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Abstract

In this paper, we first investigate the class-wise visual
quality imbalance problem of scene images generated by
GANs. The tendency is empirically found that the class-wise
visual qualities are highly correlated with the dominance of
object classes in the training data in terms of their scales
and appearance frequencies. Specifically, the synthesized
qualities of small and less frequent object classes tend to be
low. To address this, we propose a novel attention module,
Local Attention Pyramid (LAP) module tailored for scene
image synthesis, that encourages GANs to generate diverse
object classes in a high quality by explicit spread of high at-
tention scores to local regions, since objects in scene images
are scattered over the entire images. Moreover, our LAP as-
signs attention scores in a multiple scale to reflect the scale
diversity of various objects. The experimental evaluations
on three different datasets show consistent improvements in
Frechet Inception Distance (FID) and Frechet Segmentation
Distance (FSD) over the state-of-the-art baselines. Further-
more, we apply our LAP module to various GANs methods
to demonstrate a wide applicability of our LAP module.

1. Introduction

Generative Adversarial Networks (GANs) [7] has lead

the remarkable progress in image generation tasks. Its recent

advances have reached to generate images nearly indistin-

guishable from real-world images even on the large-scale

benchmarks [15,16]. Nonetheless, generating diverse objects

in a scene image has not been received sufficient attention

in the field. The datasets which most approaches have been

focusing on usually have a single object centered at the im-

age such as human faces. However, the real-world scene

images have various objects in diverse regions, as all we

know. In this aspect, we raise a question “can the GANs

produce scene images including diverse objects in a high

quality?”.

In the GANs framework, the generator learns to produce

high-quality samples to deceive the discriminator. In the
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scene image generation, the generator tends to first synthe-

size big and frequently appeared object classes since it can

be a shortcut to reduce a discrepancy between real and fake

distributions. This leads the generator to become just an

expert at drawing the dominant objects in the scene. It can

cause a significant class-wise visual quality imbalance prob-

lem, especially low qualities for the object classes with small

scales or low appearance frequencies. Let us denote those

object classes as non-dominant objects throughout this paper.

To support the above raised argument, we first conduct

preliminary study in the scene image generation with the

state-of-the-art GANs (i.e. StyleGAN [13]). We measure the

class-wise quality scores based on the segmentation results

(Sec. 3 and Fig. 1). The pilot study shows that GANs tend

to produce non-dominant objects in lower quality. This

empirical evidence motivates us to develop a way to ensure

balanced quality over diverse object classes.

To mitigate the aforementioned problem, we propose

a simple yet effective attention module, Local Attention

Pyramid (LAP) tailored for the scene generation, that spreads

attentions over the entire image regions and drives high

local attentions in various scales. Specifically, our LAP

module receives feature maps as its input and first determine

coarse locations of each object class by employing depthwise

convolution layers. Since depthwise convolution has no

intervention between channels, we can infer the feature maps

that maintain feature representations of each channel which

is highly related to parts of the object [1]. We then divide

feature maps into several feature patches and perform an

instance normalization for each patch, before feeding them

into the sigmoid function. By doing this, LAP amplifies the

locally high activation scores in each patch. Thus, it spreads

high attentions to diverse regions that can encourage the

features of various objects scattered in image. To handle the

diversity of object scales, our LAP module infers multiple

attention maps with various patch sizes based on the feature

map pyramid.

Our main contributions are summarized as follows:

• We highlight that GANs suffer from the class-wise im-

age quality imbalance problem in the scene synthesis

task. In its empirical investigation, we found that GANs

more concentrate on generating big and frequently ap-
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peared objects and thus provide inferior visual qualities

for the non-dominant objects.

• We introduce a novel Local Attention Pyramid (LAP)

module to address the class-wise quality imbalance

problem that scatters the attentions over different re-

gions with locally high scores by reflecting the charac-

teristics of the scene images.

• Since our LAP is a generic module, it can be applied to

various GANs architectures, loss functions, and training

strategies. We apply the LAP to various state-of-the-

art GANs methods, and evaluate on large-scale scene

image benchmarks with various quality measures. Ex-

perimental results show that the LAP significantly and

consistently improves image quality with very few ad-

ditional learnable parameters.

2. Related Work
Generative Adversarial Networks. There have been

many great works to improve the visual quality of synthe-

sized samples by developing the network architecture of

GANs [3, 12–14, 21–23]. As the most pioneering work,

Radford et al. [22] proposed DCGAN that employs strided

and transposed convolutions. Recently, StyleGAN [13, 14]

proposed to inject latent codes to each convolution layer in

order to disentangle the factors of variation. MSG-GAN [12]

proposed to connect the intermediate layers between the gen-

erator and the discriminator to allow the discriminator to

look at multiple scales of the intermediate outputs of the gen-

erator. In this work, we propose a module based on a novel

local attention pyramid mechanism applicable for existing

GANs architectures to improve the visual quality of various

objects located in diverse regions. We validate the merits

of our method by applying our LAP module to the several

aforementioned GANs architectures.

Attention mechanism. In recent years, simple and effec-

tive attention mechanisms [9, 10, 24, 26] have been proposed

in the computer vision literature. Typically, they receive

feature maps of a convolution block as input and refine them

by attention mechanism. For instance, SENet [9] proposed

to employ a channel attention mechanism to enhance inter-

channel relationships. On the other hand, Woo et al. [24]

introduced CBAM which utilizes both spatial and channel

attentions in a sequential way. In the domain of GANs, a few

attention techniques have proposed mainly based on the self-

attention mechanism [6, 26]. Zhang et al. [26] introduced

a self-attention layer for modeling long-range dependency

between spatially distant features. Daras et al. [6] reduced

the computational complexity of the self-attention process

by computing attention maps in a multi-step manner. In this

work, we explicitly distribute the activation values to infer
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Figure 1. Class-wise FID scores with their pixel percentages

( the number of pixels of a class

total number of pixels
) in synthesized scene images. The class-

wise visual qualities tend to be negatively correlated with the pixel

percentages. It is an empirical evidence that GANs generates less

frequent or small-scaled objects in lower qualities, while concen-

trating more on a few but dominant object classes. Note that, the

StyleGAN [13] is utilized for this experiment. For each class, we

compute class-wise FID score from 5K of real and fake patches.

the high attention scores for each region. It helps to enhance

the feature representation of various objects since the objects

are spread out in the scene images.

3. Problem Definition

In this paper, we restrict our discussion on the scene

image generation with GANs. Although there are various

objects in the real scene images, GANs tend to concentrate

on generating few but dominant objects in high quality but

neglect other diverse objects. Since the dominant objects

are large-sized and frequently appeared in training dataset,

the learning of GANs framework mainly focuses on them,

as discussed earlier. Thus, it may be natural to have the

low visual qualities especially in the case of non-dominant

objects.

To support the raised argument, we perform an experi-

ment to investigate the tendency of class-wise generation

quality with respect to the total number of pixels correspond-

ing to each class in a dataset by utilizing the state-of-the-art

GANs, StyleGAN. In the experiment, we meausre the class-

wise FID scores. Specifically, given a set of real and fake

samples, we first compute the segmentation maps using a pre-

trained segmentation model [25]. The class-wise cropped

image patches are then collected based on the segmentation

results. Finally, the class-wise FID values between real and

fake patches are computed. One desirable trend might be the

consistent FID values across different object classes. How-

ever, the experimental results show the tendency that the

FID values become worse from dominant to non-dominant

objects as reported in Fig. 1. For instance, the FID of the

chair class are about 9 points higher than the bed class.

The aforementioned problem guides us a motivation that

GANs can produce diverse objects with higher visual qual-

ity, if the GANs try to learn the object concepts in diverse

regions during training phase. To this end, we propose a
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Figure 2. Overall framework of our proposed attention module. (a)

Channel-separated transformation infers coarse location of class-

wise spatial attention. We employ depthwise convolution layers to

prevent intervention between channels, since it can cause the loss of

feature representations of each channel that is highly related to parts

of object. (b) Local Attention Pyramid divides the feature maps

into multi-scale patches, and applies patch instance normalization

followed by the sigmoid into the patches. Then, the computed

local attention map are combined in a recursive manner. LAP

encourages the model to generate diverse objects with higher quality

by amplifying locally high attention scores in every multi-scale

patches.

local attention mechanism for scene GANs. Our proposed

attention mechanism assumes that a scene image has various

objects on its diverse regions. Thus, we aim to explicitly

guarantee high attention scores for each spatial region. We

first explain our attention mechanism on Sec. 4 and validate

the effectiveness against various baseline GANs architec-

tures as well as off-the-shelf attention modules on Sec. 5.

4. Our Approach

Our attention module receives a 3D feature map and trans-

forms it for the next convolution block. We have two main

components, 1) channel-separated transformation, and 2) lo-

cal attention pyramid, as illustrated in Fig. 2. Intuitively, the

first component (Sec. 4.1) derives rough locations of each ob-

ject class by computing channel-wise spatial attention scores

without any normalization, while the second one (Sec. 4.2)

performs the score normalization with various patch sizes to

deal with object scale diversity.

4.1. Channel-separated Transformation

In a high level, we first determine coarse locations of each

object class or its parts by transforming the input features.

Since each channel of GANs is highly related to parts of

an object class as discussed in [1], we compute a spatial

attention score map for each channel unlike typical attention

mechanisms utilizing a global attention map.

In typical attention mechanisms, the locations to focus are

computed by convolution operations. However, the general

convolution operation is not appropriate for our purpose to

compute class-wise spatial attention scores since it involves

multiple channels during the computation. Such intervention

among channels can cause a loss of channel-wise informa-

tion highly related to parts of the object [1]. In downstream

tasks, condensation operations help to highlight discrimina-

tive features, however, they disturb to spread focuses to the

diverse objects in generation tasks. As a result, the convo-

lution layer, where the filters are fully-connected across the

channel axis, is not suitable for our LAP module.

To meet our purpose, we utilize the depthwise convolution

layer, since it does not allow the intervention among chan-

nels. This way, we can compute locations to focus for each

channel independently. Specifically, we design our channel-

separated transformation component upon the CBAM [24]

and add a pathway of depthwise convolution layers on it.

Note that, we do not perform any normalization or activation

unlike other attention modules but pass the raw values to

the LAP, since the LAP encourages to generate objects in

diverse scales based on normalization within various sized

patches.

Let us describe the practical implementation of our

channel-separated transformation. Given an input intermedi-

ate feature map F ∈ R
C×H×W , we first squeeze the input

feature map along channel dimension through poolings and

convolution layers as follows:

F ′ = Conv
([

AvgPool(F );MaxPool(F )
])
, (1)

where Conv(·), AvgPool(·) and MaxPool(·) indicate a con-

volution operation with the 3×3 kernel size, average pooling

and max pooling, respectively. By doing this, the general

feature representation for locations to focus is contained to

the F ′ ∈ R
1×H×W [24]. As aforementioned, we perform

the channel-separated transformation from the input feature

map F , and then modulate the F ′ as follows:

Fa = Conv
γ
d(F )� T (F ′, C) + Conv

β
d (F ), (2)

where Conv
γ
d and Conv

β
d denote the 3×3 depthwise convo-

lution operations but having different learnable parameters,

� indicates an element-wise multiplication and T (f, n) is

the tile function that copies a feature map f with n times

along channel dimension. We feed the computed feature

maps Fa ∈ R
C×H×W to our local attention pyramid.

4.2. Local Attention Pyramid

We can directly utilize the transformed feature map com-

puted in Sec. 4.1 with a proper activation function such as

the sigmoid. However, we still have a concern that the chan-

nels corresponding to the dominant objects can suppress the
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Figure 3. A toy example describing our local attention pyramid module. The example illustrates inferring local attention pyramid on 8× 8
feature map with pyramid level p = 2. The most right image shows the output of LAP module. To clearly compare “Result” and “Input”, we

scale the “Input” to have the same amount of total values with “Result”. As shown, the LAP amplifies locally peaked activations.

others in the end, since they are highly likely to cover spa-

tially broad regions in the feature maps. Since it is harmful

for generation of diverse objects in high quality and chan-

nels of the feature map have different distributions, a proper

channel-wise normalization should be performed. Moreover,

the importance of locally high scores (i.e. having greater

scores than its neighbors) should be distinguished depending

on the object class related to the channels. For instance, a

locally high scored cell related to a small-scaled object needs

to receive more attention than one for a large object.

The aforementioned issue motivates us to propose our

Local Attention Pyramid (LAP). The LAP is developed to

amplify the locally high activation scores within different

sized patches. A base operation of the LAP is to divide a

channel of the feature map into a grid and perform a nor-

malization within each grid cell independently. After the

normalization, the whole channel proceeds to the sigmoid

function. Such an independent normalization within a patch

results the emphasis of local peaks and spread of high at-

tentions to diverse regions. Furthermore, we perform the

patch-wise normalization with various sized patches based

on a spatial pyramid, since the size of patch for the normal-

ization is closely related to the object scale. As a result, the

LAP assigns attention scores with consideration on the scale

diversity of various objects.

Attention map at pyramid level p. For the sake of simplic-

ity, we explain with the assumption that the shape of both

Fa and feature patches are square. Given an input Fa, the

patch size sp at pyramid level p is defined as follows:

sp = l
2p , (3)

where l is the length of longer side of Fa. We then normalize

each sp × sp sized feature patch based on the following

instance normalization function:

Patch-IN(f, kh, kw, sh, sw), (4)

where Patch-IN is performed for the input f with a kh × kw
sized sliding window and a stride size s(·) along the spatial

axis. The Patch-IN function calibrates the highest activated

value of a feature patch to nearby 1. Thus, the sigmoid

results of the Patch-IN output always include high attention

scores within the patch. Our LAP module computes the

attention map M(Fa, s
p) as follows:

M(Fa, s
p) = σ

(
Patch-IN(Fa, s

p, sp, sp, sp)
)
, (5)

where σ(·) is the sigmoid function. In practice, we set the

k(·) = s(·) = sp so that the Patch-IN operates on non-

overlapping feature patches.

Multi-scale attention maps and their aggregation. We

compute multi-scale attention maps in a recursive manner as

illustrated in Fig. 3.

Let us denote the feature map at pyramid level p as F p
a .

We begin with the smallest patch size defined at the highest

level (Eq. 3). At each level, our LAP module first computes

an attention map based on Eq. 5. We then apply the attention

to the current feature map and pass the result to the next

level as the following recursive equation:

F p−1
a = α · F p

a + (1− α) · (M(F p
a , s

p)� F p
a ), (6)

where α is a decay factor that controls the amount of influ-

ence from previous attention scores, and � denote element-

wise multiplication. Note that, we consistently set α = 0.5
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Dataset Method FID FSD

COCO-stuff

StyleGAN 31.6 290.4

StyleGAN (w/ ours) 30.7 283.1

MSG-StyleGAN 76.7 655.8

MSG-StyleGAN (w/ ours) 65.3 563.1

LSUN Bedroom

StyleGAN 4.2 38.4

StyleGAN (w/ ours) 3.4 34.5

MSG-StyleGAN 6.5 54.4

MSG-StyleGAN (w/ ours) 5.9 49.1

MSG-DCGAN 60.9 303.4

MSG-DCGAN (w/ ours) 24.9 238.6

LSUN Combined

StyleGAN 4.6 37.1

StyleGAN (w/ ours) 3.9 33.2

MSG-StyleGAN 7.7 74.2

MSG-StyleGAN (w/ ours) 6.6 56.5

MSG-DCGAN 81.4 615.1

MSG-DCGAN (w/ ours) 46.6 426.7

Table 1. Experimental results on large-scale scene datasets. We

train baseline models with the official code and recommended

hyperparameters. All models are trained for generating samples of

256× 256 resolution.

for all the following experiments in this paper. We perform

the aforementioned recursion while the patch size sp covers

the whole size of the Fa. The F−1
a is the final output of our

LAP module, and we add it to the intermediate feature maps

F as illustrated in Fig. 2.

Multiple aspect ratios. In practical implementation, we

adopt multiple aspect ratios of feature patches to reflect

various object shapes. Specifically, our LAP module has

three different kinds of patch shapes: square, wide, and long

shapes. Therefore, the Eq. 3 is redefined as follows:

⎧⎪⎨
⎪⎩

s
p
h = H

2p , spw = W
2p square

s
p
h = H

2p , spw = W wide

s
p
h = H, spw = W

2p long

(7)

where H and W denote the height and width of the Fa,

respectively. And p denotes the pyramid level. According to

Eq. 7, we also rewrite Eq. 5 as follows:

M(Fa, s
p
h, s

p
w) = σ

(
Patch-IN(Fa, s

p
h, s

p
w, s

p
h, s

p
w)

)
, (8)

where the stride size is the same with the kernel sizes so that

the Patch-IN is performed on non-overlapping patches.

5. Experiments

In this section, we evaluate our proposed method by

extensive experiments with the state-of-the-art uncondi-

tional GANs approaches including MSG-DCGAN, MSG-

StyleGAN [12], and StyleGAN [13].

Method # params

MSG-DCGAN 41.77M

MSG-DCGAN (w/ ours) + 0.1M (+ 0.2%)

StyleGAN 49.13M

StyleGAN (w/ ours) + 0.1M (+ 0.2%)

MSG-StyleGAN 49.13M

MSG-StyleGAN (w/ ours) + 0.1M (+ 0.2%)

Table 2. The number of learnable parameters of baselines and ours.

5.1. Datasets

We utilize the following benchmarks to evaluate the per-

formance of our LAP and baselines:

COCO-stuff [4] is derived from COCO dataset [19]. It

contains 118, 000 training images captured from indoor and

outdoor scenes. It has 182 semantic classes.

LSUN bedroom is consist of 3M bedroom images. It has

more than 20 semantic classes, which were investigated by

employing the pre-trained segmentation model [25] in the

published work [1, 2].

LSUN combined is a custom dataset that is a combination of

LSUN kitchen, LSUN dining room, and LSUN living room.

The dataset contains 4.1M images. We found more than 20
semantic classes by using a segmentation model [25].

5.2. Implementation Details

We apply our LAP module in every convolution blocks

of the generator, excepts for 42 sized feature maps. In detail,

we apply different pyramid level p according to the size of

feature map. Specifically, starting from the pyramid level

p = 1 at 82 sized feature maps, p is linearly increased for

every 4 times up-scaled feature maps. Thus, p = 2 and p = 3
is starting at 322 and 1282 sized feature maps, respectively.

For the training details, we follow the default training

settings in the official implementation of StyleGAN [13] and

MSG-GAN [12]. For instance, we allow training iterations

until the discriminator sees 25M real images and we employ

non-saturating loss [7] with R1 regularization [20] using

γ = 10. Also, the data augmentation by horizontal flipping

is not employed for all experiments.

We consistently utilize 2 GPUs to train all the tested mod-

els, much fewer than 8 GPUs used in [14], due to the lack

of research equipment. We realized that the performance of

GANs can be different according to training configurations,

such as numbers of GPUs and iterations, as discussed and re-

ported in [12,18]. For instance, the FID scores of StyleGAN

trained on LSUN Churches are different in [12] and [14],

due to the aforementioned issues. In this work, we compare

all the tested models in a fair configuration and rather focus

on clear demonstration of the merits of the LAP in terms

of relative performance improvements by the LAP over the

baselines.
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Bedroom wall bed floor ceiling window curtain pillow cushion painting table sofa door wardrobe chest carpet chair lamp cabinet armchair mirror

StyleGAN 10.7 10.1 13.6 13.6 11.1 11.6 16.1 19.2 11.4 15.5 17.8 12.7 14.2 15.1 19.6 19.1 13.6 14.6 18.7 13.5

+ LAP 10.0 9.6 15.1 13.7 11.3 11.4 15.9 19.1 11.4 14.7 17.1 11.8 12.8 14.1 18.3 17.8 13.8 13.7 18.6 12.8

Combined wall floor cabinet ceiling window chair table sofa surface curtain armchair stove kitchen table painting refrigerator door carpet coffee table cushion shelf

StyleGAN 11.0 14.4 11.2 13.1 11.4 15.0 15.6 16.1 12.0 13.0 18.5 13.8 11.5 12.2 14.0 12.4 19.1 17.4 20.7 17.8

+ LAP 11.2 13.5 10.8 13.3 10.9 14.9 14.7 14.5 11.7 13.3 16.2 12.8 10.8 12.6 12.0 12.4 20.8 16.4 18.0 16.5

Table 3. Class-wise FID scores on LSUN bedroom (upper) and LSUN combined (lower). We compute class-wise FID scores from the

class-wise cropped image patches based on a pre-trained segmentation model. Note that, “+ LAP” denotes StyleGAN (w/ ours).

5.3. Evaluation Metrics

FID. Frechet Inception Distance (FID) [8] has been widely

used to measure the image generation quality. The FID score

is computed by the sequential operations: first, inception

features are extracted from a intermediate layer of inception

model. Then, multidimensional Gaussian with mean m and

covariance matrix C is obtained from the inception features,

and the Frechet distance is computed as follows,

d2
(
(mr, Cr), (mf , Cf )

)
= ‖ mr −mf ‖22

+Tr
(
Cr + Cf − 2(CrCf )1/2

)
, (9)

where Gaussians (mr, Cr) and (mf , Cf ) are obtained from

real and fake samples, respectively. Also, Tr(·) indicates the

trace of a matrix. Note that, we measure FID scores from

50K of real and fake images throughout this paper.

Class-wise FID. To further quantify the per-class visual qual-

ity, we propose a class-wise FID. Instead of measuring from

the whole-sized images, we first compute the segmentation

maps using a pre-trained segmentation model. We then

collect class-wise cropped image patches based on segmen-

tation results. Finally, we measure the class-wise FID scores

between real and fake patches by employing the Eq. 9. We

denote it as class-wise FID. Note that, we consistently mea-

sure the class-wise FID scores from 5K of real and fake

image patches throughout this paper.

FSD. Recently, Bau et al. [2] have proposed Frechet Seg-

mentation Distance (FSD) for quantifying a degree of mode

dropping in the scene datasets. Instead of using the incep-

tion features, it obtains Gaussian (m,C) from histograms

of semantic segmentation labels. Specifically, the frequency

of the class label c for a segmentation map x, H(x, c), is

computed based on the percentage of the pixels predicted to

the class c as follows:

H(x, c) =
1

WH

W×H∑
i=1

B(xi, c), (10)

where

B(xi, c) =

{
1 when s(xi) = c

0 when s(xi) �= c,
(11)

and s(xi) denote a predicted label of a segmentation map

x at pixel position i. The function H(x, c) iterates over

all semantic classes and a set of segmentation maps. After

obtaining Gaussians (mr, Cr) and (mf , Cf ) for real and

fake samples, the Frechet distance is calculated from the

Eq. 9. Note that, DeepLab-v2 [5] and UperNet101 [25] are

employed as a pre-trained segmentation model for COCO-

stuff and LSUN datasets, respectively. Following the Bau et

al. [2], we measure FSD scores from the 10K real and fake

images throughout this paper.

5.4. Quantitative Results

To show that our LAP is a generic module, we apply

the LAP to three baselines that have different GANs ar-

chitectures, loss functions, and training strategies. For in-

stance, MSG-DCGAN trains a DCGAN based model with a

relativistic-hinge loss function [11]. Also, they do not use

progressive learning.

Traditional GANs architecture. We first apply our LAP

module to MSG-DCGAN [12] and train on LSUN datasets.

It is a hard task for the DCGAN based architecture to gen-

erate 256× 256 fake samples. As reported in Table. 1, our

LAP module achieves better visual quality than vanilla MSG-

DCGAN. For instance, in LSUN bedroom, MSG-GAN (w/

ours) achieves the FID score of 24.9 that is significantly im-

proved (36.0 FID points) over vanilla MSG-DCGAN. Note

that, we tried to train DCGAN based architecture in COCO-

stuff, however, it suffered from a serious mode collapse due

to the higher scene complexity and lack of training images.

Recent GANs architecture. We further apply our LAP

module to both StyleGAN and MSG-StyleGAN. We conduct

extensive experiments on COCO-stuff and LSUN datasets

and the results are reported in Table. 1. The results show

that our LAP module consistently improves the FID and

FSD scores of baseline methods. Specifically, in LSUN

bedroom, StyleGAN (w/ ours) achieves an FID score of 3.4,

improving 0.8 points, over vanilla StyleGAN, as well as

increases the FSD score from 38.4 to 34.5. Similar trends

can be found in other datasets and the experimental results

of MSG-StyleGAN. Those results clearly validate that our

LAP module boosts the learning capability of the recent

scene image generator. Note that, we additionally provide
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Figure 4. Visualization of local attention pyramid results. The images at the first column are fake samples generated by StyleGAN (w/ ours).

Other columns show the visualized attention maps corresponding to each pyramid level.

the results of LSUN church, and the detailed quality analysis

based on precision and recall measures according to [17] in

Appendix.

The number of learnable parameters are reported in Ta-

ble. 2. Our LAP module requires only 0.2% additional pa-

rameters from baseline methods. It tells that the improve-

ment of GANs performance is not caused by increasing

model capacity. Note that, the baseline models have the

same number of convolution blocks so that the increment of

model parameters are the same when LAP is applied.

Class-wise visual quality. Table. 3 reports the class-wise

FID scores against generator of StyleGAN. As reported,

our LAP module consistently improves the FID scores over

diverse objects, so that it alleviates the class-wise visual

quality imbalance problem in scene images generated by

GANs. Note that, we did not measure the class-wise FID

scores on COCO-stuff dataset mainly because the visual

quality of generated samples are too low so that the pre-

trained segmentation models do not segment the objects

well. We also inform that relative per class improvements

with respect to appearance frequency and size of objects are

reported in Appendix.

5.5. Qualitative Results

Visualization of local attention pyramid is provided in

Fig. 4. First, at p = 3, our local attention pyramid computes

high attention scores for every smallest region. Thus, the

high attention values are also multiplied to the empty regions

such as wall. By recurrently inferring the attention maps

from fine to coarse levels, our LAP module gradually pro-

duces the spatial attention maps focusing on diverse objects

of the scene image.

Generated samples are shown in Fig. 5. We utilize Style-

Method # params FID FSD

StyleGAN (w/ S.A.) [26] 49.79M 5.9 46.9

StyleGAN (w/ CBAM) [24] 49.36M 4.9 45.6

StyleGAN (w/ ours) 49.24M 3.4 34.5

Table 4. Comparison with prior attention mechanisms. All tested

models are trained until the discriminator sees 25M images in the

LSUN bedroom.

GAN and MSG-DCGAN as baseline models for the qualita-

tive comparison. For the samples generated by StyleGAN

based models, the overall sample quality is similar. However,

when looking in detail, the StyleGAN draws local objects

with unrealistic shapes (see leftmost in upper rows), whereas

StyleGAN with LAP produces more rigid object shapes (see

leftmost in lower rows). For instance, the StyleGAN genera-

tor produces chair sample without legs, which shows lower

visual quality than the samples of StyleGAN with LAP. Com-

parison with models based on MSG-DCGAN shows more

clear difference. Additional qualitative results are available

in Appendix.

5.6. Comparison against attention mechanisms

We also compare LAP module against prior attention

mechanisms. Specifically, we choose CBAM [24] and self-

attention mechanism (S.A., [26]) for the comparison. We

apply them to a baseline architecture of StyleGAN and train

each model on LSUN bedroom. As reported in Table. 4,

our LAP module achieves better visual quality scores than

competing methods. Also, we have found that CBAM and

S.A. rather degrade the image generation performance of

StyleGAN, achieving FID of 4.9 and 5.9 respectively. We

suspect that it is mainly because they infer a single attention
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(a) StyleGAN (b) MSG-DCGAN

(c) StyleGAN (w/ ours) (d) MSG-DCGAN (w/ ours)

Figure 5. Qualitative comparison. The generated samples of StyleGAN and MSG-DCGAN contain objects with squeezed shapes and noisy

textures, whereas the samples of our LAP show more rigid object shape and detailed texture.

map so that only few objects are highly likely to obtain

high attention scores. Recall again that our LAP module

achieves 3.4 FID points with requiring only small amount of

additional learnable parameters.

5.7. Ablation Study

We further discuss about the effect of individual compo-

nents of LAP module. To do this, we trained each ablated

version of StyleGAN until the discriminator sees 12M real

images in the LSUN bedroom. The scores are reported on

Table. 5.

Channel-separated Transformation. We first investigate

the effect of Sec. 4.1. Specifically, we add component of

Sec. 4.1 and typical spatial attention mechanism to Style-

GAN. This attention mechanism computes attention maps

from whole-sized feature maps. As shown in second row of

the table, employing both the channel-separated transforma-

tion and attention mechanism improves the FID from 6.5 to

5.3.

On the other hand, the aforementioned result may not

clearly validate the merits of employing depthwise convolu-

tion layers. It is mainly because the performance gain can be

obtained from the attention mechanism. To investigate it, we

build a new ablated model where we remove the depthwise

convolution layers from the model of the second row. Thus,

it computes a spatial attention map with single channel but

other operations are equal. As reported in the last row, the

ablated model worsens the FID score from 6.5 to 8.3. It is

a contrary result compared to the second row and the result

confirms the necessity of channel-separated transformation.

Local Attention Pyramid. We then add the local attention

pyramid to the second row’s model. Thus, it is full imple-

mented version of our proposed method. As reported in the

third row, the full model further improves the visual qual-

ity performance, achieving an FID of 4.9. It is meaningful

improvement since adding it requires only 11K additional

Method # params FID FSD

StyleGAN 49.13M 6.5 51.9

+ Sec. 4.1 + 95K 5.3 52.8

+ Sec. 4.2 + 11K 4.9 47.0

StyleGAN 49.13M 6.5 51.9

+ Eq. 1 + 0.2K 8.3 53.4

Table 5. The ablation study of our method. We train all models

until the discriminator sees 12M of real images in LSUN bedroom.

parameters. Those ablation study confirms that each compo-

nent of our LAP module is mutually beneficial.

6. Conclusion

In this work, we raise a new problem that GANs tend

to concentrate on generating big and frequently appeared

objects rather than producing diverse objects with balanced

visual quality. To alleviate it, we have proposed the Local

Attention Pyramid (LAP) module to generate diverse objects

with high-quality. Specifically, our LAP module explicitly

guarantees to compute high attention scores to diverse re-

gions. Since various objects are spread out in the scene

image, the latent representation of diverse objects can be en-

hanced. In addition, our LAP module computes multi-scale

attention maps for handling the diversity of objects scales.

Extensive experiments have demonstrated that our LAP mod-

ule consistently improves the visual quality in terms of FID

and FSD metrics. Furthermore, we have also validated that

LAP is a generic module by applying it to various prior

GANs methods.
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