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Abstract

This paper addresses the problem of vehicle-mounted

camera localization by matching a ground-level image with

an overhead-view satellite map. Existing methods often

treat this problem as cross-view image retrieval, and use

learned deep features to match the ground-level query im-

age to a partition (e.g., a small patch) of the satellite map.

By these methods, the localization accuracy is limited by

the partitioning density of the satellite map (often in the or-

der of tens meters). Departing from the conventional wis-

dom of image retrieval, this paper presents a novel solu-

tion that can achieve highly-accurate localization. The key

idea is to formulate the task as pose estimation and solve

it by neural-net based optimization. Specifically, we de-

sign a two-branch CNN to extract robust features from the

ground and satellite images, respectively. To bridge the vast

cross-view domain gap, we resort to a Geometry Projec-

tion module that projects features from the satellite map to

the ground-view, based on a relative camera pose. Aim-

ing to minimize the differences between the projected fea-

tures and the observed features, we employ a differentiable

Levenberg-Marquardt (LM) module to search for the opti-

mal camera pose iteratively. The entire pipeline is differen-

tiable and runs end-to-end. Extensive experiments on stan-

dard autonomous vehicle localization datasets have con-

firmed the superiority of the proposed method. Notably,

e.g., starting from a coarse estimate of camera location

within a wide region of 40m × 40m, with an 80% likeli-

hood our method quickly reduces the lateral location error

to be within 5m on a new KITTI cross-view dataset.

1. Introduction

Image-based camera localization [3, 8, 14, 20, 29, 36, 40,

43, 58] has attracted increasing attention from the commu-

nity due to its practical applications in various fields, includ-

ing autonomous driving, virtual and augmented reality. Re-

cently, this technique has been extended to the cross-view

(a) Cross-view image retrieval-based localization

(b) Proposed cross-view camera pose optimization

Figure 1. Comparison of two schemes for cross-view camera lo-

calization. (a) Conventional image retrieval-based scheme first

splits a large satellite map into small image patches and constructs

a reference database. Given a query image, they find the most

similar image from a database. GPS-tag of the retrieved image is

regarded as the query camera’s location. By this method, the lo-

calization accuracy is limited by the sample density of database

images. (b) The paper proposes a novel scheme for cross-view lo-

calization, which formulates the task as camera pose optimization.

We tentatively project the satellite deep features to a ground view-

point from an initial camera pose estimate by a Geometry Projec-

tion module. Then, a differentiable Levernberg-Marquardt opti-

mization procedure is applied to refine the camera pose estimation

by minimizing the differences between the predicted and observed

features.

setting, i.e., localization by matching a ground-level image

to an overhead-view satellite map to determine the ground

camera’s pose.

Existing learning-based image localization methods of-

ten treat this task as an instance of image retrieval, and solve

it by metric learning [5,17,27,37,46,47,49,51,55,57,60,63,

64, 67, 69]. They match a ground image to many candidate
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satellite patches in a large satellite map covering the geo-

graphical region of interest and then retrieve the most simi-

lar one. The query camera’s location is then assigned as the

GPS tag of the retrieved satellite patch. Although promis-

ing results have been achieved, their estimation accuracy is

limited by the sampling density of those satellite images.

A recent work [70] further discussed location refinement

by using a deep network to regress the relative displace-

ment. However, the significant domain differences between

the satellite and ground-view images makes it very difficult

to obtain accurate regression in the cross-view setting.

Departing from the traditional idea of image retrieval,

we propose to solve accurate cross-view localization task

by direct pose optimization. Specifically, we first employ

two CNNs to extract deep features from the two-view im-

ages. The learned features are expected to be robust to view

changes and discriminative for feature correspondences.

Then, we devise a Geometry Projection module, which ap-

proximately projects satellite features to a ground view-

point, based on the current camera pose estimate, to bridge

the domain gap between the views. Finally, a differentiable

Levenberg-Marquardt (LM) algorithm is embedded in the

pipeline to refine the pose. The LM optimization aims to

find the optimal camera pose such that the predicted deep

features originated from the satellite image match well to

the corresponding deep features extracted from the ground-

view image. Please refer to Fig. 1 for an overview.

We evaluate our method on two standard benchmarks

for autonomous driving, i.e. KITTI [15] and Ford multi-

AV datasets [2]. Both the datasets contain ground-level im-

ages by a vehicle-mounted camera with GT poses but with-

out satellite maps. We supplement them with correspond-

ing high-definition satellite maps, downloaded from Google

Map [1], for the evaluation of the proposed method.

2. Prior Arts

Image based localization. Image-based localization is

often formulated as an image retrieval problem and tackled

by metric learning techniques. It is solved by ground-to-

ground (G2G) image matching [3, 8, 9, 13, 14, 20, 29, 34, 36,

40, 43, 58]. Since the G2G image matching cannot localize

query images whose reference counterparts are not avail-

able, many recent works resort to the widespread satellite

images to construct the database [5, 7, 17, 27, 37, 45–49, 51,

55, 57, 60, 63, 67, 69].

These works approximate the query camera pose as the

pose of the top-1 retrieved reference image. They remain

effective at scale, but the pose estimates in this manner are

very coarse. In this work, we introduce a novel approach to

increase localization accuracy.

3D structure based localization. Works on 3D struc-

ture based localization usually employ a 3D scene model

as reference for query camera localization [4, 6, 10, 21, 23,

24, 28, 30, 39, 41, 42, 52, 53, 56, 66, 68]. Among these al-

gorithms, works [38, 61] also use the LM optimization for

camera pose estimation. However, they are designed for

ground-to-ground localization only and require knowing the

3D coordinates of image key points. This paper only uses a

high-definition satellite image as a reference and solves the

ground-to-satellite localization when 3D scene models are

unavailable.

SLAM/VO. Simultaneous Localization and Mapping

(SLAM) and Visual Odometry (VO) techniques have been

traditionally used for vehicle localization [11,16,18,19,30,

31, 33, 35, 44, 50, 59]. They first estimate relative camera

poses between consecutive image frames, and then inte-

grate them for global pose computation. As such, they suf-

fer from error accumulation, leading to an estimation drift.

Our proposed method only relies on a single frame. Hence,

it can complement the SLAM/VO method as a novel way of

(satellite image-based) loop-closure.

3. Method Overview

Given a coarse initial estimate of a ground camera’s

pose, we aim to optimize this pose in high accuracy by

matching it to a companion satellite map. Instead of for-

mulating this task as image retrieval, we propose a pose op-

timization framework described below.

Our framework consists of three components: (i) a two-

branch deep network for feature learning, (ii) a Geome-

try Projection module, and (iii) a differentiable Levenberg-

Marquardt (LM) optimizer, as shown in Fig. 2.

3.1. Deep robust feature learning

Deep neural networks are shown to be powerful in learn-

ing robust features that are resilient to viewpoint changes

and suitable for the task of visual localization [5, 27, 37,

46, 47, 51, 55, 60, 63, 64]. We design a two-branch neural

network to extract deep features from the ground and satel-

lite images separately. The U-net structure is used to learn

multi-scale feature representations.

3.2. Cross­view feature alignment

To bridge the evident cross-view domain gap, we devise

a Geometry Projection module which aligns the two view

features in the ground-view domain based on cross-view ge-

ometry. Our geometry projection module projects satellite-

view features to a ground viewpoint by establishing approx-

imate geometric correspondences and using a relative cam-

era pose between the two views.

3.3. Iterative pose refinement

We aim to find the optimal ground camera pose such

that the projected features from the satellite domain are the

most similar to the real observed ground-view features. To
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Figure 2. An overview of the proposed highly-accurate camera pose optimization procedure. Our method employs a two-branch deep

network to extract multi-scale robust features from ground and satellite images, respectively. Next, the Geometry Projection module maps

the satellite features to the ground-view domain, based on an initial camera pose R0, t0. By minimizing the differences between the

projected satellite features Fs2g and the observed ground-view features Fg , an LM optimization is employed to find the optimal camera

pose. The LM optimization is executed in a coarse to fine manner.

this end, we develop a new differentiable LM optimizer

for cross-view feature alignment. The LM optimizer iter-

atively refines the camera pose to match the cross-view fea-

ture maps.

When the initial camera pose is too far from the ground-

truth pose, the projected contents from a satellite image will

be considerably different from the observed ground image,

causing a local minima problem. We apply a coarse-to-fine

multi-scale LM update strategy to mitigate this issue. Fea-

tures at the coarsest level have a larger receptive field in the

original image and thus are suitable for coarse-level global

search in the solution space. Conversely, features at finer

scales have a larger spatial resolution and encode more de-

tailed scene information. Hence, they are more informative

for precise pose refinement.

4. Highly-accurate Pose Optimization

In this section, we provide a detailed analysis of the

proposed method. As mentioned before, we adopt a two

branch CNN to extract deep features from the ground and

satellite images, denoted as Fl
g ∈ R

Hl
g×W l

g×Cl

and Fl
s ∈

R
Hl

s×W l
s×Cl

, respectively, where l = 1, 2, 3 indicates the

scale level. The ground and satellite branches share the

same architecture but do not share weights. In this way,

they can adapt to their respective domains. The features at

each level are L2 normalized to increase their robustness for

cross-view matching.

4.1. Satellite­to­ground geometry projection

We introduce a Geometry Projection module to estab-

lish the cross-view geometric correspondences. Our ge-

ometry projection module projects satellite-view features to

a ground viewpoint based on the relative camera pose be-

tween the two view images.

We set the world coordinate system to the initial camera

pose estimate, with its location corresponds to the reference

satellite image center, x axis parallel to the vs direction of

the satellite image, y axis pointing downward, and z axis

parallel to the us direction. A 3D point (x, y, z) in the world

coordinate system is mapped to a satellite pixel coordinate

by the orthographic projection,

[us, vs]
T = [

z

α
+ u0

s,
x

α
+ v0s ]

T , (1)

where α as the per-pixel real-word distance of a satellite

feature map, and (u0
s, v

0
s) is the satellite feature map center.

The transformation from the real camera coordinate sys-

tem to the world coordinate system is formulated as

[x, y, z]T = R([xc, yc, zc]
T + t), (2)

where R and t are the rotation and translation matrices, re-

spectively. The projection from a 3D point to a pin-hole

camera image plane is given by

w[ug, vg, 1]T = K[xc, yc, zc]
T , (3)

where K is the camera intrinsic and w is a scale factor.

From Eq. (1)∼(3), we can derive the mapping from a

ground-view pixel to a satellite pixel as


us

vs
z


 =




1

α
0 0

0 1

α
0

0 0 1




wRK−1



ug

vg
1


+Rt


+



u0
s

v0s
0


 .

(4)

When the depth map of the ground-view image is avail-

able, i.e., w is given, the satellite to ground projection can
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be easily conducted by Eq. (4). However, it is challenging

to estimate depths from a single ground image. Consid-

ering the overlap between a ground and a satellite image

mainly lies on the ground plane, our geometry projection is

conducted by using the homography of the ground plane.

In other words, we make all the ground-view pixels cor-

responds to the points on the ground plane by setting yc
in Eq. (3) to the distance between the query camera to the

ground plane. Then, w can be computed from Eq. (3).

This projection defined on ground plane homography is

only approximately correct. To handle objects higher than

the ground place and reduce distortions in the projection, we

project deep features rather than RGB pixels to measure the

gap. These deep features encode high-level semantic infor-

mation and therefore are less sensitive to object heights than

RGB values. By Eq. (4), we conduct the satellite to ground

geometry projection using bilinear interpolation, obtaining

F
l
s2g ∈ R

Hl
g×W l

g×Cl

as the projected ground-view features

from satellite features at scale l.

4.2. Multi­level LM optimization

The differences between the satellite and the ground ob-

servations are given by,

el = Fl
s2g − Fl

g. (5)

The objective is to find the optimal pose R̂ and t̂ of the

ground camera by minimizing the following loss function,

ξ̂ = argmin
ξ

∥el∥22, (6)

where ∥·∥22 is the L2 norm, ξ = {R, t} and ξ̂ corresponds to

its optimal solution. We solve this non-linear least squares

problem by the Levenberg-Marquardt(LM) optimization al-

gorithm [22, 32].

For each level l, we compute a Jacobian matrix and a

Hessian matrix,

J =
∂Fs2g

∂ξ
=

∂Fs2g

∂ps

∂ps

∂ξ
, and H = JTJ, (7)

where ps is the satellite feature map coordinates.

We choose to use Levenberg’s damping formula i.e.,

H̃ = H + λI, for its convenience in network training. λ

is the trade-off parameter which interpolates between the

gradient decent (λ = ∞) and Gaussian-Newton (λ = 0)

algorithm. Alternatively, the Marquardt’s damping formula

may be used instead [32].

The pose is updated by,

ξt+1 = ξt + H̃−1JT e, (8)

where t index iterations.

The LM optimization is first applied at the coarsest fea-

ture level and gradually propagates to finer levels. This

coarse-to-fine (C2F) scheme is executed iteratively until it

converges or reaches a maximum iteration of 5. This multi-

scale C2F procedure offers an opportunity to escape from

local minima and is more likely to find the global optimum.

We had attempted to embed a confidence map in Eq. (6).

The intention was to give higher weight to salient visual

features (e.g., corner points) and lower weight to textureless

regions. However, in our experiments, we did not observe

consistent improvement across different test sets. Hence

this idea is not employed in our current method.

4.3. Training objective

The LM optimization is implemented in a differentiable

manner in our pipeline (within a feed-forward pass). The

network is trained end-to-end. We use the GT camera poses

as our network supervision,

L =
∑

t

∑

l

(∥R̂l
t −R∗∥1 + ∥t̂lt − t∗∥1), (9)

where R̂l
t and t̂lt is the predicted pose by our method at the

tth iteration and lth level, R∗ and t∗ is the GT camera pose.

During training, when the camera pose provided by the

LM optimization deviates from the GT value, the error will

be backpropagated to the feature extraction network and up-

date its parameters. In this way, our network is trained to

learn useful cross-view features for pose optimization.

5. Satellite-augmented KITTI and Ford Multi-

AV dataset

We evaluate the feasibility of the proposed method in two

standard autonomous driving datasets,i.e., KITTI [15] and

Ford multi-AV dataset [2]. Cameras used in both dataset are

intrinsically calibrated. Based on the GPS provided by the

datasets, we collect satellite images from Google Map [1].

The satellite images are downloaded with zoom 18. The

per-pixel resolution for satellite images in KITTI is 0.20 m,

and for Ford multi-AV, it is 0.22 m.

KITTI. The KITTI dataset contains stereo images captured

by a moving vehicle from different trajectories at different

times. There is barely any revisited trajectory. We split the

entire dataset (raw data) into three subsets, one for training

and two for testing, denoted as Training, Test1, and Test2,

respectively. The Training and Test1 sets are from the same

region, while Test2 is in a different area. Test2 is used to

evaluate the generalization ability of an algorithm. We use

the left image in a stereo pair as our query image.

Ford multi-AV dataset. The Ford multi-AV dataset con-

sists of data captured by three vehicles, V1, V2, and V3.

Each vehicle is equipped with 7 cameras. Among the three

vehicles, only V2 captured images from six trajectories

(Log1∼Log6) at two different dates/drives, i.e., 2017-08-

04 and 2017-10-26. Hence, we use the front left camera of
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Query Reference Query Reference Query Reference
Figure 3. Failure cases of our method on longitudinal location optimization. The scene facades shown in the ground-view are not visible

in the overhead view. We can only determine the lateral translation of a ground vehicle. Driving along a highway suffers even considerable

ambiguity on the longitudinal location optimization. Here, red arrows represent initial poses, green arrows denote final predicted poses,

and blue arrows indicate GT poses. The magenta points pinpoint intermediate locations during optimization.

Table 1. Performance comparison between our method and state-of-the-art methods on KITTI dataset.

Test1 Test2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

CVM-NET [17] 5.83 17.41 28.78 3.47 11.18 18.42 - - - 6.96 21.55 35.24 3.58 10.45 17.53 - - -

CVFT [49] 7.71 22.37 36.28 3.82 11.48 18.63 - - - 7.20 22.05 36.21 3.63 11.11 18.46 - - -

SAFA [46] 9.49 29.31 46.44 4.35 12.46 21.10 - - - 9.15 27.83 44.27 4.22 11.93 19.65 - - -

Polar-SAFA [46] 9.57 30.08 45.83 4.56 13.01 21.12 - - - 10.02 29.09 46.19 3.82 11.87 19.84 - - -

DSM [47] 10.12 30.67 48.24 4.08 12.01 20.14 3.58 13.81 24.44 10.77 31.37 48.24 3.87 11.73 19.50 3.53 14.09 23.95

VIGOR [70] 18.61 49.06 69.79 4.29 13.01 21.47 - - - 17.38 48.20 70.79 4.07 12.52 20.14 - - -

Ours 35.54 70.77 80.36 5.22 15.88 26.13 19.64 51.76 71.72 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00

Table 2. Performance comparison between our method and state-of-the-art image retrieval approaches on the Ford multi-AV dataset.

Log1 Log2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

CVM-NET [17] 9.14 25.67 41.33 4.81 13.19 21.90 - - - 9.82 28.60 47.06 4.24 11.83 20.34 - - -

CVFT [49] 10.57 31.10 51.19 3.52 11.43 20.38 - - - 12.21 35.07 57.61 4.40 12.18 21.41 - - -

SAFA [46] 9.33 28.71 47.95 4.33 11.76 20.14 - - - 11.22 34.10 53.39 5.02 13.36 22.89 - - -

Polar-SAFA [46] 9.05 28.62 47.10 4.43 12.14 21.10 - - - 12.02 35.63 56.21 4.29 12.13 20.28 - - -

DSM [47] 12.00 35.29 53.67 4.33 12.48 21.43 3.52 13.33 23.67 8.45 24.85 37.64 3.94 12.24 21.41 2.23 7.67 13.42

VIGOR [70] 20.33 52.48 70.43 6.19 16.05 25.76 - - - 20.87 54.87 75.64 5.98 16.88 27.23 - - -

Ours 46.10 70.38 72.90 5.29 16.38 26.90 44.14 72.67 80.19 31.20 66.46 78.27 4.80 15.27 25.76 9.74 30.83 51.62

V2 as our query images. For each trajectory, we split testing

and training sets based on different drives.

Evaluation Metrics. Satellite images can only provide a

vehicle’s location and orientation (i.e., azimuth angle) ref-

erence. Thus this paper estimates a 3-DoF vehicle pose by

ground-to-satellite matching. We report vehicle’s location

errors along the longitudinal direction (i.e., driving direc-

tion) and along the lateral direction, separately. This is be-

cause, using satellite map to localization, the uncertainty of

vehicle location along the driving direction is often more

considerable than that along the lateral direction. For in-

stance, when a vehicle is driving on the road with tall build-

ings on both sides, the vehicle’s location along the driv-

ing direction is mainly determined by the building facades

appearance. However, facades are not visible from the

satellite image. Driving on a highway is another scenario

where the ambiguity is significant because the scenes along

the driving direction are often monotonous and repetitive–

uninformative for localization. In contrast, lateral vehicle

location can be obtained more reliably using road bound-

aries. Moreover, multi-lane freeways in rural areas are al-

most always visible on a satellite map.

When the estimated translation of a camera is within d m

to its GT translation along a direction, it is deemed a correct

estimation. When the estimated value of a rotation angle is

within θ to its GT value, the estimation is deemed correct.

We set d to 1, 3, and 5 respectively, and θ to 1◦, 3◦ and 5◦ re-

spectively. Since this work focuses on autonomous driving,

we did not test on other cross-view datasets (e.g., [67], [27]

and [70]), also because they do not provide ground-view

heading directions relative to the satellite map, making a

meaningful comparison harder.

6. Experiments

We first compare our method with those fine-grained im-

age retrieval methods, and then conduct experiments to an-

alyze each component in our framework.

Implementation details. The satellite image resolution

used in our experiments is 512 × 512, corresponding to a

coverage of around 100 × 100 m2. We assume the city-

scale image retrieval has restricted the camera location to
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be in a region of 40m×40m around the satellite image cen-

ter. Within this region, we conduct a high-accuracy pose

search. The choice of this search region guarantees that the

satellite image can provide a reference of at least 30 m vi-

sual distance for a query camera, e.g., when a query cam-

era is on the boundary of the region and looking outside.

The resolution of ground-view images is 256 × 1024. The

feature-level l corresponds to a scale of 1

24−l with respect

to the original image resolution. We use Adam optimizer to

train our network with a learning rate of 10−4, β1 = 0.9,

and β2 = 0.999. The network is trained by 2 epochs

on a RTX3090 GPU with a batch size of 3. Our method

is fully implemented in Pytorch. The pose optimization

runtime for a query image is around 500 ms. Unless

specifically stated, the rotation noise is set to 20◦ through-

out the experiments. The source code and datasets can

be accessed at https://github.com/shiyujiao/

HighlyAccurate.git.

6.1. Comparison with fine­grained image retrieval

Given a query image, its retrieved satellite counterpart

from a city-scale database provides a coarse location esti-

mate of this query image. To refine this pose estimate, a rea-

sonable approach might be splitting the satellite image into

small patches further and conducting a fine-grained image

retrieval. Hence, we first show the performance of the state-

of-the-art cross-view localization algorithms by using this

fine-grained image retrieval for camera pose refinement.

Settings. During inference stage for image retrieval

based method, we sample a grid within the 40m × 40m

search region uniformly and crop corresponding satellite

patches centered at the grid points to construct the fine-

grained retrieval database. Since our method searches 15
possible solutions, i.e., 3 feature levels×5 iterations, the

grid size is set to 4× 4 in the fine-grained retrieval for a fair

comparison. Note that the regular discretized grids only ap-

ply to the inference stage. During training stage, the grids

are continuously, randomly, and exhaustively sampled.

Competing models. We compare our method with

state of the art CVM-NET [17], CVFT [49], SAFA [46], Polar-

SAFA [46], DSM [47], and VIGOR [70]. Among these meth-

ods, DSM is the only one that can estimate the orientation

of a query camera, while others are restricted to location

estimation only. Only VIGOR considers the spatial shifts

between a query camera location and its matching satellite

image center, and they employ two FC layers to regress the

spatial shifts. Toker et al. [57] needs a matching ground-

level image for each database satellite image to train their

generator, which is not available in our fine-grained retrieval

setting. Hence, we cannot compare to it. The above com-

peting models were retrained (fine-tuned) on our datasets

using their original metric learning procedure.

Results. The comparison results on KITTI and Ford

(a) KITTI dataset

(b) Ford multi-AV dataset

Figure 4. Performance comparison of our method when rotation is

given or unknown (rotation noise 0
◦ Vs. 20◦).

multi-AV dataset are presented in Tab. 1 and Tab. 2, respec-

tively. For space limits, only the results on the first two logs

of the Ford multi-AV dataset are presented in the main pa-

per. We provide the performance on the remaining logs of

our method in the supplementary material.

From Tab. 1 and Tab. 2, it can be seen that the pure im-

age retrieval-based methods, i.e., CVM-NET [17], CVFT [49],

SAFA [46], Polar-SAFA [46], DSM [47], show very poor per-

formance on the high-accuracy distance based localization.

This is not only because the database images are discretized

but also because the fine-grained partitions of a satellite im-

age are very similar, inducing large uncertainty in cross-

view image matching. Since VIGOR explicitly considers the

relative displacement between a query camera center and

its matching satellite image center, it achieves better per-

formance compared to the pure image retrieval techniques.

Moreover, the performance is significantly boosted by using

the proposed camera pose optimization mechanism rather

than a fine-grained image retrieval.

Visualization. As expected, the performance of all the

methods on longitudinal direction is worse than that on the

lateral direction. We give some visual examples of such am-

biguities along the longitudinal direction in Fig. 3. Despite

this ambiguity, our method is still able to refine lateral poses

effectively. Fig. 5 gives additional visualizations of the in-

termediate poses by our method when the scenes are diverse

at different regions.

Known orientation. In general, the azimuth rotation of

a query camera can be easily obtained from a compass, and

the rotation estimation accuracy by SLAM and VO meth-

ods is usually accurate. Hence, we test our method when

orientation information is given. Fig. 4 reports the test re-

sults. It can be seen that the performances of our method

are consistently improved.
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Figure 5. Visualization of updated poses during optimization. The arrow and point legends are the same as those in Fig. 3.

Table 3. Performance comparison on different ground-and-satellite domain alignment methods on the KITTI dataset.

Test1 Test2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

G2SP
NN 20.30 53.25 72.12 4.93 15.08 25.31 21.65 54.44 71.88 17.01 46.12 64.41 5.16 15.18 25.31 20.66 51.45 70.03

H 27.72 59.98 71.91 5.75 16.80 26.13 18.13 48.77 69.26 25.32 54.63 64.74 4.99 15.61 26.31 17.37 46.57 67.70

S2GP
Polar 18.98 45.93 55.79 5.14 14.95 24.99 13.31 39.25 61.20 11.27 40.51 53.62 4.87 14.73 25.19 13.78 39.68 62.03

H (Ours) 35.54 70.77 80.36 5.22 15.88 26.13 19.64 51.76 71.72 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00

6.2. Method Analysis

6.2.1 Effectiveness of GP geometry projection

S2GP Vs. G2SP. Compared to satellite images, ground-

view images have a larger resolution of scene objects. A

small change in the camera pose will be magnified on the

appearance changes of ground-view images. In contrast, the

corresponding appearance changes in the overhead view are

smaller. This sensitiveness of ground-view observations to

camera pose changes is a desired property. It contributes to

a higher accuracy of estimated poses. Hence, we conduct

satellite-to-ground projection (S2GP), instead of ground-

to-satellite projection (G2SP), in our geometry projection

module. Below, we compare the performance of the two

projection methods. Since we use the homography of the

ground plane in the projection, we label them by “H” in

Tab. 3. As expected, the performance of S2GP is superior

to that of G2SP.

Homography Vs. Polar transform. Apart from ho-

mography, polar transform was adopted in the literature for

bridging the cross-view domain gap [46, 47, 57]. We intend

to compare our method with the polar transform in S2GP,

labeled as “Polar”. From the results in Tab. 3, it can be seen

the polar transform performs worse than the homography.

This is possiblly because the polar transform only accounts

for ground-level panoramas rather than images captured by

a ground-level pin-hole camera.

Explicit geometry projection Vs. Implicit network.

In contrast to using an explicit geometry transform, we also

tested whether a simple neural network can learn an implicit

geometric mapping for the same purpose, denoted as “NN”.

Here, the NN ablation cannot be conducted in the S2GP

direction, because the S2GP is a whole-to-part mapping and

will loss much information in the projection. When the ini-

tial pose is significantly different with the real one, the syn-

thesized ground-view feature map at the initial pose can be

totally different with the real observed one. In this case, it

is impossible to make the synthetic and real feature maps

aligned by simple image/feature level rotation and transla-

tion. Suppose we let NN regenerate a ground feature map

for the original satellite image at each pose update. The Ja-

cobian of network parameters will be required at each LM

optimization step, which takes a significant amount of GPU

memory and is far beyond the capacity of existing 12/24G

GPUs. In contrast, our geometry-based S2GP does not in-

volve any network parameters in the LM optimization and

thus is feasible. Therefore, our NN ablation is conducted

in the G2SP direction. We employ a network that takes a

ground image as input and outputs a synthetic satellite fea-

ture map. After that, the LM directly rotates and translates

the synthetic feature map to register it with its real counter-

part without any NN regeneration.

As shown in the first row of Tab. 3, the results are not

favorable. Although “NN” achieves slightly better perfor-

mance than our geometry projection (both S2GP and G2SP)

on rotation estimation, its capability in handling translation

optimization is rather limited. Our reflection on this is that

whenever explicit and principle geometric knowledge about

the problem at hand is known and can be used, one should

use it instead of black-box neural network implementations.
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Table 4. Performance comparison by using different optimizers on the KITTI dataset.

Test1 Test2

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5 d = 1 d = 3 d = 5 d = 1 d = 3 d = 5 θ = 1 θ = 3 θ = 5

SGD 16.86 39.60 51.15 4.72 15.29 25.39 10.05 30.37 49.80 16.06 38.41 50.29 5.00 15.34 25.70 9.98 30.03 50.13

ADAM 7.13 21.15 32.97 4.96 15.13 25.63 10.36 30.32 50.49 7.33 21.36 33.52 5.64 15.38 26.00 10.28 30.81 50.91

Net 27.14 58.28 71.91 4.53 15.19 25.36 45.56 93.19 99.76 20.26 53.94 67.42 5.40 15.82 25.58 42.03 92.32 99.81

LM (Ours) 35.54 70.77 80.36 5.22 15.88 26.13 19.64 51.76 71.72 27.82 59.79 72.89 5.75 16.36 26.48 18.42 49.72 71.00

6.2.2 Superiority of LM optimization

LM Vs. SGD and ADAM. Stochastic Gradient Decent

(SGD) and ADAM are widely-used optimization methods

in neural network training. They have also been demon-

strated as effective in many recent Nerf-based methods for

scene-specific camera pose estimation [26, 62, 65]. Hence,

we compare the LM algorithm employed in this paper with

the first-order SGD and Adam on the ground-to-satellite

camera pose optimization.

As shown in Tab. 4, it can be seen that the LM optimiza-

tion performs significantly better than SGD and ADAM.

This is because the adaptive second-order LM optimization,

as a variant of Gaussian Newton, is essentially guaranteed

to find at least one local minimum of a cost function. In

contrast, SGD suffers the usual zigzagging behavior and is

thus very slow to converge. Although ADAM is often better

than SGD on neural network training, we found that it per-

forms the worst among the comparison optimizers in this

ground-to-satellite pose optimization.

LM Vs. Network-based optimizer. Using a network

to mimic an optimizer has also been investigated in various

tasks, for example, optical flow [54], view synthesis [12],

and object pose estimation [25]. Hence, we also compare

with a network-based optimizer, denoted as “Net” in Tab. 4.

The network-based optimizer is composed of a set of con-

volutional layers and fully connected layers. We also used

convolutional GRU and LSTM to construct the network-

based optimizer, but we found no significant difference.

Interestingly, we found that the network-based opti-

mizer performs significantly better on rotation optimization

while achieving inferior translation optimization perfor-

mance than LM. This is probably because regular CNNs are

not inherently rotation-invariant. A slight rotation change

in the input signal will lead to a big difference in the CNN

feature maps. Such amplified changes give the CNN-based

optimizer more power to search for better rotations. On the

other hand, CNNs are translational invariant/equivariant. A

small change in translation can be absorbed by higher-level

CNN features, adversely affecting the accuracy of transla-

tion estimation. These observations have been confirmed

in our experiments as seen in Tab. 3. Using a network for

the ground-and-satellite domain mapping performs better

than the geometry-guided method on rotation optimization,

while worse on translation optimization. It deserves further

exploration to better combine the advantages of principled

theories (e.g., geometry and LM optimization) with data-

driven approaches.

7. Conclusion

In this paper, we have proposed a novel method for ac-

curate camera localization using ground-to-satellite cross-

view images. This new method represents a departure from

the conventional wisdom of image retrieval-based localiza-

tion. The key challenge lies in properly handling the vast

domain gap between the cross-view setting (satellite Vs.

ground-view). To this end, we have devised a Geometry

Projection module that aligns the two-view features in the

ground domain. A principled LM optimization algorithm

is employed to optimize the relative camera poses progres-

sively in an end-to-end manner.

Although this work was motivated by the poor accuracy

of conventional image retrieval-based localization, we do

not intend to replace the image retrieval-based localization

technique. Instead, city-scale place retrieval can provide an

initial estimate for a query camera. Our method then refines

this pose estimate to higher accuracy.

Our ground-to-satellite pose optimization method can

also help the conventional SLAM and visual odometry

methods for camera tracking as a novel mechanism for

“loop closure” in SLAM. In particular, we remark that com-

bining our method with a VO pipeline may resolve the lon-

gitudinal ambiguity issue, achieving all-around highly accu-

rate vehicle localization. Furthermore, we expect the overall

performance of our method will be further improved when

depth information is available, for example, provided by

stereo images or Lidar points. This is left as a future work.
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Wang, and Martin Čadı́k. Landscapear: Large scale out-

door augmented reality by matching photographs with ter-

rain models using learned descriptors. In European Confer-

ence on Computer Vision, pages 295–312. Springer, 2020.

2

[5] Sudong Cai, Yulan Guo, Salman Khan, Jiwei Hu, and

Gongjian Wen. Ground-to-aerial image geo-localization

with a hard exemplar reweighting triplet loss. In The IEEE

International Conference on Computer Vision (ICCV), Octo-

ber 2019. 1, 2

[6] Song Cao and Noah Snavely. Minimal scene descriptions

from structure from motion models. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 461–468, 2014. 2

[7] Francesco Castaldo, Amir Zamir, Roland Angst, Francesco

Palmieri, and Silvio Savarese. Semantic cross-view match-

ing. In Proceedings of the IEEE International Conference on

Computer Vision Workshops, pages 9–17, 2015. 2

[8] Zetao Chen, Adam Jacobson, Niko Sünderhauf, Ben Up-

croft, Lingqiao Liu, Chunhua Shen, Ian Reid, and Michael

Milford. Deep learning features at scale for visual place

recognition. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 3223–3230. IEEE,

2017. 1, 2

[9] Mark Cummins and Paul Newman. Fab-map: Probabilistic

localization and mapping in the space of appearance. The

International Journal of Robotics Research, 27(6):647–665,

2008. 2

[10] Michael Donoser and Dieter Schmalstieg. Discriminative

feature-to-point matching in image-based localization. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 516–523, 2014. 2

[11] Ryan C DuToit, Joel A Hesch, Esha D Nerurkar, and Ster-

gios I Roumeliotis. Consistent map-based 3d localization on

mobile devices. In 2017 IEEE international conference on

robotics and automation (ICRA), pages 6253–6260. IEEE,

2017. 2

[12] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-

Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and

Richard Tucker. Deepview: View synthesis with learned gra-

dient descent. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2367–

2376, 2019. 8
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