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Abstract

Existing approaches for learning local image descrip-
tors have shown remarkable achievements in a wide range
of geometric tasks. However, most of them require per-pixel
correspondence-level supervision, which is difficult to ac-
quire at scale and in high quality. In this paper, we propose
to explicitly integrate two matching priors in a single loss in
order to learn local descriptors without supervision. Given
two images depicting the same scene, we extract pixel de-
scriptors and build a correlation volume. The first prior
enforces the local consistency of matches in this volume via
a pyramidal structure iteratively constructed using a non-
parametric module. The second prior exploits the fact that
each descriptor should match with at most one descrip-
tor from the other image. We combine our unsupervised
loss with a standard self-supervised loss trained from syn-
thetic image augmentations. Feature descriptors learned
by the proposed approach outperform their fully- and self-
supervised counterparts on various geometric benchmarks
such as visual localization and image matching, achiev-
ing state-of-the-art performance. Project webpage: https:
//europe.naverlabs.com/research/3d-vision/pump.

1. Introduction
Local image descriptors, usually extracted sparsely as

keypoints, are at the core of numerous computer vision
tasks such as large-scale visual localization [60], pose
estimation [25], Structure-from-Motion (SfM) [56, 70],
dense 3D reconstruction [63] and SLAM [6]. Nowadays,
learning-based approaches [1, 18, 26, 43, 48, 62, 68, 69, 76]
significantly outperform the standard handcrafted keypoints
such as SIFT [34] or ORB [53]. They are often trained as-
suming that numerous ground-truth pixel correspondences
between pairs of images are available. These correspon-
dences are most of the time obtained by considering a large
collection of images for a given landmark and building a
Structure-from-Motion (SfM) reconstruction, as done for
instance for the MegaDepth dataset [31]. This SfM pipeline

Without unsupervised loss:
 (16 true matches / 7 false matches)

With our unsupervised loss:
(38 true matches / 2 false matches)

Figure 1. Qualitative impact of PUMP, our novel unsupervised
loss, on a challenging image pair with illumination changes. We
match keypoints extracted with models trained without (top) and
with it (bottom), showing only matches that pass the geometric
verification. Our unsupervised model finds more than twice as
many true matches compared to a model trained without PUMP.

nevertheless fails in many cases, yielding an unfathomable
bottleneck to the kind of ground-truth data that can be gen-
erated. The question we try to answer in this work is the
following: is it possible to exploit the sleeping potential
of unsupervised image pairs, i.e. image pairs without any
ground-truth pixel correspondences?

In the remainder of the paper, we follow Truong et
al. [67] and adopt a practical definition of unsupervised
learning w.r.t. the feature learning task. We denote a learn-
ing formulation ‘unsupervised’ if it does not require any
supervision other than pairs of images depicting the same
visual content. Inspired by the success of self-supervised
learning for representation learning [8,17,24,72], depth re-
gression [15] and point cloud registration [2, 3], pure self-
supervised learning approaches for local descriptors have
provided partial answers to this question. They are trained
on synthetically generated image pairs, where the second
image is obtained by applying known transformations to
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the first image, such as a random homography, color jit-
tering or even style transfer [41]. However, homographies
and the like cannot model the full range of possible trans-
formations between real image pairs. In parallel, weakly-
supervised methods have been proposed and demonstrate
the ability to train from e.g. known camera poses [71]. Yet,
this is only achievable through the use of complex acqui-
sition setups that require the deployment of sensors based
on different modalities (IMU or GPS), or again, resorting
to SfM reconstructions. Recently, unsupervised learning of
local descriptors has been introduced in the form of cycle
consistency constraints across multiple images [67, 79], ei-
ther requiring more images to extract features for training,
or at the cost of iterative training of descriptors and expen-
sive model fitting [74].

In this paper, we introduce a novel method to learn lo-
cal descriptors without supervision. It is based on jointly
enforcing two key matching priors: local consistency and
uniqueness of the matching. The former simply amounts to
state that two neighboring pixels of one image will likely
match with two pixels forming a similar neighboring pair
in the other image, up to a small deformation. We as-
sume that this holds in general at any scale, hence this prior
can be efficiently enforced through a pyramidal structure.
Inspired by DeepMatching [49], we employ a pyramidal
non-parametric module that extracts higher-level correspon-
dences enforcing the local consistency matching prior by
design. The uniqueness prior, for its part, simply means that
one pixel from the first image can correspond to at most
one pixel in the second image. We enforce this property
on high-level correspondences output by the DeepMatching
module, which gracefully back-propagates along the pyra-
mid to low-level pixel correspondences, enabling an effec-
tive training of local descriptors without supervision.

We coin our proposed approach PUMP for Pyramidal
and Uniqueness Matching Priors. It is trained in conjunc-
tion with a self-supervised loss applied on synthetic image
pairs. We experiment with both sparse and dense match-
ing, either relying on external sparse keypoint detectors, or,
in the case of dense matching, leveraging DeepMatching
once again at test time to further enforce the two match-
ing priors dynamically. We show that our unsupervised loss
results in a significant increase of performance compared
to a model trained solely using self-supervision and signif-
icantly outperforms the state of the art on several tasks and
benchmarks. In short, we make the following contributions:

• We revisit the key notion of matching prior for descrip-
tor learning, and show their unreasonable effectiveness
at training and test time.

• We introduce a novel unsupervised loss derived from
these priors, termed PUMP, for training deep descrip-
tors at the pixel level.

• We present experimental evidence that our approach

significantly outperforms state-of-the-art methods on
both dense and sparse matching tasks in spite of re-
quiring less supervision and training data.

2. Related work
Our main contribution is an explicit integration of un-

supervised priors for image matching. We thereby review
related works on the different priors used in the literature
and the type of supervision signal they require.
Local neighborhood consistency is arguably one of the
most common prior for image matching. In fact, the use
of image patches to detect features, and to describe and
match pixels’ appearances, stems from the assumption that
local neighborhood is consistent across views. This prior
can be traced back to the works of [16, 44] and is ubiqui-
tous in image description works. Initially used for hand-
crafted methods [34, 53], the recent success of deep learn-
ing has motivated researchers to move to supervised CNN-
based approaches for interest point detection [26,43,68,76]
description [1, 12, 18, 62] or both detection and descrip-
tion [4, 38, 48, 69]. A few works tried to improve the ca-
pability of CNNs to describe non-planar regions by intro-
ducing robust [33] or dynamic convolutional kernels [37],
yet in a supervised training scenario. Similar in spirit, our
dense matching procedure is able to dynamically adapt to
local image deformations at test time in a hierarchical man-
ner. A noticeable shift in supervision paradigm is emerg-
ing with the use of self-supervised learning strategies. Such
approaches for training local descriptors rely on syntheti-
cally generated image pairs using known transformations,
e.g. homographies [27, 48] with color jittering or styliza-
tion [41]. Several works [27, 42, 50] consider only the aug-
mented input image pair to sample positive and negative lo-
cal descriptors. Making a careful choice of hard negatives
and coupling it with color augmentation and photo-realistic
image stylization, Melekhov et al. [41] achieve superior
performance to supervised methods using only synthetic
homographies. DeTone et al. [10] have achieved some suc-
cess by mining positives and negatives from homography-
related image pairs, or by combining negative examples
mining with homography [41]. However, homographies or
other types of synthetic transformations are limited by na-
ture and will fail to model complex appearance changes be-
tween real image pairs. Strong supervision at the pixel cor-
respondence level therefore remains obligatory on challeng-
ing matching tasks such as visual localization [12, 48]. Our
work yet shows that leveraging unsupervised image pairs is
possible and effective for improving visual localization.
Local consistency for matching is an extension of the pre-
vious idea: since local neighborhoods are consistent, so are
the matches between them. This idea has been explicitly
formulated as a strong prior to remove false associations
during the sparse matching step in [5, 32, 39]. Focusing on
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the dense matching problem alleviates the need for a detec-
tor. It has been tackled via hierarchical pyramidal match-
ing, either handcrafted [49], optimized at test time [19], or
learned in a fully supervised setting [21, 42, 66]. In this pa-
per, we propose to leverage the non-parametric pyramidal
structure of DeepMatching [49] to learn descriptors without
supervision. Note that this is not to be confused with Deep
Matching Prior [19] which, despite sharing the same name,
is a fundamentally different approach relying on a test-time
optimization procedure for each image pair.

In a similar direction, learning to predict dense matches
from 4D cost volumes also received some attention lately
with NCNet [52], that was first to estimate neighborhood
consensus in the 4D space of correspondences. Later, mul-
tiple variants were proposed to overcome the large mem-
ory consumption, slow inference time and poorly localised
correspondences. Rocco et al. [51] sparsify the correlation
tensor containing tentative matches, and its subsequent pro-
cessing with a 4D CNN using submanifold sparse convo-
lutions. Li et al. [28] introduce non-isotropic 4D filtering
to better deal with scale variation. DualRC-Net [29] avoids
calculating the expensive full 4D correlation tensor by ex-
tracting first coarse resolution feature maps. The coarse
maps are then used to produce a full but coarse 4D correla-
tion volume, which is then refined by a learnable neighbor-
hood consensus module. Reliability of matches can also be
predicted using the correlation volume and used to improve
matching in a self-supervised manner [65]. We also use a
4D correlation volume, but we process it using an efficient
pyramidal structure that inherently encodes a strong match-
ing prior. This allows us to learn local descriptors without
supervision, and guide the matching at test-time.
Image Context preservation is another kind of prior often
used in the literature. Local features are very accurate but
prone to fail in ambiguous cases, e.g. repetitive structures,
challenging lighting conditions or even seasonal changes.
To circumvent this limitation, several previous works intro-
duce the use of global context of the scene, either in the
form of coarse image descriptors [9, 35], or graph opera-
tors that reason at the structure level [7,54]. To increase the
receptive field during feature extraction, LoFTR [59] pro-
poses detector-free local features matching with transform-
ers. Similarly, COTR [22] predicts matches with attention
mechanisms in an asymmetric manner similar to [12]. Such
methods however require strong supervision and do not en-
force consistency of predicted matches.
Cycle Consistency is often used in complement to a pho-
tometric loss in the optical flow literature, and has been re-
cently used in supervised [22] and unsupervised [40,58] set-
tings. Unsupervised learning of local descriptors can also
rely on cycle consistency across multiple images [79], at
the cost of requiring feature extraction on more images for
training. Similarly, Truong et al. [67] regress dense corre-

spondences in an unsupervised setting. Unfortunately, cycle
consistency is difficult to optimize as it requires to minimize
a differentiable flow. Different from these works, our unsu-
pervised loss rather exploits uniqueness, i.e., the key prop-
erty that a pixel in one image can correspond to at most one
pixel in the other image.
Multi-View Geometry constraints can finally also be
leveraged to improve the matching performance. For ex-
ample, it is possible to use them for training data selec-
tion [36] or directly as a training loss [13, 14]. Usually,
methods designed around this prior rely on supervision sig-
nals from epipolar geometry [9,73,75,78] or relative camera
poses [4, 13, 71]. Yang et al. [74] propose a self-supervised
approach that alternates between two tasks, namely estimat-
ing camera poses and learning local descriptors, each task
being supervised by the other. The main drawback of such
approaches is that they require a complex and computation-
ally heavy acquisition and training setup, requiring to pro-
cess entire SfM datasets, building SfM map, knowing or
computing camera intrinsics, etc. In comparison, our ap-
proach can in theory be trained from a set of image pairs
obtained by different means, including baseline image re-
trieval coupled with an off-the-shelf geometric verification.

3. Unsupervised learning of local descriptors
We aim to train a neural network fθ with parameters θ

that, given an image I of dimension H × W , extracts a
highly discriminative yet robust local descriptor for each
pixel of I . Mathematically, we have fθ : I → FI where
FI ∈ RH×W×d is a d-dimensional feature map that can
be seen as a collection of dense ℓ2-normalized local de-
scriptors. As many recent approaches [28, 29, 51, 52], our
method builds upon the 4D correlation volume C(F1, F2)
computed as a dot-product between descriptors F1, F2 from
the images I1 and I2. To ease readability, we simply de-
note C(F1, F2) as C. Furthermore, we denote the corre-
lation between two pixels p = (xp, yp) in image I1 and
q = (xq, yq) in image I2 simply as Cp,q . We now present
our method to train fθ given image pairs without any pixel-
level supervision. As summarized in Figure 2, we first build
a global correlation volume, which is aggregated and max-
pooled over iterations in a pyramidal fashion using a non-
parametric DeepMatching module (Section 3.1). The out-
put consists of high-level correspondences, each spanning
a large receptive field, as they result from the iterative ag-
gregation of lower-level correspondences. We then apply a
loss that encourages the uniqueness of these high-level, and
thus reinforced, correspondences (Section 3.2).

3.1. Pyramidal local consistency matching prior

We first propose to integrate local consistency, a key
property of matching stating that a pair of neighbor pixels
in image I1 will likely match a pair of pixels that are also
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Figure 2. Overview of our unsupervised framework. The initial, low-level 4D correlation volume C0 is iteratively aggregated by integrating
local neighborhood information until reducing image I2 to W2

2L
× H2

2L
size. The consolidated, high-level correlation volume CL is then

unfolded in a 2D matrix from which the unique matching loss LU is applied.

Figure 3. Illustration of the deformable pyramid. A correspon-
dence in the parent-level correlation volume Cℓ+1 aggregates 4
correspondences in the child-level Cℓ with a tolerance for small
deformations, and so on for all levels. For the sake of clarity, we
show only a subset of the parent-children patch relations.

neighbors in image I2, with the same spatial offset up to a
small deformation. To this end, we leverage a pyramidal
aggregation technique similar to the non-parametric Deep-
Matching algorithm [49]; we remind the principal idea and
procedure below.

DeepMatching proceeds asymmetrically by decompos-
ing the first image I1 in a regular grid of 4 × 4 patches.
In our case, we simply subsample the feature map F1 by a
factor 4 in both spatial dimensions. We thus obtain the ini-
tial correlation volume C0 of size H ′

1 × W ′
1 × H2 × W2

where H ′
1 = H/4 and W ′

1 = W/4. It undergoes an iter-
ative aggregation procedure that calculates the correlation
maps of larger patches in subsequent pyramid levels. The
key intuition of the aggregation is that the correlation C1

p,q

for a 8 × 8 parent patch at level ℓ = 1 can be computed
as the average correlation of its 4 children patches in C0.
C1(p, q) = 1

4 (C
0(p−v0, q−v0)+. . .+C0(p+v0, q+v0)),

where vℓ = (±2ℓ,±2ℓ) represents the offset between the
parent patch center and its 4 children. This aggregation can
be implemented using 4D convolutions with a fixed sparse
kernel, where non-zero values encode the parent-children
relations in the pyramid. The formulation we presented so
far is able to handle only purely rigid transformations. To
allow for local deformations, a 2D max-pooling stage with a
3×3 kernel and stride 2 along the second image dimensions
is inserted before each 4D convolution. Likewise, a power

rectification x → max(0, xγ) completes the aggregation at
each level to further strengthen consistent correspondences
and discard spurious ones.

Mathematically, the receptive field of a parent patch dou-
bles along the x- and y- dimensions at each pyramid level,
hence rapidly reaching the size of the full image, at which
point the aggregation process stops. Figure 3 illustrates the
deformable pyramidal structure enforced as a prior by this
algorithm. The output is a consolidated correlation volume
CL, whose dimension along image I2 is reduced by a factor
2L due to the max-pooling stride, where L is the number of
pyramid levels. In practice, we run the process for 5 levels
with 224× 224 input feature maps during training, yielding
the final correlation volume of size 7 × 7 along the second
image dimensions. We show in the supplementary material
the correlation volume at different levels of the pyramid to
give a better intuition of the procedure.

3.2. Unique matching prior

The consolidated correlation volume CL represents the
correlations between large deformable patches spanning the
entire images; we call them high-level patches. Ideally,
a high-level patch centered at pixel p has a unique match
in image I2, i.e., there should exist only one q such that
CL

p,q has a high value, while all other correlations CL
p,q′ for

q′ ̸= q will be close to 0. While this constraint is not realis-
tic for pixel-level descriptors due to repetitive/plain patterns
or severe appearance changes, it appears as a natural prop-
erty for high-level patches in CL. In fact, the larger is a
patch, the easier it is to resolve ambiguities and hard corre-
spondences thanks to a larger context.

We thus propose a loss that encourages the key prop-
erty of unique match for every high-level patch. Since each
high-level patch is dynamically built at test-time upon a de-
formable subset of pixel-level correlations, this loss is auto-
matically back-propagated to optimal pixel correlations fit-
ting the pyramidal prior, and hence to pixel level descrip-
tors. Formally, we reshape CL as a two-dimensional tensor
of size (W ′

1H
′
1)× W2H2

4L
. We first normalize the correlation
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volume such that every row sums to 1:

C̄L
p,q =

CL
p,q∑

q C
L
p,q + ϵ

, (1)

where ϵ serves as a regularization term that deals with oc-
cluded areas, for which all correlations would be close to
zero. The uniqueness loss is then simply expressed as

LU (F1, F2) = − 1

H ′
1 ×W ′

1

∥∥C̄L
∥∥2
2
. (2)

Given that C̄L is ℓ1-normalized, the uniqueness loss con-
cretely encourages all values in C̄L to be close to 0 ex-
cept one per row (i.e., one per high-level patch) that will
be close to 1, see supplementary for a proof. Note that this
formulation is closely related to the sparse Lasso regular-
ization [55].

3.3. Implementation details

Training. As our loss is asymmetric, we average its
value for each pair and its reverse: L′

U = LU (F1, F2) +
LU (F2, F1). To reduce the computational cost and memory
footprint, we subsample feature maps F1 and F2 by a factor
2 before passing them to the loss. We train our model with
batches of 16 pairs, where one half of the pairs are trained
with our proposed unsupervised loss, and the other half is
generated synthetically via standard data augmentation of
single images in a self-supervised manner. For these latter
pairs, all ground-truth correspondences are obtained from
the augmentation, and we use the same pixel-wise ranking
loss LAP as in R2D2 [48]. We find important to use this
auxiliary self-supervised loss to obtain good results. The fi-
nal loss is calculated as a weighted sum L = LAP +0.3L′

U .
We fix ϵ = 0.03 in Eq. 1 and set γ = 1.5 for power rectifi-
cation as in the original DeepMatching [49]. We implement
our approach in PyTorch [45]. We perform 50000 train-
ing iterations, that suffice for models to converge, with the
Adam optimizer [23], a fixed learning rate of 10−4 and a
weight decay of 5.10−4.
Training data. We use 150,000 pairs from the SfM-120k
dataset [46], which contains images from famous landmarks
around the world. These training pairs are obtained us-
ing the overlap of observations in a SfM model built with
COLMAP and provided with the dataset. Note that this pro-
cess is done with SIFT, which requires no supervision, and
only serves to verify whether two images depict the same
scene, but does not guide the pyramidal matching at all. In
terms of data augmentation, we only perform random crops
of size 256 × 256 on these pairs. To generate the synthetic
pairs, we randomly sample images from this dataset and ap-
ply standard data augmentation techniques. In particular,
we use random pixel and color jittering, random rescaling,
rotations and homographies.

Backbone architecture. Our network fθ is built upon the
recent ConvMixer architecture [64]. In detail, it first com-
putes a 5×5 convolution with stride 1 and 128 output chan-
nels. It then embeds 4×4 non-overlapping gradient patches
into 512-dimensional features using a convolution of kernel
4 × 4 with stride 4. Then, a series of pointwise and depth-
wise convolutions are applied. We use 7 such blocks, with
depthwise convolutions using 9× 9 kernels. We finally ap-
ply a last pointwise convolution and PixelShuffle operation
to obtain the feature map F with d = 128 dimensions.

4. Experiments
After presenting datasets (Section 4.1), we evaluate our

approach densely (Section 4.2) and sparsely using various
keypoint detectors (Section 4.3). We finally provide an ab-
lative study in Section 4.4.

4.1. Datasets and benchmarks

Hpatches [1] consists of 116 image sequences with varying
photometric and viewpoint changes. Each sequence con-
tains a reference image and 5 source images related by a ho-
mography to the source image taken under different view-
point or illumination.
ETH3D [57] contains indoor and outdoor sequences cap-
tured using a hand-held camera and registered with SfM.
Image pairs are generated by sampling frames with a fixed
interval. We use it to evaluate the robustness to viewpoint
changes as the baseline widens for increasing intervals.
Aachen Day-Night v1.1 [77] is a large-scale outdoor visual
localization benchmark. We specifically consider the Day-
Night split to measure the generalization performance of
our approach, as it features large viewpoint changes and se-
vere illumination changes due to the day/night duality. For
this task, we use the Kapture [20] pipeline: in a first step,
a global SfM map is built from the database images, and in
a second step, query images are localized w.r.t. this map-
ping. The computational complexity of a complete match-
ing is handled via the use of image retrieval with AP-GeM-
LM18 [47] global descriptors. We reduce the number of
image pairs to the top-20 nearest neighbors, during both the
mapping and the query phases. We extract 20,000 local de-
scriptors for each of these retrieved images, and match them
to estimate first the global map and then the camera poses.

4.2. Dense matching

We evaluate the performance of our PUMP descriptors
in a dense or quasi-dense manner using DeepMatching [49]
(DM). Similarly to the training phase, we replace the basic
pixel descriptor of DeepMatching by our trained descrip-
tor. The rest of the pipeline is left unchanged, except for the
built-in cycle-consistency verification that we enhance to in-
clude nearest neighbors as well. We find this modification
to be important as DeepMatching tends to produce many
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Method AEPE↓ PCK@1↑ PCK@3↑ PCK@5↑

D
en

se
flo

w

LiteFlowNet CVPR’18 118.85 13.91 - 31.64
PWC-Net CVPR’18, TPAMI’19 96.14 13.14 - 37.14
DGC-Net [42] WACV’19 33.26 12.00 - 58.06
RAFT [61] ECCV’20 44.3 31.22 62.48 70.85
GLU-Net CVPR’20 25.05 39.55 71.52 78.54
GLU-Net+GOCor NeurIPS’20 20.16 41.55 - 81.43
WarpC [67] ICCV’21 21.00 - - 83.24
COTR + Interp. [22] ICCV’21 7.98 33.08 77.09 86.33
DMP [19] ICCV’21 5.21 - - 90.89
PUMP (S)+DM + Interp. 4.19 76.36 90.11 92.29
PUMP (S+U)+DM + Interp. 3.76 77.05 90.86 93.02

Sp
ar

se COTR ICCV’21 7.75 40.91 82.37 91.10
PUMP (S)+DM 2.87 74.72 96.05 97.14
PUMP (S+U)+DM 2.97 74.01 95.86 97.27

Table 1. Average End Point Error (AEPE) and Percent of Cor-
rect Keypoints (PCK) for different thresholds on HPatches. Sparse
methods only return a subset of correspondences which they are
confident of. The best and second best results are respectively
in bold and underlined. DM stands for DeepMatching and ‘In-
terp.’ means Interpolation. We evaluate our approach with self-
supervised pairs only (S) and with also unsupervised training pairs
(S+U).

isolated spurious correspondences that yet pass the built-in
reciprocal verification. All in all, and as in our PUMP loss,
DeepMatching enforces the local consistency and unique-
ness priors by design in a global manner when computing
the output set of correspondences. Our GPU implementa-
tion performs multi-scale matching on two 640-pixels im-
ages in about 3 seconds. For larger resolutions, we adopt
a coarse-to-fine strategy as in COTR [22]. Note that the
output of DeepMatching is not dense but quasi-dense, as it
outputs one correspondence per atomic patch from the first
image. We rely on a simple densification technique when
dense warp fields are required. Namely, we follow COTR’s
scheme [22] and linearly interpolate matches using a Delau-
nay triangulation.
HPatches. We follow the evaluation protocol of [22,42,66]
and evaluate on all image pairs from HPatches that fea-
ture viewpoint changes. We report results in Table 1 for
both quasi-dense and fully-dense (i.e., interpolated) out-
puts. We evaluate two models: one trained solely from self-
supervised pairs (S), i.e., obtained via data augmentation,
and one including unsupervised pairs as well (S+U). With-
out interpolation, our self-supervised model (S) performs
slightly better than the model trained with unsupervised
pairs (S+U). This is not surprising given that it is trained
exclusively from synthetic augmentations (homographies)
fitting exactly the distribution of the test set. In fully-dense
mode, our unsupervised model (S+U) outperforms the self-
supervised model (S), indicating that the unsupervised loss
allows to produce less outliers (as they strongly impair De-
launay interpolation) and is thus more robust. Overall,
whether it is used with or without interpolation, both pro-
posed models outperform all state-of-the-art approaches by
a large margin. Note that we do not employ any explicit

Method AEPE↓
rate 3 rate 5 rate 7 rate 9 rate 11 rate 13 rate 15

LiteFlowNet CVPR’18 1.66 2.58 6.05 12.95 29.67 52.41 74.96
PWC-Net CVPR’18, TPAMI’19 1.75 2.10 3.21 5.59 14.35 27.49 43.41
DGC-Net [42] WACV’19 2.49 3.28 4.18 5.35 6.78 9.02 12.23
GLU-Net CVPR’20 1.98 2.54 3.49 4.24 5.61 7.55 10.78
RAFT [61] ECCV’20 1.92 2.12 2.33 2.58 3.90 8.63 13.74
DMP [19] ICCV’21 1.78 2.07 2.52 3.07 4.72 6.14 7.47
COTR +Interp. [22] ICCV’21 1.71 1.92 2.16 2.47 2.85 3.23 3.76

PUMP (S)+DM +Interp. 1.77 2.81 2.39 2.39 3.56 3.87 4.57
PUMP (S+U)+DM +Interp. 1.67 1.86 2.12 2.37 2.81 3.41 3.69

Table 2. Average End Point Error (AEPE) for different rates on the
ETH3D dataset. The best and second best results are respectively
in bold and underlined.

geometric constraints nor filtering, in contrast to RANSAC-
Flow [58] for instance. PUMP also significantly outper-
forms the recently proposed unsupervised WarpC matching
loss [67]. However, we hypothesize that the GLU-Net ar-
chitecture of their model, required to train their unsuper-
vised warp-consistency loss, is a bottleneck to their perfor-
mance. Altogether, these results highlight the excellent (and
expected) capacity of our pyramidal matching prior in the
case of large planar areas without discontinuities.

ETH3D. Next we evaluate our model in a more challenging
setting with real image pairs featuring viewpoint changes
on complex 3D shapes and many discontinuities in the op-
tical flow. Once again, we follow the evaluation protocol
by [22, 42, 66]. Since the ground-truth is sparse and not
necessarily aligned with the quasi-dense output, we only
report results with the densely-interpolated variant for var-
ious frame intervals (e.g. rate) in Table 2. We observe that
the model trained with unsupervised pairs significantly out-
performs the self-supervised one by up to 25% (relative
gain). This highlights the superior robustness against realis-
tic noise of the model trained by injecting matching priors.
Overall, it also outperforms all existing approaches, scoring
the first or second AEPE for all rate intervals. Note that the
self-supervised model still performs well, being ranked only
after COTR [22], a recent approach trained under dense su-
pervision using ≈ 50 times more data and a much larger
network (18.5M vs. 3.5M parameters). This demonstrates
the benefit of enforcing priors at test time in realistic con-
ditions. Our approach is also significantly faster than other
methods such as DPM [19] which requires multiple minutes
of specific fine-tuning on each testing pair.

Figure 4 presents qualitative results on pairs from the
‘lakeside’ sequence with challenging viewpoint changes,
complex 3D shapes, occlusions, lighting artefacts and il-
lumination changes. Our method is able to accurately re-
construct the second frame (except, of course, in occluded
areas) under challenging conditions. It can also match small
regions, e.g. the white plate in the first column or the right
side of the bench in the second column (see zoomed insets).
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Figure 4. Wide baseline matching on the most challenging ‘lakeside’ sequence from ETH3D. The first two rows show pairs of images to
match. The third row shows the first image warped to the second one according to the dense matching predicted by our model. Errors on
the ground-truth control points are represented as circles whose area is proportional to the error, using the KITTI error color-code. We
observe that large errors mostly appear around motion boundaries. More examples are shown in the supplementary video.
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Figure 5. Sparse matching results on the HPatches dataset in term of Mean Matching Accuracy (MMA) for various error thresholds.

Det- Desc- HPatches Localization on Aachen Day-Night
ector riptor MMA@1↑ MMA@3↑ MMA@5↑ 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

SI
FT

SIFT 29.79 43.89 46.74 45.55 53.40 63.87

PUMP (S) 33.81 55.35 63.26 67.02 76.96 90.58
PUMP (S+U) 34.94 58.02 67.37 73.30 86.91 97.91
Abs. gain ↑ +1.1 ↑ +2.7 ↑ +4.1 ↑ +6.2 ↑ +10.0 ↑ +7.3

R
2D

2

R2D2 33.17 75.53 83.84 72.25 85.86 97.91

PUMP (S) 37.46 83.38 91.46 69.63 84.82 96.86
PUMP (S+U) 37.83 84.16 92.42 73.30 86.91 98.43
Abs. gain ↑ +0.4 ↑ +0.8 ↑ +1.0 ↑ +6.2 ↑ +2.1 ↑ +1.6

Su
pe

rP
oi

nt SuperPoint 27.03 65.22 75.54 70.16 86.91 97.91

PUMP (S) 32.48 71.44 78.81 67.54 81.68 93.19
PUMP (S+U) 33.36 73.41 81.4 74.35 87.96 98.43
Abs. gain ↑ +0.9 ↑ +2.0 ↑ +2.6 ↑ +6.2 ↑ +6.3 ↑ +5.2

Table 3. Mean Matching Accuracy (MMA) on HPatches and per-
centage of localized queries on Aachen-Night within three error
thresholds, with different sparse keypoint detectors. Absolute gain
shows the performance increase when training with unsupervised
pairs (S+U) compared to self-supervised pairs only (S).

4.3. Sparse keypoint-based matching

We evaluate the impact of the matching priors leveraged
during training in a sparse matching setting by compar-
ing again the performance achieved by the PUMP (S) and
PUMP (S+U) models. Since our method produces dense
descriptor maps, we need to resort to an external keypoint
detector to select repeatable locations in the image scale-

space. To make the evaluation as comprehensive as possi-
ble, we measure the performance for 3 standard detectors:
SIFT [34], R2D2 [48] and SuperPoint [10]. Note that for
each detector, we extract descriptors for each method at the
exact same locations and scales, making the evaluation fair
and strictly centered on the descriptors.

We perform a comprehensive study of the overall de-
scriptor quality by evaluating jointly on two complementary
tasks, namely in terms of keypoint matching on HPatches
and localization accuracy on Aachen-Night. For HPatches,
we follow the experimental protocol by [11] and measure
the Mean Matching Accuracy (MMA). The MMA corre-
sponds to the average percentage of correct matches for all
image pairs w.r.t. a specified error threshold in pixels. Vi-
sual localization performance is measured as the percentage
of queries successfully localized w.r.t. specified thresholds
on the camera position and orientation. Table 3 reports re-
sults for each keypoint detector and each descriptor on both
benchmarks. We first note that our models, including the
self-supervised model (S), significantly outperform their re-
spective keypoint baselines on HPatches. Interestingly, this
does not translate into localization accuracy: in fact the self-
supervised model constantly yields an inferior localization
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Train + Style Loss HPatches Aachen Day-Night
data Transfer? MMA@1↑ MMA@3↑ MMA@5↑ 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

SfM120k S 37.46 83.38 91.46 69.63 84.82 96.86
SfM120k S+U 37.83 84.16 92.42 73.30 86.91 98.43
SfM120k ! S 37.97 84.77 92.67 72.77 86.91 98.43
SfM120k ! S+U 37.64 84.96 92.97 73.30 87.43 98.43

Aachen ! S+F 36.38 83.77 91.49 72.77 89.01 98.43

Table 4. Ablative study on HPatches and Aachen Day-Night on the training set and supervision level. We evaluate the impact of training
on SfM120k with or without image pairs generated using style-transfer, or using the R2D2 Aachen training set with full supervision. Self-,
Un- and Fully- supervised losses are respectively denoted as S, U and F. The best and second best results are resp. in bold and underlined.

accuracy compared to baseline keypoints. This discrep-
ancy is explained by the fact that self-supervision covers
well simple transformation like homographies, but fails to
model more realistic changes. In contrast, the model trained
with unsupervised pairs (S+U) largely outperforms the self-
supervised model by 6 points on average and all baseline
keypoints as well, despite being trained without pixel-level
supervision. This clearly demonstrates that injecting a pow-
erful yet unsupervised prior during training helps the model
to establish hard, realistic correspondences, and makes an
important difference on challenging tasks.

Figure 5 compares our performance with the state of the
art on HPatches (we use R2D2’s keypoint detector in this
case). Our approach significantly outperforms all state-of-
the-art methods, including the recent Sparse NCNet [51]
and the self-supervised method CAPS-U [41].

4.4. Advanced augmentations and full supervision

Most state-of-the-art approaches for descriptor learning
are currently trained with full-supervision at the correspon-
dence level, either thanks to external supervision or from
self-supervision with advanced data augmentation tech-
niques [41, 48]. In order to evaluate the individual impact
of these components w.r.t. our method, we perform a joint
study on the HPatches and Aachen Day-Night benchmarks.
Specifically, we consider automated style-transfer [30] as
an advanced data augmentation technique, since it has been
shown effective to learn robust descriptors. We append
style-transfer pairs downloaded from the R2D2 [48] official
training set that specifically target Day-Night illumination
changes on Aachen images. We also consider the full R2D2
training set, mostly composed of Aachen images (75%),
which also comprises fully-supervised pairs pre-computed
using a complex flow estimation pipeline. To establish a
fair comparison, each time we retrain the ConvMixer back-
bone model from scratch using the same hyper-parameters
and loss functions (when applicable) for every training set.
Results are reported in Table 4. The first and second rows
correspond to the models used in all previous experiments.
We observe that adding style-transfer pairs to the SfM120k
training set results in a steady performance increase for

both models. However, our unsupervised approach without
style-transfer performs overall on par with a self-supervised
approach augmented with style-transfer pairs. While it is
extremely difficult to estimate the proportion of Day-Night
pairs in SfM120k, such pairs certainly exist since photos are
taken at different times of the day. This shows that our unsu-
pervised approach can exploit these difficult pairs, resulting
in a significant improvement of the matching robustness. Fi-
nally, we point out that our unsupervised approach trained
with additional style-transfer pairs performs overall better
than a fully-supervised approach specifically trained on a
dedicated Aachen-centered dataset in identical conditions.
Indeed, while performance of the two methods on Aachen
Day-Night are on par, our method significantly outperforms
the fully-supervised approach on HPatches.

4.5. Limitations

While our approach does not require any supervision
given real image pairs, it still needs to receive pairs de-
picting the same scene or object. While these are theoreti-
cally easy to collect using e.g. image retrieval methods, this
remains to be demonstrated. Furthermore, despite outper-
forming the state of the art, PUMP might still fail in classi-
cal challenging cases such as untextured areas or repetitive
patterns, especially in the absence of matching priors at test
time for sparse matching.

5. Conclusion

Learned pixel descriptors have become the gold standard
for multiple vision tasks such as SfM and visual localiza-
tion. Their training nevertheless typically requires large
amounts of ground-truth annotations, which is bothersome
and expensive to collect, e.g. using SfM techniques them-
selves relying on local image features. In this work, we
showcased the feasibility of learning discriminative and ro-
bust local descriptors in an unsupervised setting. We foresee
a great increase in the amount and diversity of potential new
sources of training data where the SfM pipeline currently
fails, thus expanding the range of possible applications.
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