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Abstract

Body reshaping is an important procedure in portrait
photo retouching. Due to the complicated structure and
multifarious appearance of human bodies, existing meth-
ods either fall back on the 3D domain via body morphable
model or resort to keypoint-based image deformation, lead-
ing to inefficiency and unsatisfied visual quality. In this
paper, we address these limitations by formulating an end-
to-end flow generation architecture under the guidance of
body structural priors, including skeletons and Part Affin-
ity Fields, and achieve unprecedentedly controllable per-
formance under arbitrary poses and garments. A composi-
tional attention mechanism is introduced for capturing both
visual perceptual correlations and structural associations
of the human body to reinforce the manipulation consis-
tency among related parts. For a comprehensive evaluation,
we construct the first large-scale body reshaping dataset,
namely BR-5K, which contains 5,000 portrait photos as
well as professionally retouched targets. Extensive exper-
iments demonstrate that our approach significantly outper-
forms existing state-of-the-art methods in terms of visual
performance, controllability, and efficiency. The dataset
is available at our website: https://github.com/
JianqiangRen/FlowBasedBodyReshaping.

1. Introduction

Portrait photography retouching is widely used in vari-
ous fields, such as social media, weddings, and advertise-
ments. While automatic face reshaping is well researched
[18,24,28,33] and employed in many applications (e.g., In-
stagram, Tictok), automatic body reshaping, which gener-
ally aims to make figure looks more shapely and attractive,
is still far from being settled due to the complicated struc-
ture and appearance of human bodies. In fact, body reshap-
ing is a troublesome task even for professional artists. The
artists usually rely on Liquify tool in image editing soft-
ware, adjust the distortion brush frequently, and manually
edit through every single part of body areas. It takes con-
siderable skill and time to achieve a visually pleasing result.

Traditional solutions for body reshaping task can be cat-
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Figure 1. Our approach provides an efficient and controllable solu-
tion for human body reshaping, allowing figures to be more slen-
der (top) or muscular (bottom). The corresponding deformation
flows are showcased in the top-left corners. All of the images pre-
sented in this paper are included in the proposed BR-5K dataset.

egorized into either rule-based or 3D model-based methods.
The rule-based methods employ non-rigid image deforma-
tion [12, 16] according to a set of body contour keypoints
following some hand crafted rules, and 3D model-based ap-
proaches [15, 30, 31, 39] try to reconstruct 3D morphable
model from a single portrait image, and adjust body shape
by manipulating a small set of parameters corresponding
to body semantic attributes. Unfortunately, neither of them
can satisfy the quality and efficiency requirements in prac-
tice. Rule-based methods can only work under standard
poses and garments, and body contour detection is not ro-
bust enough for generating a reliable, quality-assured re-
shaping result. 3D model-based methods are learned from
a limited number of full-body scans so that cannot span the
entire human shape space, especially for extreme camera di-
rections and poses. Moreover, precisely recovering and reg-
istering a 3D model to image is challenging as well, gener-
ally needing considerable user assistance for pose and shape
fitting [39], or extra depth information [15, 30].

Powered by deep generative technology [9, 25, 40], sev-
eral methods [13, 41] propose to directly generate person
images guided by pose information. Nevertheless, they are
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still struggling for synthesizing photorealistic person im-
ages to avoid visible misalignment artifacts. Recent meth-
ods [14, 20, 24, 33] have revealed the effectiveness of flow
field in spatial deformation tasks. However, feature-level
flow-based methods [14, 20] can only afford to generate
low-resolution person images, thus hardly satisfying the
body retouching demands in practice. While pixel-level
flow-based models [24,33] can conduct high-resolution face
manipulation, their performance on body is far from our ex-
pectation, resulting in unsatisfied or inconsistent reshaping
results as we observed. We speculate the reason is that the
regular physiological structure of the face dramatically re-
duces the difficulty to learn face editing, but the body is
much more complicated due to the flexible articulated struc-
ture and multifarious garments.

To address the aforementioned challenges, we propose
a structure-aware flow generation framework for body re-
shaping. Given a portrait photo, we extract body skele-
tons and Part Affinity Fields (PAFs) as important structural
priors to guide flow generation. To encourage deforma-
tion consistency among body parts, a Structure Affinity Self-
Attention (SASA) mechanism is introduced to capture long-
range perceptual correlations and structural associations si-
multaneously. Finally, with the predicted flow field, which
is both globally coherent and locally smooth, we generate
the reshaped body using a warping operation. Moreover,
our method can efficiently handle with high-resolution (4K)
images by predicting flows on small images and applying
the up-sampled flows to the original high-resolution images.

To facilitate the research on this important task, we cre-
ate the first large-scale body retouching dataset BR-5K,
which comprises 5,000 individual portrait photos as well as
their retouched targets edited by professional artists. Exten-
sive experiments demonstrate the effectiveness of the pro-
posed method and dataset. The contributions of this paper
are summarized as follows:

• We present the first 2D end-to-end structure-aware
flow generation framework for body reshaping, which
significantly exceeds state-of-the-art methods in terms
of visual quality, controllability, and efficiency.

• We demonstrate that utilizing the skeletons and PAFs
as structural priors can significantly alleviate the diffi-
culty for body manipulation learning, leading to more
accurate pixel-level flow prediction. A compositional
attention mechanism SASA, which considers both per-
ceptual correlations and structural associations, is fur-
ther proposed to reinforce the manipulation consis-
tency across related human parts.

• We create the first large-scale body retouching dataset
BR-5K, which contains 5,000 high-resolution individ-
ual portrait photos as well as their retouched targets
edited by professional artists.

2. Related Works
Portrait Reshaping. Reshaping human portraits has been
widely used in digital entertainment, and photography pro-
duction. By using image editing software such as Adobe
Photoshop, it often involves a set of semantic-aware lo-
cal modifications, demanding professional skills. Many
works have been proposed to tackle the complex issue
by first focusing on the face reshaping task. Leyvand et
al. [10] propose a data-driven facial beautification method
by deforming the facial shape of an input image using a
landmark-based 2D warping function. SHIH et al. [18]
introduce a content-aware warping method combining the
stereographic and perspective projections onto a single im-
age to correct the wide-angle distortion of faces. How-
ever, methods operate directly on the 2D image data are
limited in frontal views or accurate face segmentations.
Liao et al. [11] extend the geometric modification onto
3D face model, providing the possibility to handle non-
frontal views. Zhao et al. [37] present to manipulate the
deformed 3D face by utilizing a soft tissue-based regression
model defined on a sparse set of facial landmarks. Xiao et
al. [28] leverage the parametric face representation based
on 3DMM [1] and the facial expression model to empower
dense control of face shape. Tang et al. [21] further ad-
dress the consistency and coherency problem in video por-
trait reshaping task. Compared with face reshaping, body
shape editing has been much less explored. Zhou et al. [39]
propose a body-aware image warping method to create de-
sired reshaping effects by integrating a 3D whole-body mor-
phable model. Our method directly manipulates the 2D
body image via an end-to-end warping pipeline.
Flow-based Image Transformation. A closely related task
with body shape transform is pose guided person image
generation task, whose goal is to transfer a person image
from the source pose to a new target pose. Motivated by
the development of GANs [6], many researchers attempted
to tackle the problem following the image-to-image trans-
formation paradigm [9, 25, 40]. However, these generation-
based models [13, 41] may fail to handle the feature mis-
alignment caused by the spatial deformation between per-
sons with different poses. Flow-based methods have re-
cently been proposed to leverage appearance flow to solve
the spatial transformation problem. Ren et al. [14] pro-
pose a global-flow local-attention framework to reassemble
the source feature patch to the target. Tang et al. [20] de-
sign a structure-aware framework and decompose the task
of learning the overall appearance flow field into learning
different local flow fields for different semantic body parts.
Although sharing similar dependencies such as pose struc-
ture, flow-based person pose transforms utilize pose infor-
mation as input condition and warp image at feature level,
which may lead to blurry results lacking vivid appearance
details and limited in handling low-resolution images. Our

7755



Pose
Estimator

Warp Warp

↑

↓
𝑐𝑜𝑛𝑐𝑎𝑡

𝐼& 𝑂&

Structure
Affinity

Self-attention

Flow Generator

ℒ!"#

ℒ$%&' ℒ()$*

𝑆

𝐿

𝐼' 𝑂'

Figure 2. Overview of the proposed method. Given a high-resolution portrait image Ih, we first extract its skeleton maps S and PAFs
L after down-sampling, and then generate deformation flow Fl by feeding the concatenation of Il and S into the Flow Generator. A
compositional attention module (SASA) that combines perceptual correlation and structural association is introduced in the bottleneck
layer to enhance manipulation consistency among related body parts. Finally, we upsample the low-resolution flow Fl to Fh and conduct
a warping operation to Ih to obtain the final result. The orange dotted line denotes the flow of loss functions.

proposed method uses pose information as priors for con-
sistency enhancement and warps image at the pixel level,
capable of tackling high-resolution images.

Our method also has ties to ATW [33] and FAL [24].
ATW proposes a ResWarp module to warp residuals based
on the predicted flow motion and adds the warped residuals
to generate the final HD results, which enables efficient face
animation of high-resolution images. FAL is present to de-
tect image warping manipulation applied to faces with Pho-
toshop. It uses a local warping field prediction network to
localize and undo face manipulations. Compared with face
transformation using optical flow, body transformation in-
volves rigour challenges for its complex structures and cor-
relations between body parts.
Attention Mechanism. With its effective learning capabil-
ity, attention mechanism has been widely employed in var-
ious computer vision tasks [29, 32, 34, 38]. One way that
incorporates attention mechanism is to use spatial attention
that reweights the convolution activations [26, 35], which
provides a possibility for long-range modeling across dis-
tant regions. The other way is to model interdependencies
between channels [7,8]. There are other works that combine
the two ideas [4,5,27]. Our method adopts a similar frame-
work from CoDA [22], which proposes a compositional
quasi-attention mechanism with a dual affinity scheme.

3. Datasets
We build BR-5K, the first large-scale dataset for body

reshaping. It consists of 5,000 high-quality individual por-
trait photos at 2K resolution collected from Unsplash [23].
Since face is irrelevant to our task, we conduct face ob-
fuscation for privacy protection. As body retouching is
mainly desired by females, the majority of our collec-
tion are female photos, considering the diversity of ages,
races (African:Asian:Caucasian = 0.33:0.35:0.32), poses,
and garments. We invite three professional artists to re-
touch bodies using Photoshop independently, with the goal

of achieving slender figures that meet the popular aesthet-
ics, and select the best one as ground-truth. More details
can be found in the supplemental file.

It is worth noting that the so-called ground-truth is not
a standard for body shape, but rather a specific retouching
style for evaluating the learning ability of reshaping models.
In addition, although there is only one ground-truth for each
image during training, our model can achieve continuous
body adjustment to cater to various aesthetics.

4. Methods
The overall network architecture of our approach is il-

lustrated in Figure 2. Given a high-resolution input image
Ih, we first downsample it to Il with a lower resolution for
computation efficiency. A redesigned pose estimator mod-
ule based on [3] is proposed to extract the skeleton maps S
and the Part Affinity Fields (PAFs) L from Il, as we dis-
cover that skeletons are good at demarcating local warp-
ing orientations and that PAFs are helpful to locating where
should be manipulated. Then we concatenate the recom-
bined skeleton maps S with Il and feed them into the Flow
Generator. A Structure Affinity Self-Attention module is in-
troduced in the bottleneck of Flow Generator to boost the
consistency of generated flow field Fl under the guidance
of the PAFs. Once the flow field Fl is generated, we up-
sample it to the original size of Ih and conduct a warping
operation W(Ih;Fh) to get the final retouched result Oh.

4.1. Pose Estimator

Human 2D pose estimation is generally represented by
a group of anatomical keypoints corresponding to different
body parts. To better learn the associations between parts,
Cao et al. [3] present Part Affinity Fields, a set of 2D vector
fields that encode location and orientation of human limbs,
which play an important role in their bipartite matching pro-
cedure. Similar to [3], we design the pose estimator as a
two-branch convolutional network which allows predicting
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Input image Skeleton maps PAFs Deformation flow Result

Figure 3. The skeletons work as low-level features that are able
to indicate opposite boundaries of deformation flow, while PAFs
help to highlight where should be manipulated, and have orthog-
onality relation with the desired deformation flow (see the arrows
in dashed red boxes and flow color coding circles).

keypoint heatmaps and PAFs of the down-sampled portrait
image Il simultaneously, and then we take both keypoints
and PAFs as structural priors to guide body manipulation.

To further integrate discrete keypoints into skeletons, we
predefine Ns skeletons based on body anatomical structure
and generate a stack of skeleton maps S = (S1, S2, ..., SNS

)
by linking keypoints belonging to the same limb, except
for the keypoints on the head, and setting the values of the
background pixels as zeros. Each channel of S represents
a skeletal bone of the body. As shown in Figure 3, we find
that these skeletons are of great benefit to locating the lo-
cal orientation boundaries of deformation flow, as the flow
directions are generally contrary to each other on the oppo-
site sides. We thus hypothesize that the skeletons provide
low-level clues which help to indicate flow edges.

Different from skeletons, PAFs manifest more structural
characteristics at the regional level. We modify and elimi-
nate some fields from original PAFs which are irrelevant to
our task (e.g., fields on head) and reassemble the others as
our PAFs L = (L1, L2, ..., LNL

). Each channel of L is a 2D
vector field corresponding to a limb and additionally dilated
3 times to ensure that the limb is wholly included in it.

We convert the PAFs from Cartesian coordinate into Po-
lar form, and fully utilize their magnitude fields and orien-
tation fields respectively. As illustrated in Figure 3, we find
that the magnitude of PAFs helps to highlight where should
be manipulated in the image, and the orientation of PAFs is
roughly perpendicular to the deformation flow around body
areas. Therefore, we introduce the magnitude of PAFs to
our attention mechanism while employing the orientation
as an orthogonality constraint subsequently.

4.2. Structure Affinity Self-Attention

Once the skeleton maps S and PAFs L are obtained, we
concatenate the S with Il, and feed them into an encoder-
decoder network to predict deformation flow, with the help
of high-level structural priors provided by PAFs L.

To reshape the human body properly, we wish the gen-
erated flow to be consistent among body parts. Specifically,
the consistency means the manipulation should be smooth
in each limb (i.e., no discontinuous artifacts) and be co-
herent across limbs (i.e., avoiding irrationally thick arms
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Figure 4. The architecture of the SASA module. With the structure
heatmaps Y and the deep feature maps X as inputs, SASA com-
putes the attention residual α by a multiplicative composition of
Structure Affinity Map and Self Attention Map. The ⊗ and the ⊙
denote matrix and element-wise multiplication respectively.

along with thin legs). We employ a compositional atten-
tion [22] mechanism for this purpose. Self-attention [26,35]
is initially designed for capturing long-range dependencies.
However, it learns to allocate attention mainly according to
the similarity of color and texture as observed in [35], ne-
glecting spatial structural associations. To further integrate
structural priors with non-local attention, we present the
Structure Affinity Self-Attention (SASA) module inspired by
CoDA [22], as depicted in Figure 4. By leveraging a compo-
sitional quasi-attention mechanism that composes the self-
attention map with a structure affinity map, SASA takes both
visual perception and structural association of the input im-
age into account.

Let X = Enc(concat(Il,S)) ∈ RH×W×C represents
the implicit feature maps extracted by encoder, the Self At-
tention Map Φatt ∈ RHW×HW is calculated as:

Φatt = θk(X) ∗ θq(X)T (1)

where θ denotes the convolution and flatten operation along
the channel dimension, k and q are 1 × 1 convolution ker-
nels, T indicates transpose operation. Φatt reveals the cor-
relation between image regions in visual perception aspect.

With regard to structural association, we calculate struc-
ture heatmaps Y from PAFs L by a pre-defined body struc-
ture encoding (corresponding to Structure Encoder block in
Figure 4). Specifically, we get each limb’s mask M ac-
cording to its PAF magnitude, and produce the structure
heatmaps Y by stacking the fore/back-ground mask with in-
tegrated masks of closely related body parts (left and right
arms, torso, left and right leg).

Y = (Marms,Mtorso,Mlegs,MFG,MBG) (2)

We restrict Y to keep the same H and W with X . Each
heatmap in Y highlights a union spatial distribution of re-
lated structure components. We define the Structure Affinity
Map Φaff ∈ RHW×HW as following:
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Φaff = θg(Y ) ∗ θg(Y )T (3)

where g is a 1 × 1 convolution kernel as well. The Φaff

measures the structural associations between regions, where
a higher affinity value indicates a stronger structural rela-
tionship. We then generate the SASA Map Φsasa via a mul-
tiplicative composition following CoDA [22]:

Φsasa = sigmoid(Φ̂att)⊙ sigmoid(Φ̂aff ) (4)

where ⊙ denotes the element-wise multiplication operator,
and Φ̂{aff,att} are calculated by a centering operation:

Φ̂{aff,att} = Φ{aff,att} −mean(Φ{aff,att}) (5)

The value of SASA output α at the ith location can be
calculated:

αi =

HW∑
j=1

Φsasa(i, j) ∗ θv(X)j (6)

Finally, we add the scaled α back to the input X to get the
output feature maps:

X̂ = X + γα, (7)

where γ is a learnable scalar as [35]. Figure 5 shows the
visualization of attention relation maps of SASA. We no-
tice that the Structure Affinity tends to allocate attention
weights on structural-related regions of the body, and the
Self-Attention works mainly according to the similarity of
color or texture. The composition of them helps to erase
some irrelevant attention relation between body and back-
ground caused by their visual similarity, and make the atten-
tion focus on closely related body areas, leading to accurate
and consistent reshaping results, as shown in Figure 7.

4.3. Flow Generation and Warping

Once the feature maps X̂ are obtained, we feed them into
the decoder to generate the deformation flow field Fl, which
has the same size with Il. By conducting a warping oper-
ation W , we can obtain the low-resolution reshaped output
Ol:

Ol = W(Il;µFl) (8)

where µ is an additional multiplier. The absolute value of
µ can adjust flow magnitude while the sign of µ determines
the flow direction. Intuitively, a larger |µ| will lead to a
bigger change on body shape, and the positive/negative sign
controls whether to lose or gain weight. The µ is set to
1.0 during training to imitate manually-retouched strategies,
while it provides continuous controllability when editing a
new portrait photo in practical applications (Figure 8).

Input

Structural affinity relations on arms,  torso and legs

Self-attention 
relations

Structural affinity 
relations

Compositional SASA
relations

Figure 5. The structure affinity tends to allocate attention to related
body parts, and self-attention works mainly according to percep-
tual similarity. The composition of them helps to erase some irrel-
evant attention relations.

Instead of directly upsampling the image Ol to generate
the high-resolution result, we upsample the flow Fl to Fh

using bilinear interpolation and apply another warping op-
eration to the source input Ih to keep its original details:

Oh = W(Ih;µFh) (9)

Although the details of images are hard to recover via
commonly upsampling, we observed the upsampled defor-
mation flows are good enough to achieve compelling re-
shaping results on even 4K-resolution images, owing to the
local smoothness of the generated flows, which is reason-
able for avoiding discontinuous deformation artifacts. Vi-
sual examples of 4K-resolution image manipulation are pro-
vided in the supplementary material.

4.4. Learning Strategies

To encourage a high fidelity retouching output near to
manual manipulation, we try to minimize the L1 distance
between the low-resolution output Ol and its correspond-
ing ground-truth Ôl (downsampled from high-resolution
ground-truth Ôh):

Limg = ||Ôl −Ol||1 (10)

We estimate the optical flow between the original and
manually-retouched image using PWC-Net [19], and treat
the estimated flow as ground-truth deformation flow F̂l for
providing the Flow Generator with more direct guidance.
The objective function is:

Lflow = ||F̂l − Fl||1 (11)

Since our method will adjust each limb’s width but keep
length and direction unchanged, the orientation of deforma-
tion flow and corresponding limb tend to be perpendicular
to each other. Considering the PAFs represent the orien-
tation of human limbs, we calculate the cosine similarity
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between PAFs and Fl, and encourage the orthogonality of
them:

Lorth =
(
∑NL

n=1 Ln) · Fl

|
∑NL

n=1 Ln| · |Fl|
(12)

The total loss function are given by:

L = λimgLimg + λflowLflow + λorthLorth (13)

where λimg , λflow and λorth are the balancing parameters.

5. Experiments
5.1. Datasets and Settings

BR-5K Dataset. Since the core concern of our work is the
human body, we crop each image based on the bounding
boxes predicted by a person detection algorithm [2] to min-
imize the impact of backgrounds, which is especially neces-
sary for photos with small persons in a large scene. After the
preprocessing, the dataset is randomly divided into a train-
ing set with 4,500 images and a testing set with 500 images.
In addition, for each image in the training set, we gener-
ate its skeleton maps and PAFs in advance using pretrained
Pose Estimator [3] to speed up the training procedure.
Implementation Details. We predefine NS=12 skeletons
and NL=10 PAFs to represent the body structure, thus the
skeleton maps S and PAFs L have 12 and 10 channels
respectively. The Pose Estimator module is pretrained
on COCO keypoint detection dataset and not take part in
loss backpropagation. During training, we concatenate the
skeleton maps with RGB images to form a stack of input
tensors, and augment the input tensors and PAFs identi-
cally using random flipping, rotation, and cropping. For
computational efficiency, the augmented inputs are resized
to 256×256 pixels and then fed into the Flow Generator.
The θg , θq , θk and θv are set as 1×1 convolution in SASA
module. The weights in loss function are λimg = 15,
λflow = 15 , λorth = 2. We train our network using Adam
optimizer with a learning rate of 2e-5 and batch size of 32.
Evaluation Metrics. We use SSIM, PSNR, and LPIPS [36]
to quantitatively evaluate the difference between the re-
shaped images and the ground-truth images, of which SSIM
and PSNR are commonly applied in pixel-level image sim-
ilarity evaluation, and LPIPS calculates the perceptual sim-
ilarity in feature space.

5.2. Qualitative Evaluation

Since 3D model-based body reshaping approaches usu-
ally need a dozen minutes of user assistance [39] or extra
sensors [15, 30], which heavily hinders their applications
in practice, we mainly conduct our comparison with auto-
matic 2D methods. We evaluate four state-of-the-art meth-
ods: FAL [24], ATW [33], pix2pixHD [25], and GFLA

[14]. FAL is designed to detect and reverse the facial
warping manipulations, and ATW aims to generate high-
quality facial expression animation by motion field pre-
diction, pix2pixHD and GFLA are generative models for
image and pose transformation respectively. We retrained
these methods on our BR-5K dataset and evaluate their ap-
plicability on body reshaping task.

The visual comparison results are shown in Figure 6.
Since FAL and ATW predict flows simply based on RGB
information, they can hardly produce satisfied retouching
results due to the complexity of human body structure.
pix2pixHD is capable of synthesizing photorealistic trans-
lation results on high-resolution, but it is generally suitable
for pixel-aligned generation, which keeps the semantic un-
changed but translates appearance, other than spatial de-
formation task. We find pix2pixHD usually brings chro-
matic aberration and artifacts in non-aligned areas (e.g., the
red box in the 1st row, and the blue box in the last row).
Taking human pose as guidance enables GFLA to create
more reasonable results. However, due to estimating global
flow fields at the feature level and synthesizing the target by
decoding warped features, GFLA can only generate low-
resolution results (256×256). Besides, as illustrated in the
second row that the arms (red boxes) are uneven on edges,
and the last row that the legs (red boxes) are neglected, all
of these methods may suffer from incoherent manipulation
because of the unawareness of body structural associations.

By contrast, our approach can produce high-resolution,
consistent, and visually pleasing body editing results. The
skeletons and PAFs enable us to accurately predict where
are crucial for achieving shapely figures, and the SASA
helps to keep coherent manipulation among body parts. In
addition, generating flow at the pixel level empowers us
with more controllability in practical usage.

5.3. Quantitative Evaluation

We apply the above methods to reshape images from
the testing set and compute the aforementioned metrics be-
tween their outputs and manually retouched targets. Since
pix2pixHD and GFLA cannot handle 2K-resolution images,
we upsample their results using bilinear interpolation for a
fair evaluation. The quantitative results are shown in Ta-
ble 1. The Baseline method here means to directly calcu-
late metrics between the input and the target images. Ac-
cording to the comparison, our approach performs favorably
against all the other methods on all metrics, which indicates
our model is best at imitating artist body retouching strate-
gies. The image-translation methods (pix2pixHD, GFLA)
perform worse than flow-based methods (FAL, ATW, ours)
due to their resolution limitation and artifacts. Moreover,
based on our observation, the LPIPS is more consistent with
human perceptual judgments than SSIM and PSNR.

We further conduct a subjective user study for compre-
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Input pix2pixHD GFLAATWFAL Our FlowOurs GT

Figure 6. Visual comparisons among different methods. Our method can produce high-resolution, believable, and consistent body reshaping
results. The ‘Our Flow’ column illustrates where are edited by our method. Zoom in for details.

Table 1. Quantitative comparison and user preference on BR-5K
dataset. The metrics are the average of 500 test images. ↑,↓ denote
if higher or lower is better respectively.

Method SSIM ↑ PSNR ↑ LPIPS ↓ User Study ↑

Baseline 0.8339 24.4916 0.0823 N.A.
FAL 0.8261 24.1841 0.0837 14.4%
ATW 0.8316 24.6332 0.0805 9.8%
pix2pixHD 0.7271 21.8381 0.2800 3.6%
GFLA 0.6649 21.4796 0.6136 1.8%
Ours 0.8354 24.7924 0.0777 70.4%

hensive evaluation. We invited 40 participants in our exper-
iments, and each participant was shown 30 questions ran-
domly selected from a question pool containing 100 exam-
ples. In each question, we show a source human image fol-
lowed by five body reshaping results of the above four other
methods and ours, where the results are arranged in random
order. We ask the participants to select the one with best vi-
sual quality. As shown in Table 1, the majority of subjects
(70.4% from all) are in favor of our results, demonstrating

that our proposed body reshaping method is more visually
appealing to the participants than others.

5.4. Ablation Study

To validate the effectiveness of pose priors and SASA
module, we build two variants of the proposed method by
removing structural priors (skeleton maps and PAFs) and
Structure Affinity block in SASA respectively. The model
without Structure Affinity block is equivalent to a standard
self-attention network. Table 2 shows their performance.
We find that equipped with structural priors and compo-
sitional attention, the metrics get steadily improved. As
shown in Figure 7, without the structure guidance, the pre-
dicted flow is coarse and vague, resulting in an inadequate
reshaping effect. While structural priors enable the flow to
focus on arms more precisely, the contour of the upper arm
is still uneven, and the background is affected redundantly.
By contrast, the Full model generates a succinct but effec-
tive flow on both arms and waist areas, leading to a coherent
reshaping result while avoiding disturbing background too
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Table 2. Ablation study toward model structures. SP denotes struc-
tural priors, AFF denotes structure affinity block in SASA.

Method SSIM ↑ PSNR ↑ LPIPS ↓ EPE ↓

w/o SP (RGB only) 0.8308 24.5862 0.0789 5.0
w/o AFF (RGB+SP) 0.8345 24.6449 0.0782 4.6
Full (RGB+SP+AFF) 0.8354 24.7924 0.0777 4.1

RGB Only RGB+SP RGB+SP+AFF GTInput

Figure 7. Integrated with structural priors and the compositional
attention, the Full model (RGB+SP+AFF) achieves coherent re-
shaping result with the succinct but effective deformation flow.

much, which is more similar to ground-truth than others.

5.5. Applications

Efficiency on High-Resolution Images. One advantage of
our method is the ability to directly apply the upsampled
flow to the original high-resolution image, without intro-
ducing discontinuous artifacts. In addition, we test the run-
ning speed of our reshaping pipeline (including pose esti-
mation, flow generation, and warping). It takes about 5 sec-
onds to reshape a 4K photo on a 16G Tesla P100 GPU. Con-
sequently, our method provides a feasible option in body re-
touching workflows with comparable performance to man-
ual results, and boosts the efficiency as well.
Runtime Control. Once the flow field Fh is generated, our
method can accommodate diverse user preferences by pro-
viding continuous controls on the reshaping effects. It can
be achieved by simply redoing the warping step with a dif-
ferent multiplier µ (Equ. 9). As present in Figure 8, the µ
can be set from -1 to 1. A larger |µ| will introduce a bigger
change on body shape, while the positive/negative sign of µ
controls whether to lose or gain weight.

5.6. Limitation and Discussion

Although our method can achieve stable and visually
pleasing body reshaping results, it still has two limitations
which we want to discuss. First, As shown in Figure 9, the
predicted flow will also affect the overlapped areas in the
background, which may bring some unexpected distortions,
such as twisted lines or deformed objects. One possible
solution is to combine background matting technique [17],

Original( )

Weight increasingWeight decreasing

𝜇 = −0.5 𝜇 = −1.0𝜇 = 0𝜇 = 0.5𝜇 = 1.0

Figure 8. Our method provides continuous controls on body re-
shaping by adjusting µ in the warping procedure.

Input ResultFlow overlay Portrait Matting Background Composition

Figure 9. Flow-based reshaping may bring distortions on the back-
ground. One possible solution is to conduct portrait matting and
blend the foreground into an identical intact background(either
captured in advance or recovered by inpainting).

segment the reshaped foreground human body and blend it
into an identical and intact background image (shown in the
last three columns in Figure 9). However, it should be noted
that background matting requires an intact background im-
age which is hard to obtain, and predicting accurate matting
results on high-resolution images is difficult. More elegant
solutions are to leave in our future work.

Second, a comprehensive body reshaping task involves
changing the multidimensional full-body attributes, includ-
ing both weight and height. However, our proposed ap-
proach concentrates on weight editing only, without chang-
ing the direction and length of body skeletons. In the mean-
while, reshaping body height can be easily achieved by non-
uniform image scaling on body length direction.

Considering the misuse of the technology may lead to
ethical problems, we provide more discussions on the ethi-
cal concerns and solutions in the supplemental material.

6. Conclusion
In this paper, we propose an end-to-end structure-aware

flow generation framework for human body reshaping,
which can achieve favorable and controllable results for
high-resolution images efficiently. We demonstrate that us-
ing the skeletons and PAFs as structural priors can signifi-
cantly reduce the difficulty for automatic body editing and
lead to more accurate deformation flow prediction. A com-
positional attention mechanism SASA is present to improve
the manipulation consistency across human parts by con-
sidering both perceptual correlations and structural asso-
ciations. Owing to generating flow in the pixel domain,
our method can efficiently handle high-resolution input and
support runtime reshaping control. Comprehensive experi-
ments on our proposed BR-5K dataset demonstrate the ef-
fectiveness of our method in terms of visual performance,
controllability, and efficiency.
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