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Abstract

Defocus deblurring is a challenging task due to the spa-
tially varying nature of defocus blur. While deep learning
approach shows great promise in solving image restoration
problems, defocus deblurring demands accurate training
data that consists of all-in-focus and defocus image pairs,
which is difficult to collect. Naive two-shot capturing can-
not achieve pixel-wise correspondence between the defo-
cused and all-in-focus image pairs. Synthetic aperture of
light fields is suggested to be a more reliable way to gener-
ate accurate image pairs. However, the defocus blur gen-
erated from light field data is different from that of the im-
ages captured with a traditional digital camera. In this pa-
per, we propose a novel deep defocus deblurring network
that leverages the strength and overcomes the shortcoming
of light fields. We first train the network on a light field-
generated dataset for its highly accurate image correspon-
dence. Then, we fine-tune the network using feature loss on
another dataset collected by the two-shot method to allevi-
ate the differences between the defocus blur exists in the two
domains. This strategy is proved to be highly effective and
able to achieve the state-of-the-art performance both quan-
titatively and qualitatively on multiple test sets. Extensive
ablation studies have been conducted to analyze the effect
of each network module to the final performance.

1. Introduction

The use of large camera aperture can increase the luminous
flux so that the image can be captured with a shorter ex-
posure time. However, this also reduces the depth of field
(DOF) - only points near the focal plane can be captured
sharply, while a point far from the focal plane will cast to the
camera sensor, instead of a single image point, a spot called
the Circle of Confusion (COC) [25] and result in defocus
blur. Shallow DOF is sometimes an aesthetic effect pur-
sued sedulously by the photographer [7,30], but it may also
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Figure 1. Cross correlation between defocused and all-in-focus
image pair in DPDD [2] (top) and LFDOF dataset [29] (bottom).

degrade important visual information. Thus, restoring an
all-in-focus image from its defocused version is highly de-
manded to reveal the latent information and benefit to arti-
ficial intelligence applications such as object detection [26]
and text recognition [19]. Despite its great potential, de-
focus deblurring remains a challenging problem due to its
spatially varying nature - every point has its own diame-
ter of COC depending on the depth of the corresponding
scene point. Besides, the shape of COC varies with respect
to the relative position from the optical axis. To address
defocus blur, the most intuitive way is to first estimate the
blur kernel for each pixel, then apply non-blind deconvolu-
tion [5, 12, 15, 17, 24, 32]. However, both steps have limita-
tions. First, blur kernel estimation is not accurate and is of-
ten based on simple Gaussian [12, 15, 24] or disk kernel [5]
assumption. Second, deconvolution tends to introduce ring-
ing artifact on edges due to the Gibbs phenomenon [41]
even if an accurate blur kernel is given.

Recently, researchers have adopted end-to-end deep neu-
ral networks to directly restore sharp images from defocus
blur [2, 16, 36], which largely outperform the conventional
two-step approaches in terms of performance and efficiency.
These networks are all trained on a dataset called Dual-Pixel
Defocus Deblurring (DPDD) [2] which is captured sequen-
tially with different aperture sizes to attain defocused and
all-in-focus image pairs. However, it is hardly possible to
capture defocused and all-in-focus pairs with accurate cor-
respondence in two shots, especially for outdoor scenes due
to moving objects (e.g., plants, cars) and illuminance varia-
tion. To this end, another dataset LFDOF [29] is built utiliz-
ing the benefit of light field refocusing and synthetic aper-
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ture to generate a large number of defocused images with
a variety of DOFs and focal distances from a single light
field sample. To examine the consistency among the image
pairs, we select similar scenes from the two datasets and
calculate the cross correlation between defocused and all-
in-focus pairs. As shown in Fig 1, LFDOF has strong cross
correlation in the sharp regions, whereas DPDD does not
hold consistence even at the sharp regions (the tree trunk is
in focus in both defocused and all-in-focus images). How-
ever, despite good pixel-wise consistency of LFDOF, the
defocus blur generated from light field data is not the same
as that captured with a conventional digital camera (see Sec.
3). In this paper, we intend to make full use of the advan-
tages of LFDOF and DPDD datasets to train a deep network
for defocus deblurring. In summary, the contributions of
this paper are as follows:

• We analyze the characteristics of two defocus blur
datasets LFDOF and DPDD and develop a novel train-
ing strategy for single image defocus deblurring. We
also estimate and compare the Point Spread Function
(PSF) of light field generated defocus blur against that
captured with a conventional digital camera.

• We propose an end-to-end network architecture
equipped with a novel dynamic residual block to re-
construct the sharp image in a coarse-to-fine manner.

• We conduct extensive experiments to evaluate the ef-
fect of each network module and demonstrate the state-
of-the-art performance quantitatively and qualitatively
on multiple test sets.

2. Related Work
Conventional Methods Conventional defocus deblurring
methods typically follow a two-step approach consisting of
defocus map (blur level for each pixel) estimation [12, 37,
46] followed by non-blind deconvolution [6, 14, 17]. Much
effort has been made to improve the accuracy of defocus
map as it influences the deblurring performance signifi-
cantly [12, 24, 32, 32]. However, this approach usually re-
quires intensive computation while ending up with limited
performance due to the defective intermediate defocus map.
Defocus Blur Dataset There are several publicly available
datasets for problems related to defocus blur. Defocus blur
datasets comprising real defocused RGB images and binary
masks are built by Shi et al. [32] and Zhao et al. [43]. But
they can only work for blur detection due to the absence
of all-in-focus images. Abuolaim and Brown [2] built the
DPDD dataset using a dual-pixel camera and capturing the
defocus and all-in-focus pairs in two successive shots. Ruan
et al. [29] proposed the light field based defocus deblurring
dataset LFDOF leveraging the synthetic aperture and refo-
cusing features of light field technology [22], where the im-

age pairs were acquired in single shots. Lee et al. [16] pro-
vided a benchmark test set consisting of 50 scenes captured
with a dual-camera system with beam splitter. Adopting
existing RGBD dataset [28, 33] to generate defocus images
based on the depth maps, Lee et al. [15] have simulated sin-
gle defocused images while Abuolaim et al. [3] and Pan et
al. [23] have simulated dual defocused pairs. However, the
images in these datasets are synthetic, thus lacking realism.
In this paper, we use the DPDD and LFDOF datasets that
are captured in real-world scenes.

CNN-based Methods Abuolaim and Brown [2] adopted
an U-Net-like architecture to restore the sharp image in an
end-to-end manner and their follow-up work [1] incorpo-
rated a single-encoder multi-decoder architecture to further
improve the performance. Lee et al. [16] proposed a net-
work equipped with iterative filter adaptive module to tackle
the spatially varying defocus blur and auxiliary reblurring
module to enhance the restoration performance. Son et al.
[36] proposed an effective way to simulate inverse kernels
via kernel sharing parallel atrous convolution block. The
aforementioned networks are all trained on DPDD dataset
[2]. Ruan et al. [29] addressed single image defocus de-
blurring based on the conventional two-step strategy that
takes the intermediate defocus map as the guidance for the
deblurring step. Some other works used dual views to ad-
dress the defocus deblurring problem [23,38]. However, we
focus on single image defocus deblurring in this paper.

Dynamic Filtering Dynamic filtering, also called filter
adaptive convolution, has been successfully adopted in var-
ious low level vision tasks, such as denoising [21], video
deblurring [44], super-resolution [10, 13, 40] and defocus
deblurring [16], etc., since first introduced by Jia et al. [9].
It aims to learn per-pixel kernels instead of a single kernel
over the entire image and thus is capable of handling non-
uniform or spatially varying degradation. Our proposed dy-
namic residual block is partially inspired by dynamic filter-
ing, but instead of directly applying convolution with the
learned per-pixel kernels to get the output, we treat them as
the learned dynamic residuals along with the direct resid-
ual for better performance. Also, being different from the
method of Lee et al. [16] which transforms the features with
the learned kernels to remove the spatially varying blur in
the feature space, we learn the dynamic residual in the im-
age domain in a coarse-to-fine manner to restore the sharp
image. Section 5.3 demonstrates the superior performance
of our proposed method against existing works in address-
ing single image defocus deblurring.

3. Conventional Digital Camera vs. Light Field
Camera

We begin with describing the defocus blur discrepancy be-
tween the images captured with conventional digital cam-
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Figure 2. The defocus blur formation process of: (a) conventional digital camera (Canon EOS R5), and (b) Light field camera (Lytro Illum).
The captured disk pattern, estimated PSF, and center line profile of PSF image are shown alongside the imaging optical path diagram. The
diagrams of light field synthetic aperture and refocusing process are shown in (b).

eras (Canon EOS R5) and light field cameras (Lytro Illum)
respectively as shown in Fig. 2.

For a conventional digital camera (Fig. 2a), the rays
emitted from a scene point on the focal plane converge to
a single pixel of the image sensor by the main lens, while a
point away from the focal plane projects to a patch of pixels
on the sensor in a circular shape (COC), causing defocus
blur. For a light field camera, a micro lens array is placed in
front of the sensor, thus the rays coming from the main lens
are re-distributed to the pixels under micro lenses, which
means that each pixel does not only record the integrated
illuminance but also the directional information of the rays.
Each sub-aperture view of a light field only records a small
part ( 1

14×14 for Lytro Illum) of the full aperture. After cap-
turing, the aperture size can be further synthesized by inte-
grating an appropriate subset of samples from multiple sub-
aperture views. Similarly, refocusing to different depth can
be achieved by integrating pixels along different directions
on the epipolar plane image (EPI) [4] as shown in Fig. 2b.

To understand the differences between the defocus blur
produced by these two types of cameras, we estimate and
visualize their PSFs using the algorithm proposed by Man-
nan and Langer [20]. The PSFs of three typical cases: front
focus, in focus, and back focus are estimated and shown
alongside the imaging optical path diagram in Fig. 2. Gen-
erally, the PSFs produced by the digital camera follows the
diffraction pattern of single Airy disk, while the PSFs pro-
duced by the light field camera resemble the patterns of
multiple Airy disks, which can be explained by the synthetic
nature of light field generated defocus blur. More PSF esti-
mations can be found in the supplementary materials.

4. Methodology

Single image defocus deblurring aims to recover the latent
sharp image ŷ from an observed input x that is distorted by
defocus blur. A deep network can be trained as a mapping
function F parameterized by θ:

ŷ = Fθ(x) (1)

A loss function should be tailored to optimize θ in order to
minimize the distance between ŷ and y:

θ̂ = argmin
θ

∑
i
L(Fθ(xi), yi), (2)

where (xi, yi) are defocused and all-in-focus image pairs.
As shown in Fig. 3, we design our network F in an encoder-
decoder [27] structure. The encoder (E) extracts the multi-
scale pyramidal features, which are then added to the corre-
sponding scale of decoder (D) by skip connections to stabi-
lize the network training. Two residual blocks [8] are added
to each scale of decoder. We will show in Sec. 5.3 that
simple encoder-decoder structure cannot handle defocus de-
blurring well.
Dynamic Residual Block (DRB) Inspired by the dynamic
filtering approach [9,10,16,34,40], we design a residual ver-
sion of dynamic filtering block R to better handle the spa-
tially varying defocus blur. We connect the dynamic resid-
ual block to each scale of decoder in a cascaded fashion to
restore the latent sharp image progressively. Each dynamic
residual block can be formulated as:

ŷ↓n
= R(x̂↓n

, d↓n
; θr), (3)

where x̂↓n represents one of the input of R, which is also
the ×2 up-sampled version of the output from the previous
dynamic residual block: x̂↓n

= ↑2 (ŷ↓n
2
). Note that the

input of the first dynamic residual block is x↓8
, which is a

direct down-sample from the input image x. Specifically,
as illustrated in the green inset in Fig. 3, the input x̂↓n is
passed to three convolution layers and concatenated with
the equivalent size feature map d↓n

from decoder D, then
sent to two paths: one is to estimate the dynamic kernel
volume K and another is to estimate the residual ∆r↓n

. The
estimated dynamic kernel volume K is then convolved with
the input x̂↓n to obtain the dynamic residual ∆x̂↓n :

∆x̂↓n
= x̂↓n

⊛K (4)

The dynamic filtering procedure is depicted within the gray
inset in Fig. 3. Finally the output of each dynamic residual
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ŷ↓n

x↓8

K

DPDD

xLF

x̂↓n

x̂↓n

x̂↓n

x̂↓n

↑2

Concatenate

Sum

Dynamic filtering

Dot product

Convolu�onal layer

Residual block

Dynamic residual block

Dynamic kernel

↑2 ↑2

x̂↓4 x̂↓2 x̂

↓n

R↓4 R↓2

R↓n

R↓8

d↓8
d↓4 d↓2

d↓n

d

↓n

↓n

Figure 3. Our network architecture is mainly composed of encoder E , decoder D and four dynamic residual modules R. The LFDOF
dataset is used for main training and the DPDD dataset is used for network fine-tuning.

block can be calculated by:

ŷ↓n
= x̂↓n

+∆r↓n
+∆x̂↓n

, (5)

We visualize a small patch in each step of our four dynamic
residual blocks in Fig. 4, which clearly shows how the latent
sharp image is reconstructed step by step from its defocused
version. Specifically, the dynamic residual ∆x̂↓n extracts
the high frequency features like edges and corner points,
which are lost during the defocus blur formation process,
while the residual ∆r↓n

focus on the low frequency features
that represent the essential content covered by defocus blur.
The dynamic residual ∆x̂↓n , residual ∆r↓n and the input
image x̂↓n

jointly contribute to recovering the latent sharp
image. Section 5.3 demonstrates the effectiveness of the
proposed DRB.
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Figure 4. Visualization of each step in DRB on all scales. From
left to right: original input x and ground truth y, input of DRB
x̂↓n , dynamic kernel on two pixels k↓n , dynamic residual ∆x̂↓n ,
residual ∆r↓n, output of DRB ŷ↓n .

Training Strategy and Loss As demonstrated in Sec. 3,
the defocus blur produced by a conventional digital camera
and a light field camera are different. To remedy this gap,
we propose a training strategy that leverages the strength

and overcomes the shortcoming of light field data. Specif-
ically, we apply the light field generated dataset LFDOF in
the main training round for its highly accurate image corre-
spondence. Then, we fine-tune the network using DPDD
dataset to alleviate the differences between the two do-
mains. Different losses are used in each stage. In the main
training stage, ℓ1 norm is used:

LLF
1 = ∥ŷLF − yLF∥1 (6)

During the fine-tuning stage, pixel-wise loss should be
avoided because of the misalignment (induced from two-
shot) between the defocused and all-in-focus pairs in DPDD
dataset. We apply the VGG-based feature loss [11] in this
step to transfer the learned knowledge to the target domain
in the feature space, thus avoiding exact matching in the im-
age space. We extract the feature maps from the 2nd, 7th,
and 14th layer of the pre-trained VGG-19 network [35], de-
noted as ϕ.

LDPDD
VGG = ∥ϕ(ŷDPDD)− ϕ(yDPDD)∥1 (7)

Please note that the losses are applied to all scales. We will
present in Sec. 5.3 that our training strategy contributes sig-
nificantly to the final restoration performance.

5. Experiments
5.1. Datasets & Implementation

Datasets We perform experiments on five publicly avail-
able datasets for defocus deblurring evaluation, including
CUHK [31], DPDD [2], LFDOF [29], PixelDP [2] and Re-
alDOF [16], as shown in Tab. 1. Specifically, being dif-
ferent from DPDD which is collected with different aper-
tures in consecutive shots, RealDOF is captured by a cus-
tomized dual-camera system with two Sony α7R IV cam-
eras, which are attached to a vertical rig with a beam splitter
and equipped with a multi-camera trigger for simultaneous
capturing. The images are then post-processed for geomet-
ric and photometric alignments. Note that CUHK and Pix-
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Dataset # Image Resolution Collect Method

CUHK [31] 704 ∼ 470 × 610 Internet
DPDD [2] 500 1120 × 1680 Canon EOS 5D Mark IV
LFDOF [29] 12k 688 × 1008 Lytro Illum
PixelDP [2] 13 ∼ 1680 × 1120 Google Pixel 4 Smartphone
RealDOF [16] 50 ∼ 1536 × 2320 Sony α7R IV

Table 1. Datasets adopted for training and testing.

elDP have no all-in-focus ground truth, as the former one is
collected from the Internet while the latter is due to the fixed
aperture of smartphone. We utilize LFDOF and DPDD for
training and the remaining datasets for evaluation.
Implementation We implement and evaluate our mod-
els using PyTorch with Tesla V100-32GB. We use the
Rectified-Adam optimizer [18] with β1 = 0.9 and β2 =
0.99. The initial learning rate is set to 10−4 when trained
on LFDOF for 200 epochs and 10−5 trained on DPDD for
100 epochs. The updating strategy of learning rate is sim-
ilar to that of Zhu et al. [45], where the same learning rate
is used for the first 100 epochs and then decayed linearly
to zero over the rest 100. We set the batch size to 8 and
patch size to 320 × 320 augmented with Gaussian noise,
gray-scale image conversion and scaling.

5.2. Comparison to the State-of-the-Art Methods

Evaluation We compare our proposed method with the
four latest learning-based single image defocus deblurring
works: DPDNetS [2], AIFNet [29], IFANet [16], and KPAC
[36]. All these networks are trained on the DPDD dataset
[2] except AIFNet which is trained on LFDOF. Specifically,
IFANet needs to incorporate dual views in their network
training to estimate the disparity map, while others do not.
We use the codes and pre-trained weights released by the
authors for comparison, then further evaluate their perfor-
mance using RealDOF dataset [16].

In Tab. 2, we report the quantitative result using
three standard evaluation metrics, including Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity (SSIM) [39]
and Learned Perceptual Image Patch Similarity (LPIPS)
[42]. We also list the parameter numbers for readers’ ref-
erence. Our proposed method performs the best among all
by a significant margin especially on the RealDOF test set.
For instance, our network outperforms DPDNetS , AIFNet,
IFANet and KPAC by 12.6% (2.88dB), 11.5% (2.65dB),
4.2% (1.04dB) and 7.3% (1.76dB) in terms of PSNR respec-
tively. Please note that RealDOF is not used for training,
thus it is a fairer benchmark test set for comparing network
performance.

Figure 5 shows the corresponding qualitative compari-
son. Although DPDNetS can reduce the defocus blur to
some extent, it produces artifacts as shown in the second
row in Fig. 5b ). AIFNet gives sharp details in some cases,
for instance, the leaves in third row in Fig. 5c and the char-
acters in fourth row, but it fails to remove defocus blur in

other cases. This can be explained by their two-step net-
work architecture, in which the final performance is par-
tially determined by the intermediate defocus map. Thus,
AIFNet fails to restore high quality details when the esti-
mated defocus map is inaccurate. KPAC performs slightly
better than DPDNetS , while in general it gives limited per-
formance due to its small model capacity. Despite that
IFAN shows competitive restoration performance, our pro-
posed method performs better in restoring text (second and
fourth row in Fig. 5f), texture (first row in Fig. 5f) and
object boundary (third row in Fig. 5f). It is worth noting
that IFAN needs dual views for network training while ours
only needs single view. More results regarding the visual
comparison, model complexity, computational costs, etc.
are presented in the supplementary material.
Generalization Ability To inspect the generalization abil-
ity of our network, we further compare the visual perfor-
mance of the networks using CUHK [31] and PixelDP [2]
datasets. CUHK targets for blur detection with relatively
small spatial resolution, and all images are collected from
the Internet thus no all-in-focus ground truth are provided.
PixelDP is collected with Google Pixel 4 smartphone which
has a fixed aperture size and the image data is limited to one
of the Green channels in the ray-Bayer frame. Figure 6 re-
ports the visual comparison among the five networks and
a similar conclusion can be drawn: our method gives the
best generalization ability and can successfully restore the
fine details regardless of the camera type. More results are
provided in the supplementary material.

5.3. Analysis and Discussion

In this section, we conduct comprehensive ablation studies
and analysis.
Why LFDOF? To understand the necessity of LFDOF for
defocus deblurring, we train our network on LFDOF only,
DPDD only and both. Here, we use ‘LFDOF & DPDD’ to
represent the network trained on LFDOF then fine-tuned on
DPDD for convenience. Table 3 and Fig. 7 show the quan-
titative and qualitative results evaluated using RealDOF test
set. It is observed that our network trained on DPDD gives
better scores in terms of all metrics than LFDOF. This can
be explained by the domain difference between the light
field-generated and real defocused images. However, the vi-
sual performance is not in line with the quantitative perfor-
mance. The network trained on LFDOF produces sharper
content and details than the one trained on DPDD does ow-
ing to the accurate pixel correspondence of LFDOF. How-
ever, at the same time, it also introduces artifacts (see wall
in Fig. 7) due to the defocus blur discrepancy between
light field generated and real data. Our strategy to train the
network on LFDOF then fine-tune on DPDD largely out-
performs the networks trained on either dataset alone and
generates the best quantitative (increase up to 11.57% and
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Method
DPDD Dataset RealDOF Dataset

Params (M)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Input 23.890 0.725 0.349 22.333 0.633 0.524 -

DPDNetS [2] 24.388 0.749 0.277 22.870 0.670 0.425 31.03
AIFNet [29] 24.213 0.742 0.309 23.093 0.680 0.413 41.55
IFANet [16] 25.366 0.789 0.217 24.709 0.749 0.306 10.48
KPAC [36] 25.221 0.774 0.226 23.984 0.716 0.336 2.06

Ours 25.725 0.791 0.183 25.745 0.771 0.257 11.69

Table 2. Quantitative comparison between our network against existing learning-based methods on single image defocus deblurring. Both
datasets are evaluated using the codes and trained weights provided by the authors.

a. Input b. DPDNet c. AIFNet d. IFANet e. KPAC f. Ours g. GT

Re
al
DO

F
DP

DD

Figure 5. Qualitative evaluation on DPDD and RealDOF datasets among DPDNetS [2], AIFNet [29], IFANet [16], KPAC [36] and ours.

4.23% in terms of PSNR) and qualitative results.

Training Dataset PSNR↑ SSIM↑ LPIPS↓
LFDOF [29] 23.076 0.698 0.378
DPDD [2] 24.700 0.744 0.337

LFDOF & DPDD (Ours) 25.745 0.771 0.257

Table 3. Quantitative comparison of the proposed network trained
on LFDOF only, DPDD only and both datasets. The results are
tested on RealDOF test set.

Performance Gain To further validate the proposed train-
ing strategy, we have retrained two state-of-the-art net-
works, DPDNetS [2] and KPAC [36], to see whether our
training scheme could improve the performance of these
two networks. AIFNet and IFANet are not listed here be-
cause the former requires defocus map as the ground truth

and the latter requires dual views for training. For KPAC,
we choose the 3-level model with 2 KPAC blocks for com-
parison. Except the loss and learning rate which are set to
be the same as ours in the two training stages, other param-
eter settings for DPDNetS and KPAC are the same as their
original configurations. The network performance are eval-
uated on 76 test samples in DPDD dataset. Table 4 shows
that DPDNetS , KPAC and our proposed architecture have
gained 0.511dB, 0.249dB, and 0.253dB in terms of PSNR
when networks are trained on LFDOF & DPDD. The visual
quality has also been largely improved as shown in Fig. 8.

Loss Our proposed method trains the network on LFDOF
with L1 loss, then on DPDD with feature loss. One may
wonder if it is possible to (1) directly mix the datasets for
training instead of using a two-stage training strategy, and
(2) adopt the same L1 loss in the fine-tuning stage. To an-
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d. IFANet d. Oursc. AIFNetb. DPDNet e. KPACa. Input
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Figure 6. Qualitative comparison among DPDNetS [2], AIFNet [29], IFAN [16], KPAC [36] and ours. Image in the first row is from
CUHK [31] and that in the second row is from PixelDP [2]. No all-in-focus ground truth is provided in these two datasets.

Input LFDOF DPDD LFDOF & DPDD GT

Figure 7. Visual comparison of our network trained on LFDOF
only, DPDD only and both.

Method
DPDD LFDOF & DPDD

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
DPDNetS [2] 24.388 0.749 0.277 24.899 0.761 0.278
KPAC [36] 25.221 0.774 0.226 25.470 0.780 0.220
Ours 25.472 0.787 0.246 25.725 0.791 0.183

Table 4. Performance gain of DPDNetS [2], KPAC [36] and ours
when trained on LFDOF & DPDD. The networks are tested on 76
test samples in DPDD dataset.

DP
DN

et

KP
AC

O
ur

s

Input GT

DPDD LFDOF & DPDD DPDD LFDOF & DPDD

DPDD LFDOF & DPDD

Figure 8. Qualitative comparison of network performance using
DPDD only (left column) and LFDOF and DPDD datasets (right
column) for training. All networks get improved performance.

swer these questions, we ablate the use of loss, then eval-
uate their performance on DPDD and RealDOF datasets as
shown in Tab. 5 and Fig. 9. To balance the ratio of the
two datasets, we augment DPDD dataset (350 images) for

32 times, then mix with LFDOF (11261 images). The net-
work performs similarly when using L1 loss alone and L1

combined with LVGG loss on the mixed dataset, while per-
forming slightly worse than the version trained on DPDD
only (see Tab. 3 and Tab. 4). When adopting the same L1

loss in two stages, the quantitative result in terms of PSNR
and SSIM is comparable with our final one, while the per-
ceptual score LPIPS is relatively worse on DPDD dataset.
It is because the per-pixel loss on DPDD may not lead to
an optimal performance, even the misalignment is not obvi-
ous for human perception (e.g., Fig. 1) but sensitive to the
network. In addition, its performance on RealDOF is less
favorable with 0.62dB lower than our final one in terms of
PSNR. In Fig. 9, the results in red frames are produced by
our final model, which yield the most realistic and fine de-
tails. Both quantitative and qualitative performance further
validate and support the proposed training strategy.

Strategy No.
Loss DPDD RealDOF

S1 S2 PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Mix a L1 - 25.439 0.793 0.237 24.634 0.751 0.330
b L1+λLVGG - 25.469 0.793 0.236 24.684 0.751 0.329

Fine-tune c L1 L1 25.755 0.797 0.232 25.130 0.768 0.310
d L1 LVGG 25.725 0.791 0.183 25.745 0.771 0.257

Table 5. Quantitative comparison of the training strategy with re-
spect to dataset and loss. S1 and S2 represent the main training on
LFDOF and fine-tune on DPDD respectively. There is only one
stage when training on the mixed dataset and λ is set to 10−5.

DRB Configurations To validate the effect of each com-
ponent in DRB, we conduct an ablation study and report the
results in Tab. 6 and Fig. 10. We compare our final model
with four variant networks: removing one component each
time and resulting in the block with (x̂↓n , ∆x̂↓n , - ), ( - ,
∆x̂↓n

, ∆r↓n
), (x̂↓n

, - , ∆r↓n
), and baseline that direct out-
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a b a b

c d c d

Figure 9. Visual comparison of the training strategy with respect
to dataset and loss. Here a, b, c, and d indicate the corresponding
training strategies in Tab. 5.

puts the restored result without DRB. Those variants are all
with multi-scale architecture. Another variation with one
full DRB (remove R↓{8,4,2} thus leaving R only) is also
added for comparison. Both quantitative and qualitative re-
sult show the final model is able to restore the finest details
as shown in Tab. 6 and Fig. 10. For visual quality, Figure
10 demonstrates that only the DRB with all the components
is capable of restoring realistic details (see last two in the
second row).

x̂↓n ∆x̂↓n ∆r↓n multi-scale PSNR↑ SSIM↑ LPIPS↓
baseline 25.327 0.749 0.285

✓ ✓ ✓ 25.539 0.763 0.271
✓ ✓ ✓ 25.576 0.763 0.267

✓ ✓ ✓ 25.515 0.765 0.274
✓ ✓ ✓ 25.532 0.757 0.272
✓ ✓ ✓ ✓ 25.745 0.771 0.257

Table 6. Ablation study on each component in DRB and the multi-
scale restoration strategy. Performance is evaluated on RealDOF.

Input Baseline

GT

Figure 10. Qualitative results of the ablation study of DRB config-
urations evaluated on RealDOF.

Dynamic Kernel Size We analyze the effect of dynamic
kernel size in our restoration performance. As illustrated in
Tab. 7, we experimentally identify the best performing ker-
nel size for DPDD dataset to be 9 while that for RealDOF
to be 7. Considering the overall performance and parameter
number, kernel size 7 is chosen.

Kernel Size
DPDD RealDOF

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
5 25.660 0.789 0.185 25.564 0.765 0.271
7 25.725 0.791 0.183 25.745 0.771 0.257
9 25.752 0.790 0.182 25.552 0.764 0.265
11 25.716 0.793 0.183 25.625 0.768 0.265

Table 7. Quantitative evaluation on DPDD and RealDOF datasets
with respect to the kernel size in DRB block.

AIFNet vs. Ours Both AIFNet and ours are trained on
LFDOF dataset. However, AIFNet employs defocus map
estimation network followed by deblurring network while
our network is an end-to-end architecture without explicit
defocus map estimation. In order to compare these two net-
works, we train and test their performance only on LFDOF.
Table 8 shows that our network architecture outperforms
AIFNet by 0.726dB in terms of PSNR without the help of
defocus map. Accurate defocus map may not be able to
boost the restoration performance, whereas inaccurate ones
will limit or impede the performance. This further validates
the effectiveness of our proposed network architecture.

Method
Evaluation on LFDOF

PSNR↑ SSIM↑ LPIPS↓
AIFNet 29.677 0.884 0.202
Ours 30.403 0.891 0.145

Table 8. Quantitative comparison between AIFNet and our net-
work evaluated on 725 images from LFDOF test set. Both net-
works are trained on LFDOF training set.

6. Conclusion
We have proposed a novel method drawing on the syn-

thetic aperture and refocusing features of light fields along
with real captured defocus blur dataset to address the single
image defocus deblurring problem. Our end-to-end neural
network equipped with dynamic residual block is proven to
be effective for removing spatially varying defocus blur. We
train our network on light field generated dataset with MAE
loss for the superior pixel-wise correspondence, then on real
defocus dataset with feature loss to fully utilize the advan-
tages of two types of data. We have proved this training
strategy can be applied to improve the performance of sev-
eral existing learning methods. Extensive comparison and
ablation studies have demonstrated the effectiveness of our
method, which outperforms others by a significant margin
on multiple test sets.
Limitations Despite showing competitive performance,
our proposed method shares some similar limitations with
Lee et al. [16] and Son et al. [36] in handling blur with ir-
regular shapes and defocus blur mixed with object motion.
We include these failure cases in the supplementary mate-
rial. Our future work will take these challenging cases into
consideration.
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