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Abstract

Novel-view prediction of a scene has many applications.
Existing works mainly focus on generating novel-view im-
ages via pixel-wise prediction in the image space, often re-
sulting in severe ghosting and blurry artifacts. In this paper,
we make the first attempt to explore novel-view prediction in
the layout space, and introduce the new problem of novel-
view scene layout generation. Given a single scene layout
and the camera transformation as inputs, our goal is to
generate a plausible scene layout for a specified viewpoint.
Such a problem is challenging as it involves accurate un-
derstanding of the 3D geometry and semantics of the scene
from as little as a single 2D scene layout. To tackle this
challenging problem, we propose a deep model to capture
contextualized object representation by explicitly modeling
the object context transformation in the scene. The con-
textualized object representation is essential in generating
geometrically and semantically consistent scene layouts of
different views. Experiments show that our model outper-
forms several strong baselines on many indoor and outdoor
scenes, both qualitatively and quantitatively. We also show
that our model enables a wide range of applications, includ-
ing novel-view image synthesis, novel-view image editing,
and amodal object estimation.

1. Introduction

Multi-view prediction of a scene is of great importance
in 3D scene understanding and has been studied for a long
time [6, 10], with potential applications such as robotics,
Virtual Reality (VR), and Augmented Reality (AR). There
is a line of research on generating images of a scene from
new viewpoints [5, 31, 42]. However, these works render a
scene in the image space via pixel-wise prediction directly,
often resulting in severe ghosting and blurry artifacts.

In this paper, we take a step towards novel-view pre-
diction of a scene in the layout space. We introduce the
new problem of novel-view scene layout generation. Hav-
ing a robust novel-view scene layout model not only enables

Input scene layout Output scene layout

(a) Indoor scene

(b) Outdoor scene

Figure 1. Novel-view scene layout generation. Given a single lay-
out of an indoor scene (a) or an outdoor scene (b) as input (1st
column), our model can generate plausible novel-view scene lay-
outs for different viewpoints (2nd and 3rd columns).

generating consistent and sharp scene layouts from different
views even with large camera movements, but also provides
scene understanding priors for a wide range of applications,
including novel-view image synthesis, image editing, and
amodal object estimation. As shown in Figure 1, given a
single layout of an indoor scene (a) or an outdoor scene (b)
as input, our goal is to generate novel-view layouts of the
scene for different viewpoints (2nd and 3rd columns).

However, generating plausible novel-view scene layouts
is a highly challenging problem. It requires an accurate un-
derstanding of the 3D geometry and semantics of the scene
from just a single 2D scene layout. The sizes, positions,
and shapes of the objects may change a lot in both ob-
served regions and unseen regions across different view-
points. Hence, this problem is highly under-determined, as
a result of the ambiguity of the input single 2D scene layout.

Recall how the human cognitive system works in this
task. Consider the input layout of an indoor scene shown
in Figure 1 (a). Human beings may use the geometric pri-
ors and semantic relations of the objects in the input layout
to infer the scene layout of a different viewpoint. The ge-
ometric priors contain the common object properties (e.g.,
the shape of the window), while semantic relations repre-
sent interactions among different types of objects to indi-
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Figure 2. A brief comparison between existing novel-view layout-to-image synthesis methods [12, 14] (left) and the proposed novel-view
scene layout generation method (right). Existing works directly map the input layout to the 3D scene representation (e.g., MPI [14] or
hybrid representation [12]), and then perform pixel-by-pixel projection in the image space. In contrast, our approach considers spatial and
semantic interactions among objects in the layout space without explicit 3D modeling. The novel-view scene layouts generated from the
contextualized object representation are crucial for scene understanding and enable a variety of applications.

cate how these objects (e.g., bed and table) should be com-
posited in the target view. Inspired by this observation, we
propose a learning-based model for novel-view scene lay-
out generation, by explicitly modeling the object spatial and
semantic interactions in the scene. Our approach contains
three main stages. First, given an input scene layout, we
propose an Object Context Transformation (OCT) module
to extract the contextualized object representation that en-
codes object shapes, positions, and sizes in the scene. The
contextual relationships among objects in the target view
are learned via a view-aware attention mechanism. Second,
we propose an Object Layout Generation (OLG) module to
produce the shape, size, and position for each object in the
target view. Finally, we use an Object Layout Composition
(OLC) module to composite all the predicted object layouts
and generate a plausible novel-view scene layout as output.

To evaluate the effectiveness of our model, we con-
duct extensive experiments on numerous indoor and out-
door scenes. Results show that our model can generate
geometrically and semantically more consistent novel-view
scene layouts, compared with the baselines. In addition, we
show a wide range of applications of our model, including
novel-view image synthesis, novel-view image editing, and
amodal object estimation.

In summary, the main contributions of this paper include:

• We make the first attempt to investigate the new prob-
lem of novel-view scene layout generation by learning
object context in the scene.

• We propose a new model that consists of an OCT mod-
ule to capture the contextualized object representation,
an OLG module to predict the layouts of individual ob-
jects, and an OLC module to composite the predicted
object layouts properly to an output scene layout.

• Experimental results demonstrate that our model can
generate geometrically and semantically consistent
novel-view scene layouts from a single input layout,
enabling a wide range of applications.

2. Related Work
Novel view synthesis. Given a single or some images of
a scene, novel view synthesis aims to generate images from
new viewpoints. Earlier solutions are based on multi-view
reconstruction using geometric formulations [4,6,8,27,43].
Their results often suffer from occlusions and incorrect tex-
ture details due to view blending. Recent works lever-
age different 3D representations, including multilayer per-
ceptrons [30], multi-plane images [41], layered depth im-
ages [28, 31], point clouds [23, 34] and neural radiance
fields (NeRFs) [22]. Zhi et al. [39] treat NeRF as a scene-
specific implicit representation for joint geometric and se-
mantic prediction. Novel view images can be generated by
warping the learned scene representation to the target view.

However, all these view synthesis methods work in the
image space, which contains pixel-level appearances. In
contrast, we tackle the novel-view prediction problem in the
layout space. The input to our model is a single scene lay-
out that captures the scene structure and is useful in many
applications. Although few recent works [12, 14] also use
semantic scene layouts as input, they just convert the input
layout to different types of scene representations and follow
the traditional novel-view synthesis pipeline that performs
pixel-by-pixel projection in the image space. As shown in
Figure 2 (left), the 3D scene representation consists of a set
of fronto-parallel planes at fixed depths from a reference
image. Such a design would still lead to blurry predictions
when the camera movement is large. In contrast, our model
directly generates geometrically and semantically consis-
tent scene layouts for different viewpoints by utilizing ob-
ject context transformation without explicit 3D modeling.
The generated scene layouts can further be used in a variety
of applications, including novel-view image synthesis.

Scene layout generation. In recent years, we have wit-
nessed a rising interest in scene layout generation in the vi-
sion community. LayoutGAN [19] uses a GAN model to
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Figure 3. The overall pipeline of our model for novel-view scene layout generation. Given a single scene layout Xs in the source view
and the camera transformation ct as inputs, we first extract the initial object representation R by encoding a set of decomposed object
layouts Ls and ct. The initial object representation R is updated by the Object Context Transformation (OCT) module, resulting in the
contextualized object representation Rc that captures the spatial and semantic interactions of objects in the scene. The Object Layout
Generation (OLG) module then predicts the layout Li

t of each object i at the target view from rci . Finally, the Object Layout Composition
(OLC) module composites the predicted object layouts Lt to generate the output scene layout Xt in the target view.

generate semantic and geometric properties of a fixed num-
ber of elements. LayoutVAE [17] proposes a conditional
VAE model to generate a feasible layout of the scene given a
label set, i.e., categories of all the elements. Qiao et al. [25]
propose a generative model to predict complete scene lay-
outs from a standalone object layout. Lee et al. [18] use
a graph neural network to generate layouts from a set of
input constraints. Luo et al. [20] introduce a conditional
variational autoencoder to generate diverse and realistic lay-
outs of indoor scenes. Recent works [1, 11, 35] also use
transformer-based networks for layout generation and com-
pletion by capturing the high-level relationships among ele-
ments in a layout. Unlike these scene layout generation and
completion works, our goal is to generate scene layouts for
different viewpoints, which has not been explored.

Attention mechanism. The original attention mecha-
nism [32] is applied to sequence-to-sequence machine
translation and used in many NLP tasks. The core idea
is to model long-range dependencies among the input el-
ements. Most recently, the attention mechanism has begun
to show promising results in computer vision tasks, such as
image recognition [7], object detection [3], image segmen-
tation [38], and image generation [33]. Different from the
above works, we propose an object context transformation
module and apply the view-aware attention mechanism on
a new problem, i.e., novel-view scene layout generation.

3. Approach

In this section, we introduce our approach for the novel-
view scene layout generation problem. We first give an
overview of this problem and the proposed pipeline, and
then describe the details of the modules in our model. Fi-
nally, we specify the loss terms used in the training process.

3.1. Overview and Notation

A scene layout can be considered as composed of a set
of objects with different sizes, categories, and positions in
a scene. Formally, the goal of the novel-view scene lay-
out generation problem is to develop a model G, which can
generate a scene layout Xt in the target view, by taking a
single scene layout map Xs in the source view and a rela-
tive camera pose transformation ct (from the source view to
the target view) as inputs:

Xt = G(Xs, ct). (1)

To model object-level context information, we decom-
pose Xs into a set of object layouts, Ls = {Li

s ∈
{0, 1}H×W×C |i = 1, ..., n}, where H and W are the height
and width of the layout, C is the total number of object cat-
egories, and n is the number of objects in the scene. Note
that multiple occurrences of a single object class will ap-
pear as a group of connected or disjoint masks in the same
channel in the object layout. We fill each pixel inside the
object as a one-hot vector to represent the object category
and zeroing out the values outside it.

Figure 3 shows the overall pipeline of our model. It con-
tains three key modules: an Object Context Transforma-
tion (OCT) module, an Object Layout Generation (OLG)
module, and an Object Layout Composition (OLC) mod-
ule. In particular, we first use two Multi-Layer Percep-
trons (MLPs) to separately extract object embeddings E =
{ei|i = 1, ..., n} and camera transformation vector ct in a
d-dimensional space. E and ct are concatenated to another
MLP to form the initial object representation R = {ri|i =
1, ..., n}. We pass R to the OCT module to obtain the con-
textualized object representation Rc = {rci |i = 1, ..., n} by
modeling the spatial and semantic interactions among ob-
jects. We then feed Rc to the OLG module to predict the
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Figure 4. The View-aware Attention Block (VAB) for learning
object context information.

object layouts Lt = {Li
t|i = 1, ..., n} in the target view.

Finally, we combine all the predicted object layouts Lt by
the OLC module to output the scene layout Xt. We present
the details of the three modules below.

3.2. Object Context Transformation (OCT) Module

Given the initial object representation, a trivial solution
is to pass it to a decoder directly to predict the layout in
the target view. However, our experiments show that it per-
forms poorly in this task. The main reason is that the object
representation is not spatially aligned between the source
and target views. To leverage the inductive bias about the
semantic and geometric information of the scene across dif-
ferent views, the object representation should take all input
objects and the camera transformation into consideration.

Hence, we propose an OCT module to learn complemen-
tary information across different views by integrating the
object context information into the feature representation of
each object. In particular, we design a View-aware Atten-
tion Block (VAB) to exploit the local and global view-aware
dependencies among objects. Figure 4 shows the details of
the VAB architecture. The view-aware attention is based on
the initial object representation and the camera transforma-
tion information. VAB uses three different fully connected
layers to produce the queries Q, keys K and values V . We
perform matrix multiplication to the query and key to obtain
the attention matrix A. We add a residual connection after
the attention computation. The contextualized representa-
tion rci of each object i is computed as:

rci = (ri +

n∑
j=1

wi,jrjWV )WP ,

wi,j =
exp(Ai,j)∑n
k=1 exp(Ai,k)

,

Ai,j = ([ri; ct]WQ)(rjWK)T ,

(2)

where [; ] denotes the concatenation operation. WQ, WK ,
WV and WP are linear transformation layers. wi,j is the
computed weight between objects. n is the total number of
objects in a scene. We also use the multi-head attention as:

Rc = [head1; ...;headm]WO, (3)

where m is the number of heads, and WO is a linear trans-
formation layer. The output from each head is combined to
encapsulate multiple relationships among the objects.

By doing so, the contextualized object representation
contains not only its own geometric and semantic infor-
mation, but also the spatial and semantic interactions with
other objects in the target view. The contextualized object
representation is then fed into the OLG module.

3.3. Object Layout Generation (OLG) Module

Given the set of contextualized object representation
Rc = {rci |i = 1, ..., n}, we propose an OLG module to
predict a standalone layout Li

t for each object i. The OLG
module contains an object bounding box branch and an ob-
ject mask branch. The object bounding box branch predicts
the position and size of each object with four parameters
{oxi , o

y
i , o

h
i , o

w
i }, while the object mask branch predicts a bi-

nary shape mask of the object. (oxi , o
y
i ) refer to the centroid

coordinates of the object bounding box, and (ohi , o
w
i ) refer

to the height and width of the object bounding box. They
are all normalized with respect to the size of the scene lay-
out. We warp the object mask to the corresponding bound-
ing box coordinates using a bilinear sampler [16], resulting
in an object layout map Li

t that represents the object shape,
size, and position in the target view.

3.4. Object Layout Composition (OLC) Module

Finally, we propose an OLC module to combine the pre-
dicted object layouts Lt coherently into a scene layout Xt

in the target view. Note that we need to deal with occlusions
(i.e., multiple objects appearing at the same location in Xt)
and holes (i.e., no objects appearing at some location in Xt)
during the composition process.

To resolve the ambiguity about the partial occlusions
among objects, we propose an OrderNet to determine the
relative order of any two objects. The inputs to the Order-
Net are two object layouts, and the output is a binary la-
bel indicating the relative order of the two object layouts.
The ground truth orders are derived from the depth map
in the dataset. The architecture of the OrderNet is based
on VGG [29]. We train the OrderNet by using the rela-
tive order information of adjacent objects in the scene with
a cross-entropy loss. Based on the outputs from the pre-
trained OrderNet, we composite the object layouts properly
into a single layout in the target view.

The composited layout may still look unrealistic as there
may exist missing regions in the target view layout. To fur-
ther reduce the artifacts, we employ four refinement blocks
to naturally refine the scene layout in a semantically mean-
ingful manner. Each refinement block takes as input the
coarse scene layout to produce a refined layout by bilinear
upsampling and convolution operations. More details about
the network architecture can be found in the Supplemental.
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3.5. Training

We design several loss terms for learning the novel-view
scene layout generation model from both object-level and
scene-level perspectives. We adopt the bounding box loss
and the mask loss for each object in the scene, and the ad-
versarial loss for ensuring the plausibility of the generated
scene layout. In particular, for each object bounding box,
we define the L1 loss between the predicted object bound-
ing box ôbboxi and the corresponding ground truth obboxi as:

Li
bbox = ∥obboxi − ôbboxi ∥1. (4)

For each object mask, we use a binary cross-entropy loss
to penalize the pixel-wise difference between the predicted
object mask m̂i, and the ground truth mask mi as:

Li
shape = −

∑
x

∑
y

m̂i
x,y logm

i
x,y+(1−m̂i

x,y) log(1−mi
x,y),

(5)
where m̂i

x,y is the predicted object mask at location (x, y).
In addition, to encourage the plausibility of the generated

scene layout, we train our model against a discriminator via
adversarial learning as:

Ladv = Ex∼preal
logD(x)+Ex∼pfake

log(1−D(x)), (6)

where x ∼ pfake is the generated scene layout, and x ∼
preal is the real scene layout.

In summary, we train our model with a total loss of:

L = λ0

∑
i

Li
shape + λ1

∑
i

Li
bbox + λ2Ladv, (7)

where λ0, λ1, and λ2 are the controllable loss weights.

4. Experiments
In this section, we first introduce the experimental set-

tings in Section 4.1. Second, we conduct experiments to
evaluate the performance of the proposed method with sev-
eral baselines both quantitatively and qualitatively in Sec-
tion 4.2. We further conduct ablation studies to analyze the
proposed modules in Section 4.3. Finally, we show three
applications enabled by our model in Section 4.4.

4.1. Experimental Setup

Implementation details. We implement our network
with PyTorch. The scene layouts are resized to a resolution
of 128 × 128 in both training and testing. The activation
function is leaky-ReLU and its negative slope is 0.2. The
network parameters are randomly initialized. We adopt the
Adam optimizer with β1 = 0.9, β2=0.99 and a learning rate
of 0.0001. We set the loss weights λ0, λ1, and λ2 to 1, 1,
0.1. The number of attention heads is set to be 4. We first
train the OrderNet to obtain the relative order of adjacent
object layouts, and then train the whole model end-to-end.

Dataset. We collect training pairs of each frame from the
RealEstate10K dataset [41], which is licensed by Google
LLC under a CC-BY 4.0 License. It consists of 80,000
indoor and outdoor video clips with camera poses for all
frames. Specifically, to extract pairs of scene layouts, we
apply PSPNet [37] to obtain semantic segmentation annota-
tions, and remove noises and fill holes in the obtained object
masks via connected component labeling. We then derive
the bounding boxes of objects from the semantic segmen-
tation results, and apply a simple multi-object tracker [2]
to find correspondences between objects across different
views. We also apply the pre-trained MiDaS [26] to obtain
depth information. Note that no training or additional data
is used in these steps. We set the coordinates of an object to
zeros if it does not appear in one of the views.

Compared methods. As this is the first work for novel-
view scene layout generation, there is no existing method
that we can compare with directly. We therefore propose
several baselines that address related problems, including
UNet [15], LayoutGAN [19] and GVSNet [12]. UNet [15]
learns a generic mapping between an input layout and an
output layout using a fully convolutional encoder-decoder
architecture. We concatenate the input scene layout with
camera transformation information as the input and retrain
the model. LayoutGAN [19] learns the layout mapping in
an object-wise manner. We modify the original LayoutGAN
model so that it takes our initial object representation as in-
put. Similar to the OLG module in Section 3.3, we add an
object mask branch in LayoutGAN to output an object lay-
out for each object. We composite the generated object lay-
outs into a scene layout and retrain the model. GVSNet [12]
uses MPI semantics to synthesize novel-view images from
a single input layout. We adapt their method for novel-view
scene layout generation by projecting the intermediate MPI
semantics in the network to the scene layout in the target
view directly.

Evaluation metrics. We evaluate the quality of the gener-
ated scene layout from different aspects. We first compute
the Fréchet Inception Distance (FID) score [13] to measure
the visual quality between the generated layouts and the real
layouts by using the layout features from the last convo-
lution layer of the layout discriminator. We also compute
the average Negative Log-Likelihood (NLL) score [17, 25]
to measure the overall plausibility of the generated scene
layouts. In addition, the object semantics should be con-
sistent when a scene is rendered from different viewpoints.
To measure such consistency, we define a new metric called
View Semantic Consistency (VSC) as:

∥Ws(X
1
t )−Ws(X

2
t )∥, (8)
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Figure 5. Qualitative comparison between the baselines and our model. Given the input scene layout (1st row), we show the novel-view
scene layouts from the baselines (2nd, 3rd, and 4th rows), our model (5th row), and the ground truth (6th row).

where X1
t and X2

t are the generated scene layouts from two
different user-specified viewpoints. Ws is a warping func-
tion that warps the generated scene layout back to the source
viewpoint by using the depth information derived from Mi-
DaS [26]. In particular, we transform the relative dispar-
ity images into absolute disparity images by estimating the
scale and shift for each image. We compute the average
per-channel absolute error between the warped two scene
layouts. A low VSC score indicates high view consistency
of the measured scene layouts across different views.

4.2. Results

Qualitative evaluation. Figure 5 shows some qualitative
results of our model, compared with those from the base-
lines. From the results, we can see that the layouts gener-
ated from our method are more geometrically consistent.
For example, in the 2nd column, the layouts from both
UNet and LayoutGAN do not follow the camera movement,
compared with the ground truth scene layout. Although the
layout from GVSNet is better due to the learned 3D scene
representation, it still generates unrealistic artifacts when
projecting the 3D representation to the 2D layout. In con-
trast, our layout follows the camera transformation to ar-
range all objects in the target view properly. In addition,
we can see that our approach can generate more visually
plausible scene layouts in the target view. For example, the
input indoor scene in the 3rd column has multiple and com-

Method NLL↓ FID↓ VSC↓
UNet [15] 2.31 126 0.132
LayoutGAN [19] 2.05 112 0.098
LayoutGAN [19]+OLC 1.96 108 0.091
GVSNet [12] 1.69 103 0.079
Ours 1.53 85 0.059

Table 1. Quantitative comparison of the proposed method with the
baselines (i.e., UNet, LayoutGAN, LayoutGAN+OLC, and GVS-
Net). We evaluate their performances using NLL, FID, and VSC
scores. The best results are highlighted in bold.

plex object interactions, e.g., a television on a table, a cush-
ion on a bed, and three windowpanes on the wall. All the
generated scene layouts from the baselines contain obvious
artifacts (marked in white color) around object boundaries
with no object label or incorrect label assigned. In contrast,
benefited from the learned object context, our approach can
generate much more plausible scene layouts.

Quantitative evaluation. Table 1 shows the quantitative
results. Our method achieves the best results on all the met-
rics as compared to the baselines, indicating the effective-
ness of our method. We can see that utilizing our proposed
OLC module could help improve the performance of Lay-
outGAN. Compared to UNet and LayoutGAN, GVSNet is
closest to our method on the NLL metric. The main reason
is that GVSNet converts the input scene layout to a 3D scene
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Method NLL↓ FID↓ VSC↓
w/o camera transformation 1.65 101 0.089
w/o OCT module 1.71 109 0.093
w/o OrderNet 1.58 90 0.082
w/o refinement 1.57 93 0.065
w/o adversarial loss 1.61 91 0.063
Ours (full model) 1.53 85 0.059

Table 2. Results of the ablation study. The best results are high-
lighted in bold.

representation to explore object relations. However, by con-
sidering the spatial and semantic interactions among objects
in the scene, our method still outperforms GVSNet on all
the metrics by a large margin. This again demonstrates the
importance of learning object context transformation in the
novel-view scene layout generation problem.

4.3. Ablation Study

To investigate how different modules and loss functions
affect the final results, we conduct ablation studies on sev-
eral ablated versions of our model:

• w/o camera transformation: We remove the camera
transformation vector in the OCT module.

• w/o OCT module: We remove the OCT module to eval-
uate the importance of object context information.

• w/o OrderNet: We remove the OrderNet to evaluate
the occlusion effect on the generated scene layout.

• w/o refinement: We remove the refinement blocks to
evaluate the effect of the refinement process.

• w/o adversarial loss: We train the model without using
the adversarial loss.

Table 2 shows the results of the ablation studies. With-
out utilizing camera transformation information, the per-
formance drops. This indicates that camera transformation
is useful for distilling view-aware object context informa-
tion in the OCT module. If the OCT module is completely
removed, the performance becomes worse, implying that
modeling object context transformation is crucial to novel-
view scene layout generation. Without OrderNet, the VSC
score is affected more than the NLL and FID scores. This
is because that incorrect depth order would lead to incon-
sistent composition in the generated scene layouts. Finally,
with the help of the refinement blocks and the adversarial
loss, our model learns to generate more plausible and con-
sistent novel-view scene layouts.

4.4. Applications

Benefited from our model for novel-view scene layout
generation, we explore three applications here.

Novel-view image synthesis. The goal of this application
is to generate novel-view images of a scene by using only a
single 2D scene layout as input. Such an application allows

Input Layout SVSNet [14] OursSPADE [24]

Figure 6. Novel-view image synthesis. We compare the synthe-
sized novel-view images of two baselines (i.e., SPADE [24] and
SVSNet [14]) with ours.

users to easily draw a scene layout on a digital canvas and
generate multi-view images of the scene with geometrically
consistent and visually plausible appearance. Specifically,
given an input scene layout, we first use our model to gen-
erate a new scene layout in the target view. We then use
an off-the-shelf semantic image synthesis method [24] to
synthesize a photo-realistic image from the generated lay-
out. Note that we may enforce consistency on the image
contents of different views by conditioning the generated
layout on the same latent style code.

We compare our results with two baselines on the
ADE20k dataset [40] licensed under a BSD 3-Clause Li-
cense. One is using SPADE [24] to generate novel-view im-
ages from the input layout directly, and the other is a recent
work, SVSNet [14], which generates novel-view images by
inferring a full 3D scene representation from the input scene
layout. Figure 6 shows some visual comparison results on
both indoor and outdoor scenes. We can see that SPADE
suffers from blurry artifacts due to the unaligned mapping
between the input layout and the target view image. Al-
though the visual quality of SVSNet is better, it still gen-
erates inconsistent artifacts around the scene boundaries.
In contrast, our method can generate sharper visual results
based on the generated scene layout in the target view.

Novel-view image editing. Our approach can also sup-
port novel-view image editing. Given a number of synthe-
sized novel-view scene layouts, users may select any scene
layout and edit the content. The results of the editing oper-
ation will then be propagated to other viewpoints of scene
layouts and corresponding images accordingly. In particu-
lar, we first edit the scene layout of the input image. We
then use our model to generate novel-view scene layouts.
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Figure 7. Novel-view image editing. Given the input image and
layout (top-left), we show the generated results of two different
views (2nd column and 3rd column) based on different editing
operations (2nd row for deleting two paintings, 3rd row for shift-
ing a painting, and 4th row for shifting the toilet).

Finally, we pass the generated scene layouts in different
views and the original image in the source view to a cross-
domain semantic transfer model [36] to produce consistent
novel-view images, combining the visual appearance of the
input image and the structure of the generated layouts.

We show an example in Figure 7. Given the input image
and layout in the top-left corner of Figure 7, we apply dif-
ferent editing operations (e.g., deleting two paintings in the
2nd row, shifting a painting in the 3rd row, and shifting the
toilet in the 4th row) on the layout. The results of the gen-
erated images in two different views are shown in the 2nd
and 3rd columns. We can see that a simple editing opera-
tion on the scene layout can be propagated seamlessly and
consistently to the novel-view images.

Amodal object estimation. Given only a single image
of a scene as input, the goal of this application is to rea-
son about the amodal object layout in the bird’s eye view.
The resulting object layouts can be useful for perception
and scene understanding in autonomous driving scenarios.
Hence, we explore the use of our model for amodal ob-
ject estimation to reconstruct object layouts in the bird’s
eye view. Given a single frontal view image, we first use
a pre-trained semantic segmentation model [37] to obtain
the corresponding scene layout. We pass the scene layout
to our OCT module to extract the contextualized object rep-
resentation. We then predict the specific object layout in the
bird’s eye view by using our OLG module.

We compare our method with a recent work, i.e., Mono-
Layout [21], which leverages adversarial learning to esti-
mate the bird’s eye view scene layout from a single im-
age. We follow the dataset processing step in [21] and re-
train our model on the KITTI dataset [9] for the sidewalk
layout recovery in the bird’s eye view. We adopt mean
Intersection-over-Union (mIOU) as the evaluation metric.
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Figure 8. Failure cases. Our model may fail to recover objects that
are completely occluded in the input layout (1st row). In addition,
our model may not be able to predict the changes of deformable
objects in the target view (2nd row).

A higher score represents a better performance. The mIOU
of our method and MonoLayout for sidewalk is 44.31 and
42.66, respectively. This indicates that our model can hal-
lucinate object shapes better. We attribute this to the strong
contextualized object representation learned in our model.

5. Conclusion
In this paper, we take a step towards the new problem of

novel-view scene layout generation. To this end, we pro-
pose a learning-based model that captures the contextual-
ized object representation to generate geometrically and se-
mantically consistent scene layouts across different views.
Extensive qualitative and quantitative results show that our
model outperforms several baselines on numerous indoor
and outdoor scenes. We believe that our approach can serve
as a critical step for a wide range of potential applications.

Though impressive results are achieved by our model,
as the first trail to generate novel-view scene layouts, our
approach is subject to some limitations. First, we cannot
recover an object in the target view if it is not shown in
the source view. As shown in the 1st row of Figure 8,
two objects (i.e., painting and windowpane) appeared in
the ground truth are totally occluded by the wall on the
right of the input layout. As a future work, we may learn
a probabilistic generative model to capture the ambiguity
inherent in the unseen regions across different views.
New objects can be sampled at high fidelity from the
learned distribution. Second, our model may not be able to
predict the changes of deformable objects corresponding
to viewpoint changes. See the 2nd row of Figure 8 for
an example. It would be an interesting future work to
explicitly encode object dynamics in the scene. Third, our
method may not work well under some out-of-distribution
camera poses due to the implicitly modeling. We believe
that better modeling of object relationships under different
camera poses could be an important future direction.
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