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Abstract

We study the problem of extracting accurate correspon-
dences for point cloud registration. Recent keypoint-free
methods bypass the detection of repeatable keypoints which
is difficult in low-overlap scenarios, showing great poten-
tial in registration. They seek correspondences over down-
sampled superpoints, which are then propagated to dense
points. Superpoints are matched based on whether their
neighboring patches overlap. Such sparse and loose match-
ing requires contextual features capturing the geometric
structure of the point clouds. We propose Geometric Trans-
former to learn geometric feature for robust superpoint
matching. It encodes pair-wise distances and triplet-wise
angles, making it robust in low-overlap cases and invari-
ant to rigid transformation. The simplistic design attains
surprisingly high matching accuracy such that no RANSAC
is required in the estimation of alignment transformation,
leading to 100 times acceleration. Our method improves
the inlier ratio by 17∼30 percentage points and the registra-
tion recall by over 7 points on the challenging 3DLoMatch
benchmark. Our code and models are available at https:
//github.com/qinzheng93/GeoTransformer.

1. Introduction
Point cloud registration is a fundamental task in graph-

ics, vision and robotics. Given two partially overlapping 3D
point clouds, the goal is to estimate a rigid transformation
that aligns them. The problem has gained renewed interest
recently thanks to the fast growing of 3D point representa-
tion learning and differentiable optimization.

The recent advances have been dominated by learning-
based, correspondence-based methods [4,7,9,14,15,36]. A
neural network is trained to extract point correspondences
between two input point clouds, based on which an align-
ment transformation is calculated with a robust estimator,
e.g., RANSAC. Most correspondence-based methods rely
on keypoint detection [1,4,7,15]. However, it is challenging
to detect repeatable keypoints across two point clouds, espe-
cially when they have small overlapping area. This usually
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Figure 1. Given two low-overlap point clouds, GeoTransformer
improves inlier ratio over vanilla transformer significantly, both
for superpoint (patch) level (left) and for dense point level (right).
A few representative patch correspondences are visualized with
distinct colors. Notice how GeoTransformer preserves the spatial
consistency of the matching patches across two point clouds. It
corrects the wrongly matched patches around the symmetric cor-
ners of the chair back (see the yellow point cloud).

results in low inlier ratio in the putative correspondences.
Inspired by the recent advances in image matching [22,

25, 39], keypoint-free methods [36] downsample the input
point clouds into superpoints and then match them through
examining whether their local neighborhood (patch) over-
laps. Such superpoint (patch) matching is then propagated
to individual points, yielding dense point correspondences.
Consequently, the accuracy of dense point correspondences
highly depends on that of superpoint matches.

Superpoint matching is sparse and loose. The upside is
that it reduces strict point matching into loose patch over-
lapping, thus relaxing the repeatability requirement. Mean-
while, patch overlapping is a more reliable and informa-
tive constraint than distance-based point matching for learn-
ing correspondence; consider that two spatially close points
could be geodesically distant. On the other hand, superpoint
matching calls for features capturing more global context.

To this end, Transformer [28] has been adopted [31, 36]
to encode contextual information in point cloud registra-
tion. However, vanilla transformer overlooks the geometric
structure of the point clouds, which makes the learned fea-
tures geometrically less discriminative and induces numer-
ous outlier matches (Fig. 1(top)). Although one can inject
positional embeddings [33,38], the coordinate-based encod-
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ing is transformation-variant, which is problematic when
registering point clouds given in arbitrary poses. We ad-
vocate that a point transformer for registration task should
be learned with the geometric structure of the point clouds
so as to extract transformation-invariant geometric features.
We propose Geometric Transformer, or GeoTransformer
for short, for 3D point clouds which encodes only distances
of point pairs and angles in point triplets.

Given a superpoint, we learn a non-local representation
through geometrically “pinpointing” it w.r.t. all other su-
perpoints based on pair-wise distances and triplet-wise an-
gles. Self-attention mechanism is utilized to weigh the im-
portance of those anchoring superpoints. Since distances
and angles are invariant to rigid transformation, GeoTrans-
former learns geometric structure of point clouds efficiently,
leading to highly robust superpoint matching even in low-
overlap scenarios. Fig. 1(left) demonstrates that GeoTrans-
former significantly improves the inlier ratio of superpoint
(patch) correspondences. For better convergence, we devise
an overlap-aware circle loss to make GeoTransformer focus
on superpoint pairs with higher patch overlap.

Benefitting from the high-quality superpoint matches,
our method attains high-inlier-ratio dense point correspon-
dences (Fig. 1(right)) using an optimal transport layer [23],
as well as highly robust and accurate registration without
relying on RANSAC. Therefore, the registration part of our
method runs extremely fast, e.g., 0.01s for two point clouds
with 5K correspondences, 100 times faster than RANSAC.
Extensive experiments on both indoor and outdoor bench-
marks [13,37] demonstrate the efficacy of GeoTransformer.
Our method improves the inlier ratio by 17∼30 percentage
points and the registration recall by over 7 points on the
3DLoMatch benchmark [15]. Our main contributions are:

• A fast and accurate point cloud registration method
which is both keypoint-free and RANSAC-free.

• A geometric transformer which learns transformation-
invariant geometric representation of point clouds for
robust superpoint matching.

• An overlap-aware circle loss which reweights the loss
of each superpoint match according to the patch over-
lap ratio for better convergence.

2. Related Work
Correspondence-based Methods. Our work follows the
line of the correspondence-based methods [7–9, 14]. They
first extract correspondences between two point clouds and
then recover the transformation with robust pose estima-
tors, e.g., RANSAC. Thanks to the robust estimators, they
achieve state-of-the-art performance in indoor and outdoor
scene registration. These methods can be further catego-
rized into two classes according to how they extract corre-
spondences. The first class aims to detect more repeatable
keypoints [4, 15] and learn more powerful descriptors for

the keypoints [1,7,29]. While the second class [36] retrieves
correspondences without keypoint detection by considering
all possible matches. Our method follows the detection-free
methods and improves the accuracy of correspondences by
leveraging the geometric information.
Direct Registration Methods. Recently, direct registra-
tion methods have emerged. They estimate the transforma-
tion with a neural network in an end-to-end manner. These
methods can be further classified into two classes. The first
class [12,30,31,35] follows the idea of ICP [5], which iter-
atively establishes soft correspondences and computes the
transformation with differentiable weighted SVD. The sec-
ond class [2, 16, 32] first extracts a global feature vector for
each point cloud and regresses the transformation with the
global feature vectors. Although direct registration methods
have achieved promising results on single synthetic shapes,
they could fail in large-scale scenes as stated in [15].
Deep Robust Estimators. As traiditional robust estima-
tors such as RANSAC suffer from slow convergence and
instability in case of high outlier ratio, deep robust esti-
mators [3, 6, 20] have been proposed as the alternatives for
them. They usually contain a classification network to reject
outliers and an estimation network to compute the transfor-
mation. Compared with traditional robust estimators, they
achieve improvements in both accuracy and speed. How-
ever, they require training a specific network. In compari-
son, our method achieves fast and accurate registration with
a parameter-free local-to-global registration scheme.

3. Method
Given two point clouds P = {pi ∈ R3 | i = 1, ..., N}

andQ = {qi ∈ R3 | i = 1, ...,M}, our goal is to estimate a
rigid transformation T = {R, t} which aligns the two point
clouds, with a 3D rotation R ∈ SO(3) and a 3D translation
t ∈ R3. The transformation can be solved by:

min
R,t

∑
(p∗xi

,q∗yi )∈C∗
‖R · p∗xi

+ t− q∗yi‖
2
2. (1)

Here C∗ is the set of ground-truth correspondences between
P and Q. Since C∗ is unknown in reality, we need to first
establish point correspondences between two point clouds
and then estimate the alignment transformation.

Our method adopts the hierarchical correspondence
paradigm which finds correspondences in a coarse-to-fine
manner. We adopt KPConv-FPN to simultaneously down-
sample the input point clouds and extract point-wise fea-
tures (Sec. 3.1). The first and the last (coarsest) level down-
sampled points correspond to the dense points and the su-
perpoints to be matched. A Superpoint Matching Module
is used to extract superpoint correspondences whose neigh-
boring local patches overlap with each other (Sec. 3.2).
Based on that, a Point Matching Module then refines the su-
perpoint correspondences to dense points (Sec. 3.3). At last,
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Figure 2. The backbone downsamples the input point clouds and learns features in multiple resolution levels. The Superpoint Matching
Module extracts high-quality superpoint correspondences between P̂ and Q̂ using the Geometric Transformer which iteratively encodes
intra-point-cloud geometric structures and inter-point-cloud geometric consistency. The superpoint correspondences are then propagated
to dense points P̃ and Q̃ by the Point Matching Module. Finally, the transformation is computed with a local-to-global registration method.

the alignment transformation is recovered from the dense
correspondences without relying on RANSAC (Sec. 3.4).
The pipeline is illustrated in Fig. 2.

3.1. Superpoint Sampling and Feature Extraction

We utilize the KPConv-FPN backbone [18,27] to extract
multi-level features for the point clouds. A byproduct of the
point feature learning is point downsampling. We work on
downsampled points since point cloud registration can ac-
tually be pinned down by the correspondences of a much
coarser subset of points. The original point clouds are usu-
ally too dense so that point-wise correspondences are re-
dundant and sometimes too clustered to be useful.

The points correspond to the coarsest resolution, denoted
by P̂ and Q̂, are treated as superpoints to be matched. The
associated learned features are denoted as F̂P ∈R|P̂|×d̂ and
F̂Q ∈R|Q̂|×d̂. The dense point correspondences are com-
puted at 1/2 of the original resolution, i.e., the first level
downsampled points denoted by P̃ and Q̃. Their learned
features are represented by F̃P ∈R|P̃|×d̃ and F̃Q ∈R|Q̃|×d̃.

For each superpoint, we construct a local patch of points
around it using the point-to-node grouping strategy [17,36].
In particular, each point in P̃ and its features from F̃P are
assigned to its nearest superpoint in the geometric space:

GPi = {p̃ ∈ P̃ | i = argminj(‖p̃− p̂j‖2), p̂j ∈ P̂}. (2)

This essentially leads to a Voronoi decomposition of the in-
put point cloud seeded by superpoints. The feature matrix
associated with the points in GPi is denoted as FPi ⊂ F̃P .
The superpoints with an empty patch are removed. The
patches {GQi } and the feature matrices {FQi } forQ are com-
puted and denoted in a similar way.

Geometric 
Self-Attention

Linear

Add & Norm

Feed Forward

Add & Norm

output

Softmax

 

 

Figure 3. Left: The structure of geometric self-attention module.
Right: The computation graph of geometric self-attention.

3.2. Superpoint Matching Module

Geometric Transformer. Global context has proven criti-
cal in many computer vision tasks [10, 25, 36]. For this rea-
son, transformer has been adopted to leverage global con-
textual information for point cloud registration. However,
existing methods [15, 31, 36] usually feed transformer with
only high-level point cloud features and does not explicitly
encode the geometric structure. This makes the learned fea-
tures geometrically less discriminative, which causes severe
matching ambiguity and numerous outlier matches, espe-
cially in low-overlap cases. A straightforward recipe is to
explicitly inject positional embeddings [33, 38] of 3D point
coordinates. However, the resultant coordinate-based trans-
formers are naturally transformation-variant, while regis-
tration requires transformation invariance since the input
point clouds can be in arbitrary poses.

To this end, we propose Geometric Transformer which
not only encodes high-level point features but also ex-
plicitly captures intra-point-cloud geometric structures and
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inter-point-cloud geometric consistency. GeoTransformer
is composed of a geometric self-attention module for learn-
ing intra-point-cloud features and a feature-based cross-
attention module for modeling inter-point-cloud consis-
tency. The two modules are interleaved for Nt times to
extract hybrid features ĤP and ĤQ for reliable superpoint
matching (see Fig. 2 (bottom left)).
Geometric self-attention. We design a geometric self-
attention to learn the global correlations in both feature
and geometric spaces among the superpoints for each point
cloud. In the following, we describe the computation for P̂
and the same goes for Q̂. Given the input feature matrix
X ∈R|P̂|×dt , the output feature matrix Z ∈R|P̂|×dt is the
weighted sum of all projected input features:

zi =

|P̂|∑
j=1

ai,j(xjWV ), (3)

where the weight coefficient ai,j is computed by a row-wise
softmax on the attention score ei,j , and ei,j is computed as:

ei,j =
(xiWQ)(xjWK + ri,jWR)T√

dt
. (4)

Here, ri,j ∈Rdt is a geometric structure embedding to be
described in the next. WQ,WK ,WV ,WR ∈ Rdt×dt are
the respective projection matrices for queries, keys, values
and geometric structure embeddings. Fig. 3 shows the struc-
ture and the computation of geometric self-attention.

We design a novel geometric structure embedding to en-
code the transformation-invariant geometric structure of the
superpoints. The core idea is to leverage the distances and
angles computed with the superpoints which are consistent
across different point clouds of the same scene. Given two
superpoints p̂i, p̂j∈P̂ , their geometric structure embedding
consists of a pair-wise distance embedding and a triplet-
wise angular embedding, which will be described below.

(1) Pair-wise Distance Embedding. Given the distance
ρi,j=‖p̂i−p̂j‖2 between p̂i and p̂j , the distance embedding
rDi,j between them is computed by applying a sinusoidal
function [28] on ρi,j/σd. Here, σd is a hyper-parameter
used to tune the sensitivity on distance variations. Please
refer to the Appx. A.1 for detailed computation.

(2) Triplet-wise Angular Embedding. We compute angu-
lar embedding with triplets of superpoints. We first select
the k nearest neighborsKi of p̂i. For each p̂x∈Ki, we com-
pute the angle αxi,j=∠(∆x,i,∆j,i), where ∆i,j := p̂i− p̂j .
The triplet-wise angular embedding rAi,j,x is then computed
with a sinusoidal function on αxi,j/σa, with σa controlling
the sensitivity on angular variations.

Finally, the geometric structure embedding ri,j is com-
puted by aggregating the pair-wise distance embedding and
the triplet-wise angular embedding:

ri,j = rDi,jW
D + maxx

{
rAi,j,xWA

}
, (5)

Sinusoidal 
Function

Figure 4. An illustration of the distance-and-angle-based geo-
metric structure encoding and its computation.

where WD,WA ∈ Rdt×dt are the respective projection ma-
trices for the two types of embeddings. We use max pooling
here to improve the robustness to the varying nearest neigh-
bors of a superpoint due to self-occlusion. Fig. 4 illustrates
the computation of geometric structure embedding.
Feature-based cross-attention. Cross-attention is a typ-
ical module for point cloud registration task [15, 31, 36],
used to perform feature exchange between two input point
clouds. Given the self-attention feature matrices XP , XQ
for P̂ , Q̂ respectively, the cross-attention feature matrix ZP
of P̂ is computed with the features of Q̂:

zPi =

|Q̂|∑
j=1

ai,j(xQj WV ). (6)

Similarly, ai,j is computed by a row-wise softmax on the
cross-attention score ei,j , and ei,j is computed as the feature
correlation between the XP and XQ:

ei,j =
(xPi WQ)(xQj WK)T

√
dt

. (7)

The cross-attention features forQ are computed in the same
way. While the geometric self-attention module encodes the
transformation-invariant geometric structure for each indi-
vidual point cloud, the feature-based cross-attention module
can model the geometric consistency across the two point
clouds. The resultant hybrid features are both invariant to
transformation and robust for reasoning correspondence.
Superpoint matching. To find the superpoint correspon-
dences, we propose a matching scheme based on global
feature correlation. We first normalize ĤP and ĤQ onto a
unit hypersphere and compute a Gaussian correlation matrix
S∈R|P̂|×|Q̂| with si,j= exp(−‖ĥPi − ĥQj ‖22). In practice,
some patches of a point cloud are less geometrically dis-
criminative and have numerous similar patches in the other
point cloud. Besides our powerful hybrid features, we also
perform a dual-normalization operation [22,25] on S to fur-
ther suppress ambiguous matches, leading to S̄ with

s̄i,j =
si,j∑|Q̂|
k=1 si,k

· si,j∑|P̂|
k=1 sk,j

. (8)

We found that this suppression can effectively eliminate
wrong matches. Finally, we select the largest Nc entries
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in S̄ as the superpoint correspondences:

Ĉ = {(p̂xi
, q̂yi) | (xi, yi) ∈ topkx,y(s̄x,y)}. (9)

Due to the powerful geometric structure encoding of Geo-
Transformer, our method is able to achieve accurate regis-
tration in low-overlap cases and with less point correspon-
dences, and most notably, in a RANSAC-free manner.

3.3. Point Matching Module

Having obtained the superpoint correspondences, we ex-
tract point correspondences using a simple yet effective
Point Matching Module. At point level, we use only local
point features learned by the backbone. The rationale is that
point level matching is mainly determined by the vicinities
of the two points being matched, once the global ambigu-
ity has been resolved by superpoint matching. This design
choice improves the robustness.

For each superpoint correspondence Ĉi = (p̂xi
, q̂yi), an

optimal transport layer [23] is used to extract the local dense
point correspondences between GPxi

and GQyi . Specifically,
we first compute a cost matrix Ci ∈ Rni×mi :

Ci = FPxi
(FQyi)

T /
√
d̃, (10)

where ni = |GPxi
|, mi = |GQyi |. The cost matrix Ci is then

augmented into C̄i by appending a new row and a new col-
umn as in [23], filled with a learnable dustbin parameter α.
We then utilize the Sinkhorn algorithm [24] on C̄i to com-
pute a soft assignment matrix Z̄i which is then recovered to
Zi by dropping the last row and the last column. We use
Zi as the confidence matrix of the candidate matches and
extract point correspondences via mutual top-k selection,
where a point match is selected if it is among the k largest
entries of both the row and the column that it resides in:

Ci={(GPxi
(xj),GQyi(yj)) |(xj , yj)∈mutual topkx,y(zix,y)}.

(11)
The point correspondences computed from each superpoint
match are then collected together to form the final global
dense point correspondences: C =

⋃Nc

i=1 Ci.

3.4. RANSAC-free Local-to-Global Registration

Previous methods generally rely on robust pose estima-
tors to estimate the transformation since the putative corre-
spondences are often predominated by outliers. Most robust
estimators such as RANSAC suffer from slow convergence.
Given the high inlier ratio of GeoTransformer, we are able
to achieve robust registration without relying on robust es-
timators, which also greatly reduces computation cost.

We design a local-to-global registration (LGR) scheme.
As a hypothesize-and-verify approach, LGR is comprised
of a local phase of transformation candidates generation and
a global phase for transformation selection. In the local

phase, we solve for a transformation Ti={Ri, ti} for each
superpoint match using its local point correspondences:

Ri, ti = min
R,t

∑
(p̃xj

,q̃yj
)∈Ci

wij‖R · p̃xj
+ t− q̃yj‖

2
2. (12)

This can be solved in closed form using weighted SVD [5].
The corresponding confidence score for each correspon-
dence in Zi is used as the weight wij . Benefitting from the
high-quality correspondences, the transformations obtained
in this phase are already very accurate. In the global phase,
we select the transformation which admits the most inlier
matches over the entire global point correspondences:

R, t = max
Ri,ti

∑
(p̃xj

,q̃yj
)∈C

J‖Ri · p̃xj
+ ti − q̃yj‖

2
2 < τaK,

(13)
where J·K is the Iverson bracket. τa is the acceptance radius.
We then iteratively re-estimate the transformation with the
surviving inlier matches for Nr times by solving Eq. (12).
As shown in Sec. 4.1, our approach achieves comparable
registration accuracy with RANSAC but reduces the com-
putation time by more than 100 times. Moreover, unlike
deep robust estimators [3, 6, 20], our method is parameter-
free and no network training is needed.

3.5. Loss Functions

The loss function L = Loc + Lp is composed of an
overlap-aware circle loss Loc for superpoint matching and
a point matching loss Lp for point matching.
Overlap-aware circle loss. Existing methods [25,36] usu-
ally formulate superpoint matching as a multi-label classi-
fication problem and adopt a cross-entropy loss with dual-
softmax [25] or optimal transport [23, 36]. Each superpoint
is assigned (classified) to one or many of the other super-
points, where the ground truth is computed based on patch
overlap and it is very likely that one patch could overlap
with multiple patches. By analyzing the gradients from the
cross-entropy loss, we find that the positive classes with
high confidence scores are suppressed by positive gradients
in the multi-label classification1. This hinders the model
from extracting reliable superpoint correspondences.

To address this issue, we opt to extract superpoint de-
scriptors in a metric learning fashion. A straightforward so-
lution is to adopt a circle loss [26] similar to [4, 15]. How-
ever, the circle loss overlooks the differences between the
positive samples and weights them equally. As a result, it
struggles in matching patches with relatively low overlap.
For this reason, we design an overlap-aware circle loss to
focus the model on those matches with high overlap. We se-
lect the patches in P which have at least one positive patch
in Q to form a set of anchor patches, A. A pair of patches
are positive if they share at least 10% overlap, and nega-
tive if they do not overlap. All other pairs are omitted. For

1The detailed analysis is presented in Appx. C.
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each anchor patch GPi ∈ A, we denote the set of its positive
patches inQ as εip, and the set of its negative patches as εin.
The overlap-aware circle loss on P is then defined as:

LPoc=
1

|A|
∑
GPi ∈A

log[1+
∑
GQj ∈ε

i
p

eλ
j
iβ

i,j
p (dji−∆p)·

∑
GQk ∈ε

i
n

eβ
i,k
n (∆n−dki )],

(14)
where dji =‖ĥPi − ĥQj ‖2 is the distance in the feature space,
λji =(oji )

1
2 and oji represents the overlap ratio between GPi

and GQj . The positive and negative weights are computed
for each sample individually with βi,jp = γ(dji −∆p) and
βi,kn = γ(∆n − dki ). The margin hyper-parameters are set
to ∆p=0.1 and ∆n=1.4. The overlap-aware circle loss
reweights the loss values on εip based on the overlap ratio
so that the patch pairs with higher overlap are given more
importance. The same goes for the loss LQoc on Q. And the
overall loss is Loc = (LPoc + LQoc)/2.
Point matching loss. The ground-truth point correspon-
dences are relatively sparse because they are available only
for downsampled point clouds. We simply use a negative
log-likelihood loss [23] on the assignment matrix Z̄i of each
superpoint correspondence. During training, we randomly
sample Ng ground-truth superpoint correspondences {Ĉ∗i }
instead of using the predicted ones. For each Ĉ∗i , a set of
ground-truth point correspondences Mi is extracted with
a matching radius τ . The sets of unmatched points in the
two patches are denoted as Ii and Ji. The individual point
matching loss for Ĉ∗i is computed as:

Lp,i = −
∑

(x,y)∈Mi

log z̄ix,y−
∑
x∈Ii

log z̄ix,mi+1−
∑
y∈Ji

log z̄ini+1,y,

(15)
The final loss is computed by averaging the individual loss
over all sampled superpoint matches: Lp = 1

Ng

∑Ng

i=1 Lp,i.

4. Experiments

We evaluate GeoTransformer on indoor 3DMatch [37]
and 3DLoMatch [15] benchmarks (Sec. 4.1) and outdoor
KITTI odometry [13] benchmark (Sec. 4.2). We introduce
the implementation details in Appx. A.3.

4.1. Indoor Benchmarks: 3DMatch & 3DLoMatch

Dataset. 3DMatch [37] contains 62 scenes among which
46 are used for training, 8 for validation and 8 for testing.
We use the training data preprocessed by [15] and evalu-
ate on both 3DMatch and 3DLoMatch [15] protocols. The
point cloud pairs in 3DMatch have > 30% overlap, while
those in 3DLoMatch have low overlap of 10% ∼ 30%.
Metrics. Following [4, 15], we evaluate the performance
with three metrics: (1) Inlier Ratio (IR), the fraction of pu-
tative correspondences whose residuals are below a certain

3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑

PerfectMatch [14] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [7] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [4] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [1] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [15] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [29] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [36] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTransformer (ours) 97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3

Inlier Ratio (%) ↑

PerfectMatch [14] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [7] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [4] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [1] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [15] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [29] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [36] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTransformer (ours) 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7

Registration Recall (%) ↑

PerfectMatch [14] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [7] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [4] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [1] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator [15] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [29] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [36] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer (ours) 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5

Table 1. Evaluation results on 3DMatch and 3DLoMatch. The
comparison with deep robust estimators is present in Appx. D.2.

threshold (i.e., 0.1m) under the ground-truth transforma-
tion, (2) Feature Matching Recall (FMR), the fraction of
point cloud pairs whose inlier ratio is above a certain thresh-
old (i.e., 5%), and (3) Registration Recall (RR), the fraction
of point cloud pairs whose transformation error is smaller
than a certain threshold (i.e., RMSE < 0.2m).
Correspondence results. We first compare the correspon-
dence results of our method with the recent state of the
arts: PerfectMatch [14], FCGF [7], D3Feat [4], SpinNet [1],
Predator [15], YOHO [29] and CoFiNet [36] in Tab. 1(top
and middle). Following [4, 15], we report the results with
different numbers of correspondences. The details of the
correspondence sampling schemes are given in Appx. A.3.
For Feature Matching Recall, our method achieves im-
provements of at least 5 percentage points (pp) on 3DLo-
Match, demonstrating its effectiveness in low-overlap cases.
For Inlier Ratio, the improvements are even more promi-
nent. It surpasses the baselines consistently by 7∼33 pp on
3DMatch and 17∼31 pp on 3DLoMatch. The gain is larger
with less correspondences. It implies that our method ex-
tracts more reliable correspondences.
Registration results. To evaluate the registration perfor-
mance, we first compare the Registration Recall obtained
by RANSAC in Tab. 1(bottom). Following [4, 15], we
run 50K RANSAC iterations to estimate the transformation.
GeoTransformer attains new state-of-the-art results on both
3DMatch and 3DLoMatch. It outperforms the previous best
by 1.2 pp on 3DMatch and 7.5 pp on 3DLoMatch, showing
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Model Estimator #Samples RR(%) Time(s)
3DM 3DLM Model Pose Total

FCGF [7] RANSAC-50k 5000 85.1 40.1 0.052 3.326 3.378
D3Feat [4] RANSAC-50k 5000 81.6 37.2 0.024 3.088 3.112
SpinNet [1] RANSAC-50k 5000 88.6 59.8 60.248 0.388 60.636
Predator [15] RANSAC-50k 5000 89.0 59.8 0.032 5.120 5.152
CoFiNet [36] RANSAC-50k 5000 89.3 67.5 0.115 1.807 1.922
GeoTransformer (ours) RANSAC-50k 5000 92.0 75.0 0.075 1.558 1.633

FCGF [7] weighted SVD 250 42.1 3.9 0.052 0.008 0.056
D3Feat [4] weighted SVD 250 37.4 2.8 0.024 0.008 0.032
SpinNet [1] weighted SVD 250 34.0 2.5 60.248 0.006 60.254
Predator [15] weighted SVD 250 50.0 6.4 0.032 0.009 0.041
CoFiNet [36] weighted SVD 250 64.6 21.6 0.115 0.003 0.118
GeoTransformer (ours) weighted SVD 250 86.5 59.9 0.075 0.003 0.078

CoFiNet [36] LGR all 87.6 64.8 0.115 0.028 0.143
GeoTransformer (ours) LGR all 91.5 74.0 0.075 0.013 0.088

Table 2. Registration results w/o RANSAC on 3DMatch (3DM)
and 3DLoMatch (3DLM). The model time is the time for feature
extraction, while the pose time is for transformation estimation.

its efficacy in both high- and low-overlap scenarios. More
importantly, our method is quite stable under different num-
bers of samples, so it does not require sampling a large num-
ber of correspondences to boost the performance as previ-
ous methods [1, 7, 29, 36].

We then compare the registration results without using
RANSAC in Tab. 2. We start with weighted SVD over cor-
respondences in solving for alignment transformation. The
baselines either fail to achieve reasonable results or suffer
from severe performance degradation. In contrast, Geo-
Transformer (with weighted SVD) achieves the registration
recall of 86.5% on 3DMatch and 59.9% on 3DLoMatch,
close to Predator with RANSAC. Without outlier filtering
by RANSAC, high inlier ratio is necessary for successful
registration. However, high inlier ratio does not necessarily
lead to high registration recall since the correspondences
could cluster together as noted in [15]. Nevertheless, our
method without RANSAC performs well by extracting reli-
able and well-distributed superpoint correspondences.

When using our local-to-global registration (LGR) for
computing transformation, our method brings the registra-
tion recall to 91.5% on 3DMatch and 74.0% on 3DLo-
Match, surpassing all RANSAC-based baselines by a large
margin. The results are also very close to those of ours with
RANSAC, but LGR gains over 100 times acceleration over
RANSAC in the pose time. These results demonstrate the
superiority of our method in both accuracy and speed.
Ablation studies. We conduct extensive ablation stud-
ies for a better understanding of the various modules in our
method2. To evaluate superpoint (patch) matching, we in-
troduce another metric Patch Inlier Ratio (PIR) which is the
fraction of patch matches with actual overlap. The FMR and
IR are reported with all dense point correspondences, with
LGR being used for registration.

To study the effectiveness of the geometric self-attention,

2Due to space limit, we present some ablation studies in Appx. D.3.

Model 3DMatch 3DLoMatch
PIR FMR IR RR PIR FMR IR RR

(a) graph neural network 73.3 97.9 56.5 89.5 39.4 84.9 29.2 69.8
(b) vanilla self-attention 79.6 97.9 60.1 89.0 45.2 85.6 32.6 68.4
(c) self-attention w/ ACE 83.2 98.1 68.5 89.3 48.2 84.3 38.9 69.3
(d) self-attention w/ RCE 80.0 97.9 66.1 88.5 46.1 84.6 37.9 68.7
(e) self-attention w/ PPF 83.5 97.5 68.5 88.6 49.8 83.8 39.9 69.5
(f) self-attention w/ RDE 84.9 98.0 69.1 90.7 50.6 85.8 40.3 72.1
(g) geometric self-attention 86.1 97.7 70.3 91.5 54.9 88.1 43.3 74.0

Table 3. Ablation experiments of the geometric self-attention.

Model 3DMatch 3DLoMatch
PIR FMR IR RR PIR FMR IR RR

(a) cross-entropy loss 80.0 97.7 65.7 90.0 45.9 85.1 37.4 68.4
(b) weighted cross-entropy loss 83.2 98.0 67.4 90.0 49.0 86.2 38.6 70.7
(c) circle loss 85.1 97.8 69.5 90.4 51.5 86.1 41.3 71.5
(d) overlap-aware circle loss 86.1 97.7 70.3 91.5 54.9 88.1 43.3 74.0

Table 4. Ablation experiments of the overlap-aware circle loss.

we compare seven methods for intra-point-cloud feature
learning in Tab. 3: (a) graph neural network [15], (b)
self-attention with no positional embedding [36], (c) abso-
lute coordinate embedding [23], (d) relative coordinate em-
bedding [38], (e) point pair features [11,21] embedding, (f)
pair-wise distance embedding, (g) geometric structure em-
bedding. Generally, injecting geometric information boosts
the performance. But the gains of coordinate-based embed-
dings are limited due to their transformation variance. Sur-
prisingly, GNN performs well on RR thanks to the transfor-
mation invariance of kNN graphs. However, it suffers from
limited receptive fields which harms the IR performance.
Although PPF embedding is theoretically invariant to trans-
formation, it is hard to estimate accurate normals for the su-
perpoints in practice, which leads to inferior performance.
Our method outperforms the alternatives by a large margin
on all the metrics, especially in the low-overlap scenarios,
even with only the pair-wise distance embedding, demon-
trating the strong robustness of our method.

Next, we ablate the overlap-aware circle loss in Tab. 4.
We compare four loss functions for supervising the super-
point matching: (a) cross-entropy loss [23], (b) weighted
cross-entropy loss [36], (c) circle loss [26], and (d) overlap-
aware circle loss. For the first two models, an optimal
transport layer is used to compute the matching matrix as
in [36]. Circle loss works much better than the two vari-
ants of cross-entropy loss, verifying the effectiveness of su-
pervising superpoint matching in a metric learning fashion.
Our overlap-aware circle loss beats the vanilla circle loss by
a large margin on all the metrics.
Qualitative results. Fig. 5 provides a gallery of the regis-
tration results of the models with vanilla self-attention and
our geometric self-attention. Geometric self-attention helps
infer patch matches in structure-less regions from their geo-
metric relationships to more salient regions (1st row) and
reject outlier matches which are similar in the feature space
but different in positions (2nd and 3rd rows).

Fig. 6 visualizes the attention scores learned by our
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(a) input (b) ground truth (c) vanilla - pose (d) geometric - pose (e) vanilla - patch correspondences (f) geometric - patch correspondences (g) vanilla - point correspondences (h) geometric - point correspondences

Overlap:  20.8% RMSE:  4.186m RMSE:  0.027m # Patch Corr:  256
Inlier Ratio:  15.6%

# Patch Corr:  256
Inlier Ratio:  59.8%

# Point Corr:  500
Inlier Ratio:  16.0%

# Point Corr:  500
Inlier Ratio:  62.6%

RMSE:  6.516m RMSE:  0.089m # Patch Corr:  256
Inlier Ratio:  7.4%

# Patch Corr:  256
Inlier Ratio:  62.9%

# Point Corr:  500
Inlier Ratio:  5.8%

# Point Corr:  500
Inlier Ratio:  53.0%Overlap:  19.5%

Overlap:  24.7% RMSE:  2.638m RMSE:  0.114m # Patch Corr:  256
Inlier Ratio:  30.9%

# Patch Corr:  256
Inlier Ratio:  80.1%

# Point Corr:  500
Inlier Ratio:  24.0%

# Point Corr:  500
Inlier Ratio:  90.4%

Figure 5. Registration results of the models with vanilla self-attention and geometric self-attention. In the columns (e) and (f), we visualize
the features of the patches with t-SNE. In the first row, the geometric self-attention helps find the inlier matches on the structure-less wall
based on their geometric relationships to the more salient regions (e.g., the chairs). In the following rows, the geometric self-attention helps
reject the outlier matches between the similar flat or corner patches based on their geometric relationships to the bed or the sofa.

Figure 6. Visualizing geometric self-attention scores on four pairs
of point clouds. The overlap areas are delineated with purple lines.
The anchor patches (in correspondence) are highlighted in red and
the attention scores to other patches are color-coded (deeper is
larger). Note how the attention patterns of the two matching an-
chors are consistent even across disjoint overlap areas.

geometric self-attention, which exhibits significant consis-
tency between the anchor patch matches. It shows that our
method is able to learn inter-point-cloud geometric consis-
tency which is important to accurate correspondences.

4.2. Outdoor Benchmark: KITTI odometry

Dataset. KITTI odometry [13] consists of 11 sequences of
outdoor driving scenarios scanned by LiDAR. We follow [4,
7, 15] and use sequences 0-5 for training, 6-7 for validation
and 8-10 for testing. As in [4, 7, 15], the ground-truth poses
are refined with ICP and we only use point cloud pairs that
are at least 10m away for evaluation.
Metrics. We follow [15] to evaluate our GeoTransformer
with three metrics: (1) Relative Rotation Error (RRE), the
geodesic distance between estimated and ground-truth rota-
tion matrices, (2) Relative Translation Error (RTE), the Eu-
clidean distance between estimated and ground-truth trans-
lation vectors, and (3) Registration Recall (RR), the fraction
of point cloud pairs whose RRE and RTE are both below
certain thresholds (i.e., RRE<5◦ and RTE<2m).

Model RTE(cm) RRE(◦) RR(%)

3DFeat-Net [34] 25.9 0.25 96.0
FCGF [7] 9.5 0.30 96.6
D3Feat [4] 7.2 0.30 99.8
SpinNet [1] 9.9 0.47 99.1
Predator [15] 6.8 0.27 99.8
CoFiNet [36] 8.2 0.41 99.8
GeoTransformer (ours, RANSAC-50k) 7.4 0.27 99.8

FMR [16] ∼66 1.49 90.6
DGR [6] ∼32 0.37 98.7
HRegNet [19] ∼12 0.29 99.7
GeoTransformer (ours, LGR) 6.8 0.24 99.8

Table 5. Registration results on KITTI odometry. The comparison
with deep robust estimators is present in Appx. D.2.

Registration results. In Tab. 5(top), we compare to the
state-of-the-art RANSAC-based methods: 3DFeat-Net [34],
FCGF [7], D3Feat [4], SpinNet [1], Predator [15] and CoFi-
Net [36]. Our method performs on par with these meth-
ods, showing good generality on outdoor scenes. We further
compare to three RANSAC-free methods in Tab. 5(bottom):
FMR [16], DGR [6] and HRegNet [19]. Our method out-
performs all the baselines by large margin. In addition, our
method with LGR beats all the RANSAC-based methods.

5. Conclusion
We have presented Geometric Transformer to learn ro-

bust coarse-to-fine correspondence for point cloud registra-
tion. Through encoding pair-wise distances and triplet-wise
angles among superpoints, our method captures the geo-
metric consistency across point clouds with transformation
invariance. Thanks to the reliable correspondences, it at-
tains fast and accurate registration in a RANSAC-free man-
ner. We discuss the limitations of our method in Appx. E.
In the future, we would like to extend our method to cross-
modality (e.g., 2D-3D) registration with richer applications.
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Torii, Tomas Pajdla, and Josef Sivic. Neighbourhood con-
sensus networks. NeurIPS, 31:1651–1662, 2018. 1, 4

[23] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In CVPR, pages 4938–
4947, 2020. 2, 5, 6, 7

[24] Richard Sinkhorn and Paul Knopp. Concerning nonnegative
matrices and doubly stochastic matrices. Pacific Journal of
Mathematics, 21(2):343–348, 1967. 5

[25] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. Loftr: Detector-free local feature matching
with transformers. In CVPR, pages 8922–8931, 2021. 1, 3,
4, 5

[26] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, and Yichen Wei. Circle
loss: A unified perspective of pair similarity optimization.
In CVPR, pages 6398–6407, 2020. 5, 7

[27] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In ICCV, pages 6411–6420, 2019. 3

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 1, 4

[29] Haiping Wang, Yuan Liu, Zhen Dong, Wenping Wang, and
Bisheng Yang. You only hypothesize once: Point cloud reg-
istration with rotation-equivariant descriptors. arXiv preprint
arXiv:2109.00182, 2021. 2, 6, 7

[30] Yue Wang and Justin Solomon. Prnet: self-supervised learn-
ing for partial-to-partial registration. In NeurIPS, pages
8814–8826, 2019. 2

[31] Yue Wang and Justin M Solomon. Deep closest point: Learn-
ing representations for point cloud registration. In ICCV,
pages 3523–3532, 2019. 1, 2, 3, 4

11151



[32] Hao Xu, Shuaicheng Liu, Guangfu Wang, Guanghui Liu, and
Bing Zeng. Omnet: Learning overlapping mask for partial-
to-partial point cloud registration. In ICCV, pages 3132–
3141, 2021. 2

[33] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,
Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point
clouds with self-attention and gumbel subset sampling. In
CVPR, pages 3323–3332, 2019. 1, 3

[34] Zi Jian Yew and Gim Hee Lee. 3dfeat-net: Weakly super-
vised local 3d features for point cloud registration. In ECCV,
pages 607–623, 2018. 8

[35] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point
matching using learned features. In CVPR, pages 11824–
11833, 2020. 2

[36] Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam, and Slo-
bodan Ilic. Cofinet: Reliable coarse-to-fine correspon-
dences for robust point cloud registration. arXiv preprint
arXiv:2110.14076, 2021. 1, 2, 3, 4, 5, 6, 7, 8

[37] Andy Zeng, Shuran Song, Matthias Nießner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3dmatch:
Learning local geometric descriptors from rgb-d reconstruc-
tions. In CVPR, pages 1802–1811, 2017. 2, 6

[38] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In ICCV, pages 16259–
16268, 2021. 1, 3, 7

[39] Qunjie Zhou, Torsten Sattler, and Laura Leal-Taixe.
Patch2pix: Epipolar-guided pixel-level correspondences. In
CVPR, pages 4669–4678, 2021. 1

11152


