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Figure 1. Existing learning-based methods for garment deformations (left) use supervised training schemes that require the expensive
computation of large datasets. In contrast, our approach SNUG (right) is a learning-based method that enables the self-supervised training
of dynamic neural 3D garments, without requiring any ground-truth data.

Abstract

We present a self-supervised method to learn dynamic
3D deformations of garments worn by parametric hu-
man bodies. State-of-the-art data-driven approaches to
model 3D garment deformations are trained using super-
vised strategies that require large datasets, usually obtained
by expensive physics-based simulation methods or profes-
sional multi-camera capture setups. In contrast, we propose
a new training scheme that removes the need for ground-
truth samples, enabling self-supervised training of dynamic
3D garment deformations. Our key contribution is to realize
that physics-based deformation models, traditionally solved
in a frame-by-frame basis by implicit integrators, can be
recasted as an optimization problem. We leverage such
optimization-based scheme to formulate a set of physics-
based loss terms that can be used to train neural networks
without precomputing ground-truth data. This allows us to
learn models for interactive garments, including dynamic
deformations and fine wrinkles, with a two orders of magni-
tude speed up in training time compared to state-of-the-art
supervised methods.

1. Introduction

The efficient modeling of digital garments is an active
area of research due to the large number of applications,
including fashion design, e-commerce, virtual try-on, and
video games. The traditional approach to this problem is

through physics-based simulation [38], but the high com-
putational cost required at run time hinders the deploy-
ment of these techniques to real-world applications. Re-
cently, learning-based methods [17,31,39,45,46,50,53,55]
have demonstrated that it is possible to closely approximate
the accuracy of physics-based solutions. These methods
use supervised learning strategies to find a function that
outputs a deformed garment given an input body descrip-
tor. During the training phase, the supervision is enforced
by directly minimizing at a vertex level the difference be-
tween the predicted garment and ground-truth 3D meshes.
Despite requiring hours of training, learning-based meth-
ods are highly-efficient to evaluate at run time, therefore
they potentially offer an attractive alternative to traditional
physics-based solutions.

However, the need for large datasets in current super-
vised methods is far from ideal. Ground-truth meshes
must be obtained –for each combination of garment, body
shape, and pose– via computationally-expensive simula-
tions [37] or complex 3D scanning setups [40], which heav-
ily hinders the scalability of current learning-based meth-
ods. We observe that for similar image-based problems,
self-supervised strategies have shown that it is possible to
learn complex tasks without requiring ground-truth data
[41, 57]. Unfortunately, self-supervision for dynamic 3D
clothing has not been explored.

In this work, we present a self-supervised method to
learn dynamic deformations of 3D garments worn by para-
metric human bodies. The key to our success is realizing
that the solution to the equations of motion used in cur-
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rent physics-based methods can also be formulated as an
optimization problem [34]. More specifically, we show that
the per-time-step numerical integration scheme used to up-
date the vertex position (e.g., backward Euler) in physics-
based simulators, can be recast as an optimization problem,
and demonstrate that the function for this minimization can
become the central ingredient of a self-supervised learning
scheme. Since this objective function includes both an iner-
tial term and static term directly derived from the equations
of motion, we are able to learn time-dependent and pose-
dependent deformations without any ground-truth data.

The advantages of self-supervision go beyond removing
the need for ground-truth data. By reformulating the learn-
ing tasks in terms of physics-based intrinsic properties in-
stead of explicit 3D surface similarity, we also mitigate the
smoothing artifacts common in supervised methods where
L2 losses are used directly at the vertex level [39]. Ad-
ditionally, self-supervised approaches also generalize bet-
ter to test sequences outside the distribution of the training
set. Finally, we also show how different material models
can be easily formulated in our self-supervised framework,
bringing the generalization capabilities of physics-based so-
lutions (i.e., deform any material) to learning-based meth-
ods, without requiring any precalculation or offline step.

All in all, our main contribution is a novel learning-
based method capable of learning to dynamically deform
garments using a self-supervised strategy. We demonstrate
the superiority of our approach in terms of data require-
ments, training time, and inference time, and we quanti-
tatively and qualitatively compare our results with state-of-
the-art supervised methods.

2. Related Work
Existing methods that model how cloth and garment de-

form can be categorized into two groups: physics-based
models and learning-based models.

Physics-Based Methods. Physics-based simulation of
cloth is to date a very mature field. Over the years, many
methods have been developed to solve the most relevant
challenges. These include the design of deformation models
such as in-plane and bending energies [15, 22], robust im-
plicit solvers [4], rich and efficient contact handling [9, 49],
or adaptive discretizations [37]. Recent efforts also include
the design of differentiable physics simulators [18], includ-
ing specific problems of cloth simulation such as continuous
collision detection and constraint-based solvers [28], and
physics-based objectives for tracking and reconstruction of
garments [27, 59]. While the majority of the cloth simula-
tion models represent the fabric as a continuum, a recent
line of research uses yarn-level representations for high-
resolution detail [10, 21]. Some works also show two-way
coupling between garments and soft-body avatars [36, 42].

While we do not tackle this level of detail in our paper, more
accurate methods could be used to replace our cloth and
body models.

Learning-Based Methods. In contrast to physics-based
models, which typically require solving large systems of
nonlinear equations at each time step, learning-based meth-
ods aim at estimating a single function that directly outputs
the desired deformation for any input. Inspired by early
works on Pose Space Deformation [24], a common strat-
egy is to learn parametric garment deformations, which are
added to a mesh template, as a function of pose [16, 56],
shape [53], pose-and-shape [5, 45], design [31, 39, 55], or
garment size [50].

To this end, state-of-the-art methods for garments use
supervised strategies that require large datasets of ground-
truth data of the specific task to be learned. This method-
ology has been recently explored for many use cases, in-
cluding 3D reconstruction [1, 2, 43, 62], garment design
[46, 53, 55], animation [7, 17, 19, 31, 39, 56], and virtual try-
on [8, 16, 45, 61]. To efficiently tackle the learning task,
and depending on the goal of each method, different super-
vision terms and domains have been used. Most methods
use direct 3D supervision at the vertex level [17,39,45,53],
but image-based 2D supervision in form of UV maps
[20,23,46], point clouds [32,44], or sketches [55] also exist.
Very recently, implicit representations have shown impres-
sive results on learning to deform humans [3, 12, 35] and
dress avatars [11, 44, 51, 54].

Datasets are a fundamental piece to enable supervision,
and most methods [5,39,45,55] opt for synthetic data gener-
ated with physics-based simulators such as ARCSim [37] or
Argus [25]. Alternatively, other methods [23,31,44,50] use
high-quality 3D scans obtained in expensive multi-camera
setups [40, 60]. Despite the success of all these supervised
methods for learning-based garments, relaying on ground-
truth data to train the models is a major limitation due to the
associated costs and hinders to create datasets.

Self-supervised strategies are the ideal alternative to cir-
cumvent the need for ground-truth data in learning-based
methods [48]. Instead of relying on losses that evaluate pre-
diction error based on the difference with respect to ground-
truth samples, self-supervised methods use implicit proper-
ties of the training data (or domain) as a supervision sig-
nal [64]. This strategy is nowadays very popular in data-
driven methods for image-based problems [26,41,63], how-
ever, almost all state-of-the-art approaches to learn 3D gar-
ment deformations rely on ground-truth data [17, 39, 45].
For 3D deformations tasks not related to garments, many
works use physics laws or constraints as a supervision sig-
nal [52, 58, 64]. For example, Tompson et al. [52] enforce
incompressibility constraints to learn to solve the system of
equations required in physics-based fluid simulation, Xie et
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al. [58] enforce temporal coherence of consecutive frames
in fluid simulations to enhance detail, and Zhu et al. [64]
incorporates the governing equations of the physical model
(i.e., Partial Differential Equations, PDEs) in the loss to
learn image-based flow simulations.

Despite the significant progress in self-supervised learn-
ing, no previous works addresses the learning of 3D gar-
ments in self-supervised strategy, with just the notable and
very recent exception of PBNS [6]. PBNS proposes to learn
pose space deformations for garments by enforcing static
physical consistency during the training of the model. We
follow a similar underlying idea, but propose to use a full
physics-based deformation scheme recast as an optimiza-
tion problem to learn, for first time, a model for dynamic
garment deformations with self-supervision only. Addi-
tionally, our approach learns shape-dependent effects and
is able to cope with a material model that produces highly-
realistic and finer wrinkles.

3. Method
Our goal is to find a function M() that deforms a 3D gar-

ment given the underlying body parameters and motion. To
this end, in Sec. 3.1, we first describe our garment model
used to implement M(), which is based on per-vertex dy-
namic 3D displacements that are added to a rigged tem-
plate mesh. Then, in Sec. 3.2, we direct our attention to an
optimization-based formulation of dynamic deformations.
Based on this formulation, in Sec. 3.3, we introduce our
main contribution and describe a physics-based deforma-
tion model that allows us to train a regressor R() for 3D
garment displacements. Importantly, our loss is driven by
fundamental physical properties of deformable objects, not
by the reconstruction of ground-truth garments, and there-
fore it enables self-supervised learning. In Sec. 3.4 we spec-
ify the material model used in the different terms of our loss,
and define the relevant energies such as the strain, and bend-
ing energies. Finally, in Sec. 3.5 we describe the recurrent
architecture used to implement the regressor R(). See Fig-
ure 2 for an overview of our method.

3.1. Garment Model

Similar to state-of-the-art methods for data-driven gar-
ments [5, 17, 39, 45, 53], we leverage and extend existing
human body models [13, 30] to encode garment deforma-
tions. More specifically, we build our representation on
top of the popular SMPL human model [30]. SMPL en-
codes bodies by deforming a rigged human template ac-
cording to shape and pose-dependent deformations that are
learned from data. Following this idea, we define our gar-
ment model as

M(β,ϕ) = W (T (β,ϕ), J(β), θ,WG) (1)
T (β,ϕ) = T+R(β,ϕ) (2)

where W is a skinning function (e.g., linear blend skinning
or dual quaternion) with skinning weights WG, joint loca-
tions J(β), and motion parameters ϕ that articulate an un-
posed deformed garment mesh T (β,ϕ). The latter is com-
puted from a garment template mesh T deformed by a func-
tion R(β,ϕ) that outputs per-vertex 3D displacements to
encode dynamic deformations conditioned to the underly-
ing body shape β and body motion ϕ. The body motion
ϕ contains the current body pose θ as well as the global
velocity of the root joint.

Assuming that the garment template T is correctly lo-
cated on top of the mean SMPL body mesh [30], we define
WG by borrowing the SMPL skinning weights of closest
body vertex in rest pose. In the remainder of this section we
introduce our novel strategy to learn the 3D displacement
regressor R(β,ϕ).

3.2. Optimization-Based Dynamic Deformation

Our goal is to learn the 3D displacement regressor
R(β,ϕ) in Equation 2 using a self-supervised strategy. To
this end, our first task is to find a set of physics-based prop-
erties that describe how cloth behaves. Physics-based simu-
lators traditionally solve dynamics by applying a numerical
integration scheme, e.g., backward Euler, to the differen-
tial equations of motion, and finding the roots of the re-
sulting nonlinear discrete equations [38]. This formulation
is applied independently at each simulation frame, to itera-
tively update the positions and velocities of garment ver-
tices. Our key observation is to realize that the solution
to the equations of motion discretized with backward Eu-
ler can also be formulated as an optimization problem [34],
and the objective function for this minimization can be-
come the central ingredient of a self-supervised learning
scheme. Optimization-based dynamics have been used in
the Computer Graphics literature to increase the efficiency
and robustness of dynamics solvers, through quasi-Newton
schemes and step-size selection [14, 29]. Instead, we pro-
pose to leverage such optimization-based formulation to de-
fine a loss for training a neural network that generalizes well
to any input (i.e., any body shape and motion).

The equations of motion can be discretized with back-
ward Euler as

M
xt+1 − xt −∆tvt

∆t2
= f

(
xt+1,

xt+1 − xt

∆t

)
, (3)

where M is the mass matrix, f are forces, and x and v are
the positions and velocities of garment nodes. The solution
to these equations can be recast as an optimization [14, 34]:

xt+1 = argmin
x

1

2∆t2
(x− x̂)⊤M(x− x̂) +Φ, (4)

where x̂ = xt + ∆tvt is a tentative (explicit) position up-
date, and Φ is the potential energy due to internal and ex-
ternal forces f of the system.
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Figure 2. Overview of our method. First, the recurrent regressor predicts per-vertex offsets as a function of body shape and motion. These
offsets are added to the garment template which is then skinned to produce the final result. We train the network by optimizing a set of
physical properties of the predicted garments, removing need for ground-truth data.

3.3. Turning Dynamics into Self-Supervision

The key to our method is to define a set of losses based
on Equation 4 to train the regressor R(). To this end, we
propose a loss with two terms

L = Linertia + Lstatic, (5)

where Linertia models the inertia of the garment and it is de-
fined analogous to the first term of Equation 4

Linertia =
1

2∆t2
(x− x̂)⊤M(x− x̂). (6)

Intuitively, this term prevents the change of garment veloc-
ities over time, but garment velocities will change anyway
due to the underlying body motion, which makes dynamics
and wrinkle effects appear.

Lstatic, the second term of our loss L, models the potential
energy Φ of Equation 4 which represents the internal and
external forces that affect the garment. Inspired by works
from cloth simulation literature [37, 47], we define Lstatic
as the sum of different physics-based terms that model the
energies that emerge on deformable solids, including strain,
bending, gravity, and collisions

Lstatic = Lstrain + Lbending + Lgravity + Lcollision. (7)

This formulation of Lstatic is general, and the definition of
each term depends on the material model used, which we
detail in the next section.

3.4. Material Model

The literature of simulation of elastic solids characterizes
materials using equations that relate stimuli (e.g., deforma-
tions) to material response (e.g., energies) [47]. Inspired by
this, and with the goal of learning physically-correct gar-
ment behaviors, we define the terms of our static loss Lstatic
based on equations of state-of-the-art cloth simulators [37]
to model the following energies:

Membrane Strain Energy. The membrane strain term
models the response of the material to in-plane deforma-
tion. Given a deformed position x ∈ R3 and an undeformed
position X ∈ R2 (i.e., the garment template), it defines an
internal energy based on a first-order deformation metric,
typically the deformation gradient F = ∂x

∂X . In our loss
we implement it using the Saint Venant Kirchhoff (StVK)
elastic material model that defines membrane strain energy
as

ΨS =
λ

2
tr(G)2 + µtr(G2), (8)

where λ and µ are the Lamé constants, and G = 1
2 (F

⊤F−
I) is the Green strain tensor. The membrane strain energy
of the mesh is computed as

Lstrain =
∑

triangles

VΨS, (9)

where V is the volume of each triangle (i.e., area × thick-
ness).

Bending Energy. The bending term models the energy
due to the angle of two adjacent faces and we model it as

Lbending =
∑
edges

kbending

2
θ2 (10)

where θ is the dihedral angle between the faces and kbending
is a bending stiffness.

Gravity. To model the effect of gravity in the learned de-
formations, we add a loss term with the potential energy of
each cloth vertex

Lgravity =
∑

vertices

−mg⊤x (11)

where m is the vertex mass, and g is the gravitational accel-
eration.
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(a) StVK (Ours) (b) Mass-spring (PBNS [6])

Figure 3. The material model used is crucial to obtain realistic
garment behaviors. We formulate our losses using the Saint Venant
Kirchoff (StVK) model, in contrast to simpler alternatives that lead
to less expressive deformations.

Collision Penalty. This term is crucial to learn plausible
deformations, enforcing the garment to follow the underly-
ing body motion. We implement it as

Lcollision =
∑

vertices

kcollision max(ϵ− d(x), 0)3 (12)

where d(x) is a function that computes the distance to the
body, kcollision is a collision stiffness, and ϵ is a safety mar-
gin to prevent the garment from overlapping with the body
surface.

To highlight the realism of the proposed material, in Fig-
ure 3 we show a ground-truth simulation of our model, and
the simpler material model used in PBNS [6] based on a
traditional mass-spring formulation. Overall, our model is
capable of reproducing more complex behaviors typically
present in garments, including wrinkles and folds at differ-
ent scales.

3.5. Regressing Garment Deformations

With our novel self-supervised loss L defined in Sec-
tion 3.3, we are ready to train the garment displacement re-
gressor R() from Equation 2 without requiring ground-truth
data. To this end, in order to model the time dependencies
of the inertial term Linertia, we implement the regressor us-
ing 4 Gated Recurrent Units (GRU), each with an output of
size 256, and tanh as the activation function (see Figure
2). However, the recurrent nature of GRUs combined with
the lack of ground-truth values to guide the training process
make the regressor converge to bad solutions if a naive re-
current training protocol is used. We need to take special
care into how the hidden states of the GRUs are initialized
and updated.

Intuitively, the model should be able to learn dynam-
ics from just 3 frames, since Linertia from Equation 6 de-
pends only on the vertex positions and velocities of the

previous step. Therefore, we train our network using sub-
sequences of 3 frames. Interestingly, we found that training
on longer sub-sequences also minimizes Linertia correctly,
but the learned deformations do not model true dynamics.

At runtime, the network supports sequences of arbitrary
length, but results can degrade noticeably for sequences
longer than those used in training if initialization of the
GRU hidden states is not well handled. More specifically,
we observe that for each training sub-sequence, setting the
initial hidden states h0 = 0 hinders the network to gener-
alize to sequences longer than 3 frames. We address this
issue by sampling the initial state h0 of each GRU from
N (µ, σ) (empirically, µ = 0 and σ = 0.1), which allows
the model to generalize well even for sequences with thou-
sands of frames. Notice that at runtime the state ht depends
on an arbitrarily large number of previous frames, not just
the last 3, hence the use of noise to initialize states on train
sub-sequences is fundamental to augment variance in states.

4. Evaluation

4.1. Training

To self-supervise the training process of our regressor
R() we need to feed it with human motions and shapes. To
this end, we use a set of 52 sequences from the AMASS
dataset [33], totaling 6,519 frames, which we split into sub-
sequences of 3 frames as described in Section 3.5. We set
aside 4 full sequences for validation purposes. To provide
body shape variety at train time, each of the sub-sequences
is assigned a different body shape β sampled from U(−3, 3)
at each epoch. Notice that, enabled by our self-supervised
approach, this strategy allows us to train using thousands of
different body shapes, while competitive supervised meth-
ods are limited to a dramatically smaller shape sample ( [39]
uses 9 shapes, [45] uses 17) due to the computational re-
strictions caused by the need for a ground-truth database.

Regarding the network hyper-parameters, we use a batch
size of 16, initially train for 10 epochs using a learning rate
of 0.001, and then resume the learning with a learning rate
of 0.0001 until it converges. This approach is fast, works
for all garments, and avoids erroneous states. The rest of
the material and training parameters do not affect stability.
Larger learning rates can introduce instabilities due to en-
ergy spikes that make the training struggle to recover (i.e.
the predicted mesh has collisions that are too large to be re-
solved). Small body-garment collisions are not a problem –
e.g., we can handle pants despite self-collisions in the legs
on some poses.

Our approach does not require balancing loss terms, we
just need to set the material properties of the garment. To
this end, we tune material parameters to produce a desired
fabric behavior, hence the parameters of the loss have a
physical meaning – they are not arbitrary hyperparame-
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Figure 4. Quantitative evaluation of our approach. We evaluate the minimization error in different the physics-based terms used in our loss,
in the test sequence 01 01 of AMASS [33]. Sudden motion changes (e.g., jumps) naturally produce peaks in the inertial term, due to drastic
changes in the velocity of the garment. Intuitively, cloth dynamics arise when the garment resists to those changes enforced by the body,
therefore lower inertial values indicates that our model better learns time-dependent effects than PBNS [6]. See the supplementary video
for qualitative results of this evaluation. The significantly improved realism of our method is better appreciated looking into sequences of
deformed garments.

Strain Bending Gravity Inertia

PBNS [6] 0.111 0.007 0.044 0.0035
SNUG (Ours) 0.064 0.004 0.028 0.0034

Table 1. To quantitative evaluate our method we compute the
physics-based loss terms of our trained model, in unseen se-
quences, and compare to PBNS. We produce lower errors in all
terms, indicating that our approach results in deformations that
better match physics-based simulators.

W/o bending

W/o stra
in

W/o gravity

W/o inertia

Full

Mean-curvature error 17.3 19.1 7.5 2.8 2.7

Table 2. Quantitative ablation study. Each term of our loss con-
tributes to the accuracy of the final result.

ters. To compute the mass matrix M we use real mea-
surements of the thickness and density of 100% cotton fab-
ric (0.47 mm and 426 kg/m3 respectively). The rest of the
material parameters have the following values: the Lamé
constants are set to λ = 20.9 and µ = 11.1, the bend-
ing stiffness kbending = 3.96e−5, the collision stiffness
kcollision = 250, and the collision margin ϵ = 2 mm. We
use the same parameters for all our garments.

To thoroughly validate our model, in addition to compar-
isons to SOTA methods, in this section we also include ab-
lations and comparisons that use a ground-truth simulated
dataset. For as fair as possible evaluations, such dataset
is created using the same motions, and the same train-test
split, that we use to train SNUG.

We implement our method in a regular desktop PC
equipped with an AMD Ryzen 7 2700 CPU, an Nvidia GTX
1080 Ti GPU, and 32GB of RAM.

Data Train Runtime Memorygeneration

TailorNet [39] 29 h 6.5 h 10.1 ms 2114 MB
Santesteban [45] 180 h 17 h 2.5 ms 109 MB

SNUG (Ours) 0 h 2 h 2.2 ms 19 MB

Table 3. Timings, memory requirements, and performance of
state-of-the-art methods. Our self-supervised approach avoids the
expensive cost of data generation, while also achieving signifi-
cantly lower training times.

4.2. Quantitative Evaluation

To quantitatively evaluate our approach, we measure the
physics-based terms of our loss L in test motions and com-
pare it with the predictions of PBNS [6]. Notice that the
original PBNS method uses a different (and simpler) ma-
terial model but, in order to get a meaningful quantita-
tive comparison, we extended and re-trained the publicly
available PBNS implementation with our material model
defined in Section 3.4. Also, notice that we cannot pro-
vide this comparison for supervised state-of-the-art meth-
ods (e.g., [17, 39, 45]) because the simulation schemes, ma-
terial models, and parameters used to build their datasets are
different and, therefore, the ground-truth physics properties
(i.e., our loss terms) might differ significantly.

Figure 4 shows the quantitative evaluation for the most
important terms of our loss, and compares it with the ex-
tended implementation of PBNS [6] using our material,
in the test sequence 01 01 of AMASS [33]. Notice how
our method consistently produces lower error values across
all terms (strain, bending, and inertia), indicating that test
samples processed with SNUG better match the behavior
of physics-based solutions (i.e., the minimization of the
terms). Table 1 presents a quantitative evaluation of both
methods in our full test set (4 sequences, 598 frames unseen

8145



(a) Supervised (b) Ours (c) Simulation

Figure 5. When trained using same motions and same architecture,
direct supervision at the vertex level leads to smoothing artifacts
(a). In contrast, our physics-based loss is able to learn more real-
istic details (b), as shown in this frame from a test sequence.

at train time), which further demonstrates that our approach
improves upon the method of PBNS.

To validate each term of our formulation, in Table 2 we
show an ablation of the mean-curvature error, evaluated in
the test set of our ground truth simulated dataset, when leav-
ing out some of the terms.

Finally, in Table 3 we also evaluate the memory require-
ments, training time, and runtime performance of our ap-
proach and compare to existing state-of-the-art supervised
methods. Even if these methods do no address exactly the
same problem (e.g. TailorNet [39] models garment varia-
tions and SNUG does not, but the latter models dynamics),
SNUG outperforms supervised methods by a large margin
in all metrics, resulting in a compact model, only 19MB,
trained in just 2h, which opens the door to scalable learning-
based garment models.

4.3. Qualitative Evaluation

We qualitatively evaluate our method in Figure 7 and,
more extensively, in the supplementary video. To this end,
notice that we always use body shapes and motions unseen
during training. Additionally, we provide comparisons to
the state-of-the-art supervised methods of Santesteban et al.
[45] and TailorNet [39], as well as to the recent work PBNS
[6] that uses physics-constraints as supervision. To ease the
assessment of the realism of each method, we also show
results computed with a physics-based simulator [37], but
notice that this is a traditional offline method, several orders
of magnitude slower.

These results demonstrate that our self-supervised
method SNUG produces garment deformations that are, at
least, on par with the state-of-the-art supervised methods
[39, 45], while we do not require any ground-truth dataset.
For PBNS [6], we use a mean body shape because it does
not generalize to different bodies. Because PBNS does not
model an inertial term and it is limited to a simpler material
model, the garment deformations are generally more stiff,
less realistic, and do not change naturally as a function of
body pose. This is visible in rows 1 and 3 for PBNS in Fig-
ure 7, where the overall wrinkles are the same despite the
significant change in body pose.

To further validate our model, we use the ground-truth
simulated dataset (described in Section 4.1, used for val-
idation purposes only) to retrain our neural network in
a per-vertex supervised manner. In Figure 5 and in the
supplementary we qualitatively demonstrate that the self-
supervised method learns more detailed wrinkles than the
supervised counterpart trained with exactly the same mo-
tions.

Additionally, in Figure 6 we show more results for a
variety of garments learned with our approach, including
t-shirts, tops, sleeveless shirts, pants, and shorts, worn by
different body shapes. Notice how our approach produces
different wrinkles for each garment type, pose, and shape
combination, demonstrating the generalization capabilities
of our self-supervised approach. For this figure, we trained
one regressor for each garment type. In the supplementary
video you can see animated results of these garments, show-
casing for the first time realistic dynamic deformations of
self-supervised learning-based garments.

Finally, in the supplementary video we also show an ab-
lation study of the influence of each term of our loss func-
tion. We demonstrate that all terms of Equation 5 contribute
to improve the realism of our predicted garments.

5. Limitations and Conclusion
We believe SNUG makes an important step towards ef-

ficient learning-based models for 3D garments. To improve
the state-of-the-art, instead of following the standard route
of training with more data, adding more explicit supervi-
sion, or designing more complex architectures, we show
that self-supervision based on physical properties of de-
formable solids leads to simpler and smaller yet highly-
realistic models.

While our physics-based loss terms are the fundamental
key to self-supervision, we also want to point out that our
strategy of exploiting optimization-based schemes (origi-
nally derived for simulation problems) to train a neural net-
work carries a few weaknesses and important considera-
tions to take into account.

Specifically, we notice that the self-supervised network
tends to converge to simpler solutions than a traditional sim-
ulator. For example, although our approach is capable of
learning pose- and shape-dependent wrinkles and overall
dynamics, we struggle to predict fine-level dynamics. We
hypothesize that this limitation arises from a fundamental
difference in how our method works: while standard sim-
ulators solve physics for one frame at a time, our model
optimizes thousands of frames simultaneously during train-
ing. This makes our approach more prone to converge to
simpler local minima. Nevertheless, we want to highlight
that, despite this limitation, the cloth dynamics learned by
our method are on par with other data-driven approaches.

Another aspect open to future research is the collision
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Figure 6. Qualitative results of our self-supervised method, in validation body shapes and poses unseen during training. SNUG successfully
learns highly-realistic garment deformations, including fine wrinkles, as a function of body shape and motion.

SNUG (Ours) Santesteban et al. [45] TailorNet [39] PBNS [6] Simulation [37]

Figure 7. Qualitative comparison with state-of-the-art methods. SNUG generalizes well to unseen body shapes and motions, and produces
detailed folds and wrinkles. The results of SNUG are, at least, on par with the realism of supervised methods that require large datasets
[39, 45], and close to state-of-the-art offline physics-based simulation [37].

handling. Although our loss penalizes collisions between
the garment and the body in train samples, we found no-
ticeable collisions in test motions. Although these collisions
can be efficiently solved with a postprocessing step, we be-
lieve it would be valuable to explore ways to enforce this
constraint on the network. Addressing self-collisions of the
garment is another aspect that would be worth taking into
consideration.

To foster future research on the field, our trained mod-
els and the code to run them are available on http://
mslab.es/projects/SNUG.
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