest baseline
of class weighting, without sacrificing per-group accuracy.

Waterbirds-100%: Because the class label and back-
ground are perfectly correlated, the performance of a clas-
sifier without any additional task information depends on
whether it is easier to capture the true or bias signal. Sur-
prisingly, the unsupervised attention mechanism in ABN
provides ~7% boost in worst-group performance as com-
pared to upweighting by the class label. Our model improves
on this, leading to a 15.15% improvement over ABN.

Attention from
language specification

(GALS) CNN trained w/

Vanilla CNN PPy
language specification

Figure 4. Qualitative results for implicit bias. Sample attention
on Red Meat (top) and MSCOCO-ApparentGender (bottom). On
these datasets the vanilla classifier may attend to non-task-relevant
features due to implicit biases or noise. When we ground relevant
features with language specification, we are able to move the clas-
sifier’s attention away from the distractors.

4.2.1 Using language specification to change the task

Since the “landbird” and “waterbird” labels in the
Waterbirds-100% training set are perfectly correlated with
land and water backgrounds, we can easily redefine the labels
to create a background classification task. We investigate
whether we can use language specification to choose which
hypothesis a model learns during train time: the “bird” or
the “background” task. To study this, we keep the training
set the same, yet update the validation and test labels to re-
flect background classification. We use the phrases “nature
scene”, “outdoor scene”, and “landscape”, preceded with
“a photo of” and “an image of” as in our other experiments.
We ensemble the attention maps by taking the max value for
each pixel. A vanilla ResNet50 baseline achieves 86.75%
per-group accuracy on the test set, with a worst-group ac-
curacy of 72.90%. Impressively, our method outperforms
this baseline by 2.22% and 7.32% on per-group and worst-
group accuracy respectively, demonstrating the flexibility of
language specification to select the desired training signal.

4.3. Red Meat Classification with Noisy Data

Along with assisting in removing explicit contextual bias
in datasets, in this experiment we will show how our ap-
proach can improve the learning process on implicit bias
caused by noisy data. We train on 5 balanced classes from
the Food-101 dataset pertaining to red meat, as discussed
earlier. We generate attention from the CLIP prompts “an
image of meat” and “a photo of meat”. Our results displayed
in Table I and visualized in Fig. 4 (top) show that our method

GALS Vanilla
71.20 + 0.84 67.39 + 0.88

ABN [9]
69.44 + 1.12

Accuracy (%)

Table 1. Red Meat. Test accuracy of our method, vanilla, and ABN
for Red Meat Classification (a subset of the Food-101 dataset).
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Man Woman
Method Man  Woman  Other  Woman Man  Other Ratio A Qutcome
Divergence
Vanilla 83.60 6.20 10.20 66.80 28.60 4.60 0.349 0.071
ABN [9] 84.80 4.60 10.60 68.80 25.40 5.80 0.339 0.068
UpWeight  80.20 11.20 8.60 68.00 28.60 3.40 0.272 0.040
GALS 79.80 11.80 8.40 74.20 22.60 3.20 0.160 0.022

Table 2. MSCOCO-ApparentGender. Performance of our approach and the baselines on MSCOCO-ApparentGender test set. The best result

in each column is bold, and second-best is underlined.

is able to outperform the ABN model by ~ 2% overall.
4.4. Implicit bias on MSCOCO-ApparentGender

Next, we discuss how our approach performs in another
implicit bias scenario on the MSCOCO-ApparentGender
dataset. We follow the evaluation protocol from [11] and
generate attention from the CLIP prompts “an image of a
person” and ““a photo of a person”. Table 2 summarizes the
quantitative results and Fig. 4 (bottom) displays a qualitative
example of the attention maps. For each “Man” / “Woman’
sample we separately report the % of the time they have been
classified as a Man, Woman, or Other. We penalize gender
misclassification, but do not penalize if the “Person” class
was predicted. In this task, we care about several aspects.
(1) The training data is imbalanced (with more men than
women in it), thus we aim to reduce bias amplification at test
time [ 1 1]. The metric “Ratio Delta” measures how close the
predicted men/women ratio is to the true one (which is equal
to 1.0), i.e. lower is better. Our approach performs the best
in this metric. (2) We also aim to ensure an equal outcome
for both men and women. In practice, we see that men tend
to be recognized more accurately than women, as seen from
the higher Man/Man values than the Woman/Woman values
(e.g., the Vanilla baseline achieves 83.6% and 66.8% accu-
racy, respectively). As we see, women often get misclassified
as men (22—28% across methods). The “Outcome Diver-
gence” metric measures Jensen-Shannon divergence [22]
between the two sets of scores across the two classes, i.e.
lower is better [1 1]. Again, our approach achieves the lowest
outcome divergence, demonstrating the most fair behavior
across all the compared methods.

il

4.5. Attention Evaluation

We evaluate the quality of our model explanations to
determine if language specification makes the model right
for the right reasons in addition to improving accuracy. To
do so, we use the Pointing Game [50], a common evaluation
for model explanations. For each input x;, the Pointing
Game (PG) requires a corresponding model explanation a;
and binary mask Z;, both of the same dimensions as z;.
Recall that Z; indicates the task-relevant pixels in an image.
A model passes the PG on sample ¢ if the maximum value
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> EEE— EE .
a 5120
5008 =5580
gon e
=
3
@ £5942 6700 ]
%= 0 ©
v c GAMONI—
g g £
s G S Eoo———
2  EE—— Ss100
—
gass
8 o R
= (o)}
5 e & STEOR—
< pEmm ge270
S < 49.80
=
0 20 40 60 0 20 40 60

Pointing Game Accuracy (%) Pointing Game Accuracy (%)

Figure 5. Pointing game. Pointing Game experiment [50]
on left. Variants of Waterbirds datasets and right. MSCOCO-
ApparentGender. We test whether the peak value of a black-box
model explanation, generated with RISE [30], falls inside the seg-
mentation label of the salient object.

of its explanation a; falls inside Z. In other words, the
explanation is “pointing” to the correct region in the image.
For Waterbirds-95% and Waterbirds-100%, we use seg-
mentation masks of the birds for Z. On MSCOCO-
ApparentGender, we use the available person segmenta-
tion masks, choosing the mask with the largest bounding
box if multiple people are present to be consistent with our
task. Segmentation masks for red meat in Food-101 are not
available. For generating model explanations, we use the
black-box saliency method RISE [30]. Fig. 5 presents our re-
sults. Our method matches the ABN baseline on MSCOCO-
ApparentGender. However, we outperform all baselines by
9.4% on Waterbirds-95% and 12.8% on Waterbirds-100%.

4.6. Model Ablations

We explore several other design choices for the V' L model
and attention method in Table 3. More V' L model ablations
can be found in Table 10 in the Appendix. We consider the
Attention Branch Network (ABN) [9] as the classification
model, while supervising its feed-forward attention map
(similar to [27]). We also try supervising the GradCAM
from the last convolutional layer of a ResNet50 classification
model directly. For generating language specification, we
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Validation Accuracy Man ‘Woman
Classifier Language . . Cls. Lang.
Attention Method Attention Source Per Class  Landbird Waterbird Att. Att. Man Woman Other Woman  Man  Other RA oD
- Method Source
ﬁgg gﬁﬁ \ngl(") 22'?(3) 38;? 2?82 ABN CLIPVIT 8440 1060 500 6840 2940 220 0306 0274
; : - : ABN CLIPRS0 90.60 540 400 6040 37.60 180 0485 0280
GradCAM CLIP ViT 87.20 91.32 83.08 GradlCAM CLIPViT 8580  7.60 660 7020 27.00 280 0310 0.331
GradCAM CLIP R50 84.44 89.92 78.95 GradlCAM CLIPR50 8340 740 920 6620 29.80 4.00 0311 0298
RRR CLIP ViT 88.25 92.28 84.21 RRR CLIPVIT 87.00 840 460 6860 2980 1.60 0341 0305
RRR CLIP R50 87.26 89.17 85.34 RRR CLIPR50 8220 1060 720 7220 2600 180 0235 0309

(a) Waterbirds-95%

(b) MSCOCO-ApparentGender

Table 3. Comparison of different classifier attention methods and language attention sources on the (a) Waterbirds 95% and (b) MSCOCO-
ApparentGender validation set. In (a), we report class instead of group scores, as we do not assume access to group labels at validation. The

method indicated as “GALS” in Section 4 is placed at the bottom.

experiment with the CLIP ViT-B/32 (CLIP ViT in the table).
The method we denote as “GALS” corresponds to the row
with RRR as the classifier attention method supervised with
CLIP ResNet50 GradCAM attention. For both ABN and
GradCAM classifier attention methods, we compute L,
as an L1 loss in a similar style as in RRR — penalizing
Afo where AV is low, as opposed to matching Af¢ directly
to AV, finding that this gives slightly better performance.
We chose RRR+CLIP R50 since it had the most consistent
performance in minority class accuracy and fairness.

5. Limitations and Broader Impacts

In this work, we focus on a scenario where a dataset
bias during training time is not present at test time. This is
an important issue with serious implications for high-risk
domains such as autonomous driving or medical imaging.
Generally, as machine learning methods become widespread
and impact people’s lives, reliance on biases may be harmful
to entire populations. Thus, we envision potential positive
impact from our work towards mitigating this issue.

One of the datasets used in this work (MSCOCO-
ApparentGender) is derived from the image captioning
MSCOCO-Bias and MSCOCO-Balanced splits introduced
in [11]. Following [ 1], we consider three gender categories:
male, female, and gender neutral (e.g., person) based on
visual appearance. The gender labels were determined using
a previously collected publicly released dataset in which
annotators describe images [3]. Importantly, people in the
images are not asked to identify their gender. Thus, we em-
phasize that we are not classifying biological sex or gender
identity, but rather outward gender appearance. In particular,
we are interested in reducing gender entanglement with con-
textual features and “equalizing” the outcome across male
and female categories.

We also would like to point out that in our experiments,
we use the off-the-shelf large-scale vision-language model
(CLIP [33]) which may have encoded some internal bi-
ases, transferred from the data on which it was trained.
Specifically, CLIP was trained on 400M image-caption pairs

sourced from the Web, so we can not rule out the presence
of biases or harmful (e.g. gender or racial) stereotypes in
it. Practitioners who wish to use our approach should be
mindful of such sources of bias.

As described in Sec. 3, GALS is limited to biases which
can be pixel-wise separated from relevant features. As a
counterexample, it would not apply to the task of classifying
a person’s age, with a confounding factor of race. GALS also
struggles when the vision and language model cannot ground
the language specification (Fig. 6). In other scenarios, CLIP
may struggle when the prompt is more compositional, such
as “the person in the blue shirt sitting next to the table”.

6. Acknowledgements

We would like to thank Dr. Sayna Ebrahimi for helpful
discussion. This work was supported in part by DoD, in-
cluding DARPA’s LwLL, and/or SemaFor programs, and
Berkeley Atrtificial Intelligence Research (BAIR) industrial
alliance programs. In addition to NSF CISE Expeditions
Award CCF-1730628, this research is supported by gifts
from Amazon Web Services, Ant Group, Ericsson, Face-
book, Futurewei, Google, Intel, Microsoft, Scotiabank, and
VMware.

Attention from
language specification

(GALS) CNN trained w/

Vanilla CNN language specification

Figure 6. Limitations. Example of poor CLIP attention on Red
Meat (top) and Waterbirds (bottom) dataset. Since GALS is super-
vised by the attention from language specification, our classifier’s
attention fails to ignore distractors when attention generated from
language specification does not localize the task-relevant features.
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