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Figure 1. GANORCON — A comparison of GAN and contrastive learning (CON) approaches for few-shot part segmentation.
A� Both approaches consist of three steps. Step I: Train a GAN decoder for generating images or a contrastive learning based image
encoder. Step II: Train a projector given a few labeled examples using hypercolumn representations from the decoder or encoder.
Step III: For efficient inference, distill the GAN sampled images and their labels to an off-the-shelf feed-forward segmentation
model. This step is optional for CON as the model is feed-forward. B� CON representations achieve better performance while being
nearly an order-of-magnitude faster to train than GAN representations on several datasets. C� CON representations are significantly
worse when trained on GAN generated images. D� CON representations are effective at fine-grained part segmentation tasks — the
figure shows the output of our method trained with 16 labeled faces.

Abstract

Advances in generative modeling based on GANs has
motivated the community to find their use beyond image
generation and editing tasks. In particular, several re-
cent works have shown that GAN representations can be
re-purposed for discriminative tasks such as part segmen-
tation, especially when training data is limited. But how
do these improvements stack-up against recent advances
in self-supervised learning? Motivated by this we present
an alternative approach based on contrastive learning and
compare their performance on standard few-shot part seg-
mentation benchmarks. Our experiments reveal that not
only do the GAN-based approach offer no significant per-
formance advantage, their multi-step training is complex,
nearly an order-of-magnitude slower, and can introduce ad-
ditional bias. These experiments suggest that the inductive
biases of generative models, such as their ability to dis-
entangle shape and texture, are well captured by standard
feed-forward networks trained using contrastive learning.

1. Introduction
“When solving a problem of interest, do not solve a more
general problem as an intermediate step.”

—Vladimir Vapnik

Generative modeling has long been used for unsuper-
vised representation learning for recognition tasks. But re-
cently, several works (e.g., [41, 46]) have shown that rep-
resentations from off-the-shelf GANs (e.g., [3, 20]) can be
re-purposed for part segmentation tasks, in part due to their
ability to generate highly realistic images. These models
can be trained with a few labeled samples, often outper-
forming transfer learning baselines for a range of object
categories. Yet, generating images is arguably more chal-
lenging than learning representations for part labeling. This
begs the question if the intermediate step of training a GAN
is useful. What information, if any, is lost in the process
of training a GAN, and if alternatives, in particular those
based on unsupervised constrastive learning (e.g., [5,8,14]),
are just as effective. Despite recent advances in generative
and contrastive learning, a careful comparison of their ef-
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fectiveness for few-shot part segmentation is lacking in the
literature. We thus begin by presenting a strong contrastive
learning baseline for this task. We then identify the key
steps in these approaches and presents a series of experi-
ments to evaluate their importance.

The two schemes are illustrated in Fig. 1 and described
in §3. Generative modeling approaches [41, 46] first train a
generator x = f (z) on the unlabeled samples x ⇠ {xi}n

i=1
and z ⇠ N(0,s2I). Once trained a few generated sam-
ples are labeled by an annotator to train a part label pre-
dictor h. This is used to generate a large labeled dataset
(x,y) ⇠ {(xi,yi)}m

i=1 and “distilled” to a feed-forward seg-
mentation network g using the dataset as a source of su-
pervision. Constrastive learning (CON) techniques train a
network f (x) to encode an image using an objective that
maximizes the similarity of images under transformations
(e.g., [5, 10, 14]). Once trained a classifier h is trained to
predict part labels given labeled examples on top of f . The
combined model h� f can be optionally distilled to another
network g. While the details vary, we identify three factors
that affect the overall performance on the task:

1. Complexity – how long does is it to train the model
and how many steps are involved?

2. Effectiveness – how effective are the learned represen-
tations on the few-shot segmentation task. In particular
how does the choice of the labeling network h and dis-
tillation step affect the overall performance.

3. Robustness – How does the differences in distribution
of GAN generated data from the real data affect label-
ing difficulty and performance.

Our experiments suggest that GAN representations offer
no significant advantage over CON representations in each
of these dimensions. GAN training is nearly an order-of-
magnitude slower (Fig. 1 and §3.1). Across four datasets
(Face-34, Face-8, Cat16, Car20) and two evaluation metrics
(IoU and Weighted IoU), CON representations consistently
outperform GAN representations, as well as strong base-
lines based on transfer learning and semi-supervised learn-
ing (Tab. 1). GANs performance is especially poor when
measured directly using latent code optimization to embed
the test images, but distillation to a feed-forward segmen-
tation network improves their generalization significantly.
Yet, their performance remains below CON representations
(Tab. 2 & 3). CON representations see a smaller benefit
from distillation unlike the GAN representations, suggest-
ing that a significant portion of the generalization ability
of GANs can be attributed to distillation to the final seg-
mentation network. CON representations also generalize
better when trained on domain specific datasets than Ima-
geNet (Tab. 5). Remarkably, we find that while the per-
formance of the final segmentation network trained on real
and synthetically generated data are comparable, but CON
representations trained on GAN generated images perform

significantly worse (Tab. 6). This might indicate that GAN
generated imagery contain artifacts that makes instance dis-
crimination artificially easy (See §5 for details), and puts
caution to their use for fine-gained classification tasks.

In summary our contributions are: 1) a strong con-
trastive learning approach for part segmentation. We eval-
uate the effectiveness learning frameworks (MoCo [14] vs
SimSiam [5] in Tab. 4) and architectures for predicting part
segmentations on top of the learned representations. The
approach outperforms recent StyleGAN-based approaches
on standard few-shot part segmentation benchmarks. 2) An
analysis of the GAN and CON representations in terms of
the three factors listed above. We find that GAN-based ap-
proaches take longer to train, are less accurate, and suffer
from labeling difficulty due to their inability to generate
fine-grained parts. These experiments suggest that the in-
ductive biases of GANs, such as their ability to disentan-
gle shape and texture, are well captured by standard feed-
forward networks trained using contrastive learning. The
source code and data associated with the paper are publicly
available at https://people.cs.umass.edu/⇠osaha/ganorcon.

2. Related Work
Generative models learn a probability distribution us-

ing unlabeled samples and extract representations from the
learned distribution p(x|q). For example, Jaakkola and
Haussler [18] map data points x based on Fisher score Ux =
—q log p(x|q), enabling the use of Hidden Markov Mod-
els to represent DNA sequences. Fisher vector representa-
tions [35, 36] have been used to encode the distribution of
local descriptors in images (e.g., SIFT [26], LBP [30]) us-
ing Gaussian mixture models [27]. RBMs [37], VAEs [22],
GANs [12], among others employ deep networks to learn
distributions over complex, high-dimensional signals repre-
senting images, 3D shapes, speech, and text. Once trained,
the internal representations of these networks can be used
for discriminative tasks.

Besides their use in image generation and editing tasks,
the ability to generate highly realistic data has motivated
the community to explore GANs as a source of training
data for discriminative tasks. Besnier et al. [2] train im-
age classifiers based on class-conditional samples from Big-
GAN [3] and identify heuristics to improve generalization.
Jahanian et al. [19] use GANs to sample views of data to
learn representations in a contrastive learning framework,
while Tanaka and Aranha [38] use GANs for data aug-
mentation. While much of prior work has focused on im-
age classification, two recent works, DatasetGAN [46] and
ReGAN [41], show that hypercolumn representations [13]
from StyleGANs [20] are effective for fine-grained image
segmentation. These representations generalize well when
a small number of labeled examples are provided, and the
model can be distilled to an off-the-shelf image segmen-
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tation model by training it on a large number of GAN-
generated images and their labels.

Yet, generating data can be more challenging than learn-
ing the desired invariances directly. Self-supervised learn-
ing provides an alternative for learning these invariances
from unlabeled data. These techniques are based on train-
ing deep networks to solve a proxy task derived form the
data alone. While early works proposed tasks such as im-
age colorization [45], orientation prediction [11], jigsaw
puzzle tasks [29], and inpainting [32], constrastive learn-
ing [1, 5–7, 10, 14, 17, 31, 40, 43] has emerged as the lead-
ing technique. These techniques are based on applying
synthetic geometric and photometric image transformations
and maximizing the mutual information between the trans-
formations of a single image based on variations of the In-
foNCE loss [31]. Contrastive learning has been shown to
be an effective alternative to ImageNet pre-training for var-
ious downstream tasks. While the goal is often to learn a
global image representation, several works have proposed
variants for dense image prediction tasks such as part seg-
mentation or landmark detection [9, 33, 39, 42]. The dense
variants are based on extracting hypercolumns across lay-
ers of a network to obtain spatially varying representations,
or modifying the contrastive learning objective to account
for different locations within an image, e.g., by adding a
within-image contrastive loss.

The goal of this work is to compare and contrast GAN-
based and contrastive learning (CON) based approaches for
few-shot segmentation based on their complexity, effective-
ness and robustness and highlight some of the challenges in
each. GANs act as a compact representation of the dataset
and their internals can be exploited for few-shot discrimina-
tive tasks. Yet, there is a loss of information in the process
of learning the data distribution which we quantify based on
the ability to project samples into the latent space of GANs
and the loss in performance of constrastive models trained
on the GAN generated images. The next few sections de-
scribe these tradeoffs in detail.

3. GANORCON: Generative or Contrastive
We present a contrastive learning framework for few-

shot fine-grained part segmentation. We construct our ap-
proach in phases similar to GAN-based segmentation meth-
ods as presented in DatasetGAN [46] and ReGAN [41], so
as to directly compare various aspects such as computa-
tional complexity, effectiveness, labeling difficulty and ro-
bustness. In the following paragraphs, we compare the con-
struction of the GAN and CON methods for each phase.
The steps include I) a representation learning framework
(generative or contrastive), II.0) extracting hypercolumns
from the trained model, II) training a few-shot projector
over feature activation maps learnt in the previous step, and
III) a supervised distillation training step using examples

generated from the combined model of steps I and II.

Setup: Let x 2RH⇥W⇥3 denote an image of an object and
y 2 MH⇥W |M = {1, . . . ,C} denote the pixel-wise classifi-
cation labels, with C denoting the number of classes. Given
a large number of unlabeled examples {x} and a limited
number of labeled examples {(x,y)}, the goal is to learn a
mapping function f(x) : x ! y that generates a pixel-wise
classification label.

Step I – Representation Learning: Given a large set
of unlabeled images {x|x ⇠ pdata(x)}, a generative model
( fGEN) is trained to map from a noise distribution pz(z) to
the real data space via a min-max objective:

min
fGEN

max
fD

Ex⇠pdata(x)[ fD(x)]�Ez⇠pz(z)[ fD( fGEN(z))] (1)

where fGEN denotes the generator network and fD the dis-
criminator network. The generator tries to mimic a real im-
age while the discriminator tries to distinguish between a
real image and an image from the generator network.

On the other hand, in our approach we train a contrastive
learning model fCON which learns underlying representa-
tions by differentiating between images in the same unla-
beled dataset. We experiment with methods that work both
with (MoCo) and without (SimSiam) negative examples.

The Momentum Contrast (MoCo [15]) method min-
imizes the Noise-Contrastive Estimation (InfoNCE [31])
loss. Given a sample x and its transformation q+ as well
as other samples qi, i 2 {1,2...N}, such that q+ 2 qi, In-
foNCE is defined as:

LInfoNCE =� log
exp(h fCON(x), fCON(q+)i)

ÂN
i=1 exp(h fCON(x), fCON(qi)i)

(2)

Here q+ is generated by applying photometric and geomet-
ric transformations on the anchor sample x. We use MoCo
V2 [7] in our experiments which uses the above loss.

Simple Siamese (SimSiam [8]) network trains without
the use of negative examples, wherein given an additional
predictor network (h), it minimizes the cosine feature dis-
tance between two views (x, q+) of the same image using:

Lcosine =� h( fCON(x))
kh( fCON(x))k2

.
fCON(q+)

k fCON(q+)k2
(3)

Networks trained using the above methods complete the
first part of the method. Next we extract hypercolumns [13]
to learn segmentation maps from.

Step II.0 – Hypercolumn Extraction: A deep network
of n layers (or blocks1) can be written as F(x) = F(n) �
F(n�1) � · · · �F(1)(x). A representation F(x) of size H 0 ⇥
W 0⇥K can be spatially interpolated to input size H⇥W ⇥K

1Due to skip-connections, we cannot decompose the encoding over lay-
ers, but can across blocks.
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Method Face34 Face34 weighted Face8 Car20 Cat16
Transfer Learning 0.4577 ± 0.0151 - 0.6283 0.3391 ± 0.0094 0.2252 ± 0.0061

Semi-Supervised [28] 0.4817 ± 0.0066 - 0.6336 0.4451 ± 0.0057 0.3015 ± 0.0035
DatasetGAN [46] 0.5346 ± 0.0121 - 0.7001 0.6233 ± 0.0055 0.3126 ± 0.0071

DatasetGAN⇤ 0.5365 ± 0.0043 0.7959 ± 0.0237 0.6971 ± 0.0095 0.6840 ± 0.0322 0.3083 ± 0.0068
Ours - CONV + distill 0.5406 ± 0.0015 0.8241 ± 0.0133 0.7048 ± 0.0028 0.6956 ± 0.0178 0.3101 ± 0.0042

Table 1. Comparison of our best method with prior art: We report mean IOU and standard deviation of each approach for various
datasets. Face8 is an out of domain experiment where the training set is same as that of Face34 but the testing set is from a different dataset.
Our approach with fPROJ as CONV with distillation outperforms previous methods in all of the test settings. DatasetGAN⇤ denotes results
after re-implementation using their updated code, where they change their upsampling technique and uncertainty calculation.

Method Face34 Face34 weighted Face8 Car20 Cat16 ReGAN/Face10
Pretrain Projector Direct Distill Direct Distill Direct Distill Direct Distill Direct Distill Direct Distill

StyleGAN MLP 0.4301 0.5365 0.7572 0.7959 0.6331 0.6971 0.5153 0.6840 0.1585 0.3083 0.7624 0.7505
MoCo MLP 0.5162 0.5341 0.7784 0.7953 0.6874 0.7052 0.6143 0.6788 0.2902 0.3048 0.7509 0.7737
MoCo CONV 0.5414 0.5406 0.8038 0.8241 0.6994 0.6980 0.6447 0.6956 0.3021 0.3101 0.7683 0.7811

Table 2. Detailed comparison of the effect of each step on mIoU : The first row shows scores for generative models where ”Direct” is
obtained by performing latent optimization on test images to predict masks using obtained latent and ”Distill” is the score after distillation.
The other two rows are scores of contrastive models with different architectures of fPROJ . The blue shaded column is the comparison with
ReGAN method, where we use different architectures for the GAN method and different train/test settings following their paper.

to produce a pixel representation Fi(x)2RH⇥W⇥K . The hy-
percolumn representation of layers l1, l2, . . . , ln is obtained
by concatenating interpolated features from corresponding
layers i.e. Fi(x) = F(l1)

i (x)�F(l2)
i (x)� · · ·�F(ln)

i (x). Both
generative and contrastive methods extract hypercolumns
from their respective trained models for few-shot segmenta-
tion. For StyleGAN this is comprised of the outputs of the
AdaIN layers.

Step II – Few-shot Segmentation: Using the extracted
Fi(x), both approaches train a projector network ( fPROJ)
to obtain pixel-wise confidence maps of shape H ⇥W ⇥C
where C denotes the number of classes.

DatasetGAN utilizes an ensemble of MLP classifiers as
fPROJ and use majority voting at test time2. Our method
is more simpler in comparison. We use two variations for
the architecture of fPROJ , one being a MLP and the other
a modified UNet [34] (see Appendix B for architectures)
which we will call CONV hereon.

At this point, we can evaluate on test images directly to
obtain our performance measure, however to compare with
the generative method we also perform distillation.

Step III – Supervised Distillation: To infer on unseen
images, generative models can use two approaches 1) latent
code optimization to obtain latents which can nearly esti-
mate the test image, 2) perform distillation using a standard
supervised segmentation network. Since the first method
affects performance (see Tab. 2) and it is time consuming
to obtain latents for test images, the second method is pre-
ferred by DatasetGAN. For generative method, the optimal

2DatasetGAN also uses this ensemble to predict uncertainty for filtering
generated data before the distillation step.

solution of the distillation process can be formulated as:

q ⇤
S = argmin

qS

Ez[CE(T (z;qT ),S( fGEN(z);qS))] (4)

where S is the Student network with parameters qS, T is
the teacher network with parameters qT and CE denotes the
Cross Entropy loss. For the generative method, T(z;qT) in-
volves generating images from random latents z using fGEN
and then obtaining corresponding masks using the Inter-
preter network.

In our case, T(x;qT) is inferencing over our trained con-
trastive + projector networks with images x from a pre-
existing dataset to obtain masks. The student parameters
can be optimized as below:

q ⇤
S = argmin

qS

Ex[CE(T (x;qT ),S(x;qS))] (5)

It is important to note that the distillation step is optional
for our method since it can directly infer on any given test
image. However this step offers a little improvement in per-
formance in some cases.

3.1. Design considerations
3.1.1 Computational Complexity
The computational bottleneck for the GAN based meth-
ods is the StyleGAN [20] training, whereas for our case its
the contrastive learning network. According to the official
repository of StyleGAN, it takes 11 days and 8 hours to
train on 70000 images of resolution 1024⇥1024 on 4 Tesla
V100 GPUs. Our network trained on the same dataset takes
7 days and 10 hours on 4 1080TI GPUs. By crude linear
scaling using the ratios of RAM and FLOPs of the GPUs,
we can infer that our method is around 7⇥ faster.
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We also compare with a StyleGAN2 [21] based method.
In this case, our method is even more computationally effi-
cient. StyleGAN2 takes 18 days and 14 hours on the same
dataset and setting as discussed above. Thus our unsuper-
vised training is 11⇥ faster in comparison.

The second step of both the methods i.e. the Style Inter-
preter training of DatasetGAN and Projector network train-
ing of our method have similar complexity as the input fea-
ture dimensions and network architectures are similar. Our
method takes lesser time compared to DatasetGAN as they
use an ensemble of classifiers. Note that this step takes the
least amount of time as number of examples is very limited.

Furthermore, StyleGAN based methods need the distil-
lation step to infer on unseen images. The StyleGAN +
interpreter model first needs to generate a large number of
images. The data generation and training of the distillation
network takes ⇠13 hours on 4 1080ti GPUs with Dataset-
GAN’s settings for 10k training images. Our method can
avoid this step and still produce competitive results.

3.1.2 Effectiveness
We evaluate our method on the same train and test settings
as DatasetGAN for various datasets. We also compare with
ReGAN for face data. Our method using MLP is able to
achieve similar results w.r.t. the GAN based approaches af-
ter distillation, while our CONV based method outperforms
the baselines both with and without (except Cars data) dis-
tillation. We discuss our results in greater detail in §5.

3.1.3 Labeling Difficulty
GAN based approaches suffer from the following two major
drawbacks when it comes to training and inference of few-
shot segmentation, which our approach is able to avoid.

1. To create training examples for the few-shot setting,
generative model based methods need manual annota-
tions on images generated by the GAN. This is due to
the fact that latent optimization is not very accurate and
is especially taxing for a pixel-wise classification task.
On the other hand, our approach can use any existing
dataset to train the segmentation projector network.

2. To evaluate GAN based segmentation network di-
rectly, we again need to perform latent code optimiza-
tion. We show in Tab. 2 that this creates a gap in the
final performance. Thus, to get a fair evaluation of the
GAN based methods an extra step of distillation is re-
quired. This requires the GAN to generate a large num-
ber of images and labels (⇠10k) to train a supervised
segmentation network.

3.1.4 Robustness
Representations learned by generative modeling techniques
are very sensitive to affine transforms. GANs will not be
able to produce images which have a small perturbation
w.r.t. their learnt representation space such as translation.

Shifted Image Ground Truth
Image produced by GAN 

after Latent Code 
Optimization

Mask predicted by 
CONSeg

Mask predicted by 
StyleGAN + interpreter

Figure 2. Robustness of GAN vs CON : Generative method is not
able to model test images when some perturbation is introduced.
The third column shows the resultant images after 10k iterations
of latent code optimization. The contrastive model is able to deal
with the shift in the images, wherein the resultant masks are shifted
similarly to the input as visualized in the last column.

Iterations 1000 5000 10000 20000
IoU 0.4178 0.4270 0.4302 0.4283

Table 3. Direct evaluation of StyleGAN + interpreter : mIoU
vs iterations of latent optimization on images of Face34 test data.

Our approach is robust to such affine transforms and out-
puts a segmentation map with affine corresponding to the
input image. We show this by shifting the test images and
inferring our model on them. Fig. 2 shows our results on
the transformed data. To get segmentation maps from the
GAN based network for the translated images, we perform
latent optimization on them. Fig. 2 shows that the gener-
ative model is not able to map these shifted images. Since
the test images are shifted to the left, the StyleGAN gener-
ates images where the head is turned to the right, which is
a bias of the underlying distribution that it has learned from
the training data. The GAN based methods thus rely on the
extra distillation step to overcome this disadvantage.

4. Experiments
In this section we present the experimental details of our

approach. We outline the datasets used, implementation de-
tails for each step, evaluation metrics and the settings for
comparison to baseline methods.
4.1. Datasets
4.1.1 Human Faces
Training: For training the contrastive learning models,
we use the Flicker-Faces-HQ [20] and the CelebAMask-
HQ [25] datasets. They have 70k and 30k images respec-
tively, of 1024⇥1024 resolution. For all training, we re-
size images to 512⇥512 unlike StyleGAN which uses the
original larger size. For the few shot segmentation train-
ing part, we use all 16 images from the Face34 train-
ing dataset released by DatasetGAN [46]. The number
in the names of the datasets correspond to the number of
classes. We then choose a subset comprising of 10k images
from CelebAMask-HQ to perform inference of our trained
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model. These images paired with the corresponding pre-
dicted masks form the training set for distillation. For all ex-
periments of DatasetGAN we generate 10k images as well.

We also compare our method with ReGAN, where we
train our models using the same datasets as their method.
We use our unsupervised learning model that is trained on
the Flicker-Faces-HQ dataset and train the few shot seg-
mentation part using the same subset of 10 images from
CelebAMask-HQ as ReGAN. Correspondingly, we convert
the labels to 10 classes from 19 (see Appendix A). We refer
to this 10 class train/test data as Face10. For distillation we
use the same subset of 10k images as earlier.
Testing: We use the testing set with 20 images of Face34 to
compare to DatasetGAN’s corresponding scores. Dataset-
GAN also reports scores on Face8 which is a modified ver-
sion of CelebAMask-HQ with 8 classes. We use the same
label transformation (see Appendix A) and sample 50 im-
ages randomly from CelebAMask-HQ’s testing set of 2k
images to do the evaluation for our method and baselines.
For comparing with ReGAN we use a subset of 190 images
from the training set of CelebAMask-HQ following their
method. For all evaluation experiments, we resize images
to 512⇥512 resolution like both the GAN methods.

4.1.2 Cats
Training: We use LSUN Cats dataset [44] for training our
unsupervised network. Unlike StyleGAN which uses the
whole dataset (70M images) to train, we use only a subset
of 100k images and still achieve better results. We resize
images to 256⇥256 resolution for all training runs. For the
few shot segmentation part we use Cat16 dataset released by
DatasetGAN. We filter out few examples which have visible
annotation errors and finally use 28 images for training.
Testing: We use the Cat16 testing set which has 20 images
and resize them to 256⇥256 to calculate IoU.

4.1.3 Cars
Training: Similar to the setting of Cats dataset, we use a
subset of 100k images from 46M total images in LSUN
Cars dataset [44] to train our contrastive model. We use
DatasetGAN’s Car20 training set comprising of 33 images
for training the few shot model. In this case, we resize to
512⇥512 for both unsupervised and few shot training runs.
Testing: We use 10 images from the Car20 test set and re-
size to 512⇥512 similar to DatasetGAN for evaluation.

4.2. Implementation Details
Contrastive Learning. For unsupervised contrastive
learning, we use two different frameworks namely Mo-
CoV2 [7] and SimSiam [8]. We use ResNet50 [16] as the
backbone architecture for both of these approaches. We
train MoCoV2 for 800 epochs and SimSiam for 400 epochs.
We use a batch size of 32 for the training where input im-
ages are resized to 512⇥512 (faces and cars) and 128 for
the 256⇥256 setting (cats).

Method MoCo SimSiam
MLP 0.5162 0.5038

CONV 0.5414 0.5297
MLP + distill 0.5341 0.5188

CONV + distill 0.5406 0.5173

Table 4. Effect of contrastive model on downstream IoU: We
report mIoU for the Face34 dataset for each method varied over
the architecture of fPROJ and before and after distillation.

Projector
Pretraining Strategy

ImageNet
classification

Imagenet
MoCo

FFHQ
MoCo

CelebA
MoCo

MLP 0.1893 0.4650 0.5023 0.5162
CONV 0.2551 0.4828 0.5132 0.5414

Table 5. Effect of pretraining of fCON on mIoU : The first col-
umn reports scores using ResNet50 trained on ImageNet1K clas-
sification task. The other columns compare MoCo trained with
different datasets with the same ResNet50 backbone. All scores
are on the Face34 test set without distillation.

Few Shot Segmentation. After obtaining the trained
ResNet50 we freeze its weights and extract hypercolumns
by stacking activations of the layers from conv 2x to
conv 5x. We upsample all the hypercolumns to the same
resolution as the input image and concatenate them. We use
the resultant 3D feature tensor to train our projector net-
work. We use two different approaches : MLP and CONV
as our fPROJ . We use random resized crop, flip and color jit-
ter as augmentations. We train the MLP for 800 epochs with
an initial lr of 0.001 and cosine lr decay. We train the UNet
based architecture - CONV, for 200 epochs with an initial lr
of 0.0005. During this training, in the ResNet50 architec-
ture we change the stride of the first convolution layer from
2 to 1 while extracting hypercolumns to train the projector
model in order to preserve more spatial information.

Supervised Distillation. Once the few shot segmentor is
trained, we use it to create a dataset to perform distillation.
We use Deeplabv3 [4] with ResNet101 as the student model
for all experiments. We use an initial lr of 0.001 with a batch
size of 8 and train for 2 epochs for every setting.

4.3. Evaluation
We follow the same evaluation strategy as DatasetGAN

for all scores that we report. The testing set is split into
five folds and each set is chosen as validation set to choose
the best checkpoint for testing. We finally report the mean
Intersection over Union (mIoU) over all the folds.

We also carry out a comparison of weighted mIoU for
human face datasets, consistent with ReGAN’s evaluation
method. We compute the weight of each class as the ratio
of the number of ground-truth pixels belonging to the class
to the total number of pixels. We then perform the same
cross validation as described above.
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Image GT MLP CONV CONV + 
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Figure 3. Qualitative Results on various datasets: We compare the visual results for our MLP and CONV methods both with and without
distillation. We present results on the test sets of Face34, Car20 and Cat16 datasets. In image IV and VIII, we show two failure cases.

4.4. Comparison to Baselines
Direct Evaluation of StyleGAN segmentor. Dataset-
GAN’s method has three training steps : StyleGAN, Style
interpreter and parts segmentation network (DeepLabV3).
We want to evaluate their method at the second step i.e.
infer using the StyleGAN + interpreter network with our
test set to produce segmentation masks and then compute
mIoU. To do so we first need to find the latents which most
nearly produce the test images. We perform latent code op-
timization with different number of iterations to project test
images into the latent space. We then pass these resultant
latents to the combined network and obtain predictions to
compute the mean IoU. Tab. 3 shows the variation of mIoU
with number of iterations of latent code optimization. It can
be seen that there is a considerable gap in these scores and
the one after the supervised distillation step (Tab. 1 & 2).
Face8 and Face10. We compare with DatasetGAN on
Face8 which is a modified version of CelebAMask-HQ
dataset with 8 classes instead of 19. For these experiments
we do not retrain our model on CelebA. We use the existing
model trained on Face34 and merge labels after inference to
form the 8 classes from 34, for both GAN and CON.

The Face10 values are in comparison with the Re-
GAN [41] paper. In this case, we need to retrain our model
on CelebA examples modified to 10 classes since one of the
classes “cloth” is not a part of the classes in Face34. We use
the same 10 train images as used by ReGAN to compare
to their 10-shot setting. We keep our network architectures
same, whereas to replicate ReGAN’s numbers we use the
architectures and hyperparameters as specified in their pa-
per. We use weighted IoU for evaluation following their pa-
per. Tab. 2 shows that ReGAN performs better in the direct
step as compared to after distillation. This may be attributed

Training set Cars Faces
GAN generated images 0.4266 0.3868

Real images 0.6143 0.5162

Table 6. mIoU scores on Face34 and Car20 for MoCo trained with
images generated from StyleGAN vs from real dataset.

to the fact that StyleGAN2 works better with latent code
optimization. Both our methods are able to outperform Re-
GAN after distillation. Our CONV variant performs better
in the direct phase too.

5. Results and Discussion
In this section we present comparison of our quantitative

performance with prior art, discuss on latent code optimiza-
tion, perform ablation over various training settings and an-
alyze the qualitative results of our various methods.

5.1. Performance comparison with other methods
Tab. 1 compares the performance of our best method af-

ter distillation with transfer learning, semi-supervised learn-
ing [28] and DatasetGAN baselines. The transfer network
was pre-trained on the semantic segmentation task of MS-
COCO [24]. Our method performs better than the baseline
methods on all the datasets.

Tab. 2 presents a detailed comparison of our method
with the GAN methods. For Face34 we also compare with
weighted mIoU, the metric used in ReGAN. Distillation im-
proves performance in all cases, the highest jump can be
seen in the Car20 dataset. Except ReGAN, in all cases the
direct evaluation of GAN segmentor yields much worse re-
sults than after distillation.

We compare with ReGAN in the shaded column with
weighted mIoU. In this case the direct method performs bet-
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ter than the distilled. This is due to the fact that StyleGAN2
is better able to work with latent code optimization, how-
ever the issues of robustness and inferring on unseen images
will still remain. StyleGAN2 is also even more computa-
tionally expensive as compared to StyleGAN (§3.1.1).

Our variant with CONV as the chosen fPROJ architec-
ture outperforms the MLP method, except for the Face8
setting. This method achieves better mIoU scores than the
GAN baseline both with and without distillation.

5.2. Difficulty of latent code optimization
We analyze the performance of direct evaluation of

DatasetGAN’s StyleGAN + Style Interpreter network on
unseen images from the Face34 test set. We vary the num-
ber of iterations of latent code optimization to find corre-
sponding latents for the StyleGAN network using the in-
put test images. In Tab. 3 we show the variation of mIoU
with iterations. The score does not increase after 0.4302
at 10k iterations. There is a considerable gap between this
number and the score of 0.5365 mIoU obtained by Dataset-
GAN after distillation. This is due to the fact that latent
code optimization is not able to produce images as close to
the input image as is required for reasonable performance
in fine-grained segmentation.

5.3. Training of Backbone network
In this section we ablate on various training stategies for

our backbone network fCON . For all the following experi-
ments, we keep the architecture fixed to that of ResNet50.
MoCo vs SimSiam. We compare contrastive learning
frameworks which train with (MoCoV2) and without (Sim-
Siam) negative examples. Tab. 4 compares the scores of
each with the MLP model as fPROJ both before and after
distillation. MoCoV2 is able to achieve better performance
on the few-shot segmentation task than SimSiam. However,
SimSiam needs half as many epochs (400 epochs) to reach
the reported score compared to MoCoV2 (800 epochs).
Comparison with Imagenet1K pretrained. The first
column in Tab. 5 shows the mIoU on Face34 dataset for
backbone network fCON initialized using Imagenet1K [23]
classification weights. The performance boost that MoCo
pre-training offers is significant.
MoCo with different real datasets. The rest of the
columns of Tab. 5 compares the effect of the unlabeled
dataset. We obtain the best performance using CelebA since
the test images belong to CelebA’s test set. FFHQ allows
better performance than ImageNet because it is comprised
solely of faces. However it is interesting to note that even
though ImageNet dataset has no face images, the segmentor
using MoCo trained on it still obtains good scores, compa-
rable to FFHQ/CelebA.
MoCo training on GAN generated images. To test the
bias of generative models, we train MoCo on images gener-

ated by StyleGAN. We use the same resolution and number
of unlabeled images for both training runs. Tab. 6 lists the
scores on Face34 and Car20. There is a considerable drop in
mIoU for the MoCo trained on images generated by Style-
GAN. The MoCo training on generated images also reaches
high accuracy much earlier (⇠ 90% at 200 epochs). This in-
dicates that GANs are not able to model a large domain i.e
they are not able to learn a general distribution. This might
also mean that GAN generated images have some typical
artefacts that CON models are able to identify.

5.4. Qualitative Results
Fig. 3 presents a qualitative comparison of the strengths

and weaknesses of our methods. In image I, because of the
black background both the direct MLP and CONV mod-
els struggle with segmenting the hair, though the CONV
does a better job. In this case distillation helps improve the
predicted mask. For images II and III, the CONV + dis-
till variants are able to capture the overall structure better,
whereas the MLP + distill methods are able to differentiate
smaller regions such as wrinkles and chin. In image IV, the
MLP model confuses a large percentage of the background
as neck/forehead. The CONV method is able to mitigate
this problem as it can take more global cues owing to its
larger receptive field (see Appendix B). In images V and
VII, the CONV + distill approach is able to eliminate con-
fusion between back and front bumpers which is present in
the predictions of the other methods. In image VI, the MLP
model makes some wrong predictions. The CONV model
is able to clear up most of the confusion, while the CONV +
distill model boosts this performance and minimizes faulty
predictions. In image VIII, we show a failure case. Predic-
tions on the cats data has suffered due to faulty annotations
in the dataset and the large variation of pose and occlusion
making it challenging to learn representations.

6. Conclusion
We present a contrastive learning approach for few-shot

fine-grained part segmentation. We compare to previous
generative approaches and show using various experiments
that our method achieves better performance, is simpler, an
order-of-magnitude faster and is more robust. GAN gener-
ated datasets while effective on the part-segmentation task,
might not be as effective on tasks such as fine-grained image
classification due to biases they introduce. Further investi-
gation of the nature of these biases could better guide the
community adoption of GANs as a replacement of datasets.
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Cord, and Patrick Pérez. This dataset does not exist: training
models from generated images. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE, 2020. 2

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 1, 2

[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 6

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. 2020. 1, 2, 3

[6] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey Hinton. Big self-supervised models
are strong semi-supervised learners. NeurIPS, 2020. 3

[7] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 3, 6

[8] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021. 1, 3, 6

[9] Zezhou Cheng, Jong-Chyi Su, and Subhransu Maji. On
equivariant and invariant learning of object landmark repre-
sentations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9897–9906, 2021. 3

[10] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-
miller, and Thomas Brox. Discriminative unsupervised
feature learning with convolutional neural networks. In
NeurIPS, 2014. 2, 3

[11] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In ICLR, 2018. 3

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 2

[13] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-
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