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Abstract

Learning a unified person detection and re-identification
model is a key component of modern trackers. However,
training such models usually relies on the availability of
training images / videos that are manually labeled with both
person boxes and their identities. In this work, we explore
training such a model by only using person box annotations,
thus removing the necessity of manually labeling a training
dataset with additional person identity annotation as these
are expensive to collect. To this end, we present a con-
trastive learning framework to learn person similarity with-
out using manually labeled identity annotations. First, we
apply image-level augmentation to images on public person
detection datasets, based on which we learn a strong model
for general person detection as well as for short-term per-
son re-identification. To learn a model capable of longer-
term re-identification, we leverage the natural appearance
evolution of each person in videos to serve as instance-
level appearance augmentation in our contrastive loss for-
mulation. Without access to the target dataset or person
identity annotation, our model achieves competitive results
compared to existing fully-supervised state-of-the-art meth-
ods on both person search and person tracking tasks. Our
model also shows promising results for saving the annota-
tion cost that is needed to achieve a certain level of perfor-
mance on the person search task.

1. Introduction

Detecting and re-identifying people in images and videos
underpins many person understanding tasks [33, 49, 50, 55,

,60]. Recent works [42,47,50,55,60] have converged on
the concept of detecting and re-identifying people simulta-
neously with a single model due to its higher end-to-end ef-
ficiency during inference. Typical learning setups for such
models rely on a set of training images or videos that are an-
notated with both person boxes and their identities. Unfor-
tunately, the cost of curating such a training set is extremely
high not least because sourcing the right images / videos for
both tasks is costly. More importantly, annotating person
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Figure 1. By using only 40% of id annotations on CUHK-SYSU
dataset [49], our similarity pre-trained model outperforms the stan-
dard state-of-the-art model trained on all id annotations. Manually
labeled id annotation is not used in similarity pre-training.

identity induces a significant cost overhead, as annotators
have to check against a set of known persons from memory.
Thus, existing training datasets for joint person detection
and re-identification [33,49,57] are limited both in scope
and in size.

In this work, we explore learning such a model by us-
ing person bounding boxes as our only supervision, so that
we are able to leverage the existing large-scale training sets
for person detection [30,41]. The core question hinges on
how to learn a good person embedding model from images
only annotated with person boxes. To this end, we adopt the
concept of instance discrimination tasks [8, 19,22, 48] that
pull together identity embeddings of the same person box
under different image transformations while pushing away
those from other person boxes. This formulation enables
us to jointly train a person detection and identity embed-
ding model. While image-level transformations are able to
capture many expected changes to a person’s appearance
such as scale or lighting changes, they are not able to render
more drastic pose and viewpoint changes which are com-
mon in re-identification applications and as such this em-
bedding model is not robust to such appearance variations.
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To address this shortcoming, we add unlabeled videos
to provide examples of natural appearance changes in pose
and viewpoint. We utilize our image trained model to ex-
tract person boxes and their embeddings, based on which
we produce pseudo person identity labels. While the ap-
pearance of the person at the start and end of the video can
be drastically different, it changes smoothly over time. We
use density-based clustering [17] to exploit such temporal
continuity so the embeddings of the same person are clus-
tered together. Thus we are able to extract disparate views
of the same person, from which we fine-tune our model with
our instance discrimination learning framework.

We perform ablation studies on the person search task,
in particular on CUHK-SYSU [49]. By training on images
annotated with person boxes alone, our model works quite
well (76.5% MAP / 77.8% Top-1), even for re-identifying a
person that goes through modest appearance changes. Intro-
ducing unlabeled videos during training brings a substantial
performance benefit (+6.0% MAP / +6.6% Top-1), which
indicates the significance of the appearance diversity to sim-
ilarity learning. In addition, as shown in Fig. 1, by only us-
ing 40% of the identity annotation randomly sampled from
the target CUHK-SYSU dataset [49], our model is able to
achieve state-of-the-art results.

Furthermore, we apply our model to the multi-person
tracking task. We adopt the same solver [2] as that in Fair-
MOT [55] that takes as input the detected person boxes and
their embedding. On MOT17 [33], without using any man-
ual identity annotation or frames from the target dataset dur-
ing training, our model achieves the same level of perfor-
mance as the fully-supervised FairMOT [55].

2. Related Work
2.1. Person detection and re-identification

Person search first detects and then queries the person
of interest among a set of gallery images. The same per-
son could look substantially different between query and
gallery images as they can be captured at different time /
location / cameras. Therefore, the quality of person embed-
ding is the key towards accurate person search. Two-step
approaches [14,21,44] adopted two separate models for
person detection and person re-identification respectively,
but recent unified models [5, 13, 34,49, 50, 58] are gain-
ing popularity as they are significantly faster and achieve
state-of-the-art performance. In order to train those models,
manually labeled identity annotations are indispensable. In
this work, we explore training such a model without rely-
ing on expensive manual identity annotations. Importantly,
it achieves fairly competitive results compared to existing
fully-supervised models.

Multi-person tracking detects all persons in each frame
and links those detected persons across time to produce per-

son trajectories. Recent end-to-end trackers [37, 38,42,

, 55, 60] jointly model person detection and identity as-
sociation in a unified formulation, and they push the per-
formance to new highs on MOTChallenge [33]. Although
some methods [15,42,47,55] can be technically trained on
image datasets and some recent works start to exploit unla-
beled videos to improve multi-object tracking [25,29,32],
it’s essential for them to be fine-tuned on annotated video
sequences to achieve competitive performance. In contrast,
our model achieves state-of-the-art on MOT17 [33] without
fine-tuning on annotated video sequences.

2.2. Unsupervised person re-identification

Our work is also related to unsupervised person re-
identification [0, 7, 18], in which contrastive formulation is
usually adopted to learn person embedding. On this partic-
ular issue, our work has 3 technical differences: 1), we are
optimizing a multi-task model, in which similarity learning
is only one of the tasks; 2), conventional person re-id works
[6,7,18] deal with person crops, while we work with images
that have multiple persons. Thus, we develop dense con-
trastive formulation instead of using the basic form of con-
trastive formulation [8,22]; 3), we mine person tracks from
videos, from which two views of the same person are sam-
pled during training. From the perspective of contrastive
formulation, such person track mining can be understood as
anovel augmentation method. Without using identity anno-
tations, we achieve competitive or state-of-the-art results on
both person search and tracking tasks.

2.3. Self-supervised learning

Self-supervised learning uses a proxy task that guides the
model to learn meaningful features for downstream tasks.
Those proxy tasks should not require human labels in any
form, some examples are predicting the rotation of a rotated
image w.r.t the original one [27], gray-scale image coloriza-
tion [53], solving jigsaw puzzles [36], predicting the relative
position between patches [1 1], etc. Recently, instance dis-
crimination based contrastive learning [4, 8, 19,22, 48] has
achieved a level of performance that is comparable to mod-
els trained fully-supervised on the ImageNet classification
task [10]. As well, there are works that exploit temporal cy-
cle consistency to learn feature correspondence that can be
used for general object tracking [16,45,46]. Although our
model can be applied in person tracking, our work is more
related to instance discrimination based contrastive learn-
ing [4, 8, 19,22,48]. To remedy the limitation of image-
level augmentation in our contrastive loss formulation, we
leverage the natural appearance evolution of each person in
videos to serve as instance-level appearance augmentation,
which is shown to be significant in improving person em-
beddings that can be used to re-identify the person when
their appearance changes drastically.
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Figure 2. We use a single-stage model for joint person detection
and re-identification. It is a fully convolutional network that in-
cludes an identity feature encoder and a detection head. The skip
layer encodes multi-scale features into the point-based embedding.

3. Joint Person Detection and Re-identification

In this work, we use a unified person detection and
re-identification model that follows a design similar to
AlignPS [50], where the identity feature map is extracted
from an intermediate layer of a single-stage detector frame-
work. As shown in Fig. 2, the network includes an identity
feature encoder and a detection head. The identity feature
encoder follows the UNet [31,35,40] design, widely used in
the dense prediction task. It includes skip layers to encode
multi-scale features into a single point-based embedding.
This embedding is directly used as the identity features,
based on which an id loss (¢;4) [24,49,52] can be applied
to train the identity feature encoder. Following FCOS [43],
our detection head is a standard 4-layer fully convolutional
head that is added on top of the identity feature encoder.
It is trained with the same detection loss (£4.;) as that in
FCOS [43]. The model is jointly optimized with detection
and id losses in the following form f;p1q; = £ger + Mg, in
which ) is the modulated weight for the id loss. For easy
reference, we refer to this network as PointID.

4. Unsupervised Person Similarity Learning

The most direct way to train PointID would be with a
large dataset of images or videos that include both person
bounding box and identity annotations. Unfortunately, col-
lecting and annotating such a dataset is prohibitively expen-
sive, and thus most works train their models on the smaller
datasets available with such annotations [33,49,57]. In this
work we instead focus on how to train our model without
manual identity annotations. First we present our dense
contrastive similarity loss (¢;4) which we use to train our
identity feature encoder (Sec. 4.1). This loss still requires
person identity information, for which we do not have an-
notations. Next we demonstrate how we train our model on
images labeled with only person boxes (Sec. 4.2) and on
unlabeled videos (Sec. 4.3).

4.1. Dense Contrastive similarity loss

We propose to use a contrastive loss for person sim-
ilarity learning, which pushes the embeddings of people

detection head

with the same identity together while pulling the embed-
dings of people with different identities apart. Formally,
given a point (z,y) that corresponds to person identity 4
(ie. ID(z,y) = i) and its feature vector v = £(*¥)  we
calculate the similarity loss for point (z, y) as follows.

Y 1o exp(v-p/7)
exp v-p/T)+ ZnEN exp(v-n/7)

ey

in which P; = Ugmp(z,5)=} f@7 is the set of point fea-

ture vectors p that corresponds to person ¢ in current train-

ing batch, N; = U{ID(i)g)#}f@’@) are the point features

of persons other than ¢, and 7 is the temperature. Note that

all feature vectors (i.e. v, p, n) are Ly normalized. In gen-

7d |P |p€P

eral, Ez(.;”’y) summarizes the average contrastive loss between
point feature vector at (x, ) and the remaining point feature
vectors that also corresponds to person 7. As the example in
Fig. 3 shows, it’s important to point out that each person
is sampled from multiple point feature vectors in the same
image. Thus, each point feature vector corresponding to the
same person identity captures a slightly different “view” of
that particular person, which provides natural jitter in the
feature level. This non-sparse sampling is also shown to be
important in recent object tracking literature [38].

Next,we derive our dense similarity loss by averaging the
above loss to all point feature vectors within an image that
corresponds to a person instance. Mathematically,

pos

where 1(c(*¥)) indicates whether the point (z,%) belongs
to the center region of a person box, which is the same as
that used in the detection head [43] to supervise the classi-
fication map.

In the ideal case where annotated person identities are
available [49, 50], we can manage a memory bank m €
R®M (M being the number of person ids, and d the chan-
nels of feature vectors) that stores a feature vector for each
person identity, each of which conceptually summarizes all
views of a particular person. Therefore, P; and IN; can be
constructed by simply retrieving the corresponding slices
of memory, e.g. P; = {m;}, N; = {...m;_1,m;;1,...}.
In the following sections, we explore a different and more
challenging setting in which annotated person identities are
not provided during training and show how to construct P;
and N; in those cases.

4.2, Self-Supervised Image Training

Given a public image dataset annotated with person
bounding boxes but no identity information, we assume that
every image is sourced independently in the wild and thus
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Figure 3. In contrastive similarity learning, feature vectors corre-
sponding to the same person (e.g. all blue points) would be pulled
together, while they are pushed away from the feature vectors for
other people (e.g. yellow points).

every person in each image has a unique identity. ' In or-
der to generate meaningful P; for person ¢, we could use
the same memory strategy presented in Sec.4.1, but as each
person ¢ appears only once per training epoch, the memory
feature m; would be out of date by the time person ¢ is seen
again during training. Instead, we adopt the concept of in-
stance discrimination [8,19,22,48] to construct positive and
negative feature sets P;, N, for each person box. Specif-
ically, we apply image-level transformations [8, 19,22] to
synthesize two views of the same image and sample all pos-
itive feature vectors for person 7 from both images, giving
rise to P;. An example is shown in Fig. 3. To construct N,
we manage a fixed-size queue Q that is updated with the
feature vector of the latest encountered person embeddings,
so all features in Q are relatively up-to-date. Therefore, we
can easily get the negative feature set N, for person ¢ by
retrieving feature vectors in Q that do not belong to iden-
tity 2. As the ground truth person boxes are available during
training, the full PointID model — id feature encoder and
detection head — is jointly optimized with ¢;4.; and ¢;4.

4.3. Unsupervised Video Training

The above image based training generates a reasonably
diverse set of views of the same person (i.e. P;) that is able
to guide the model to focus on informative visual features
(i.e. clothing or distinct accessories, etc) rather than dis-
tractors (i.e. lightning, scale, etc). However, a shortcut and
non-trivial solution is to associate the person’s identity with
distinct features that are not related to person identity, for
example a person’s unique pose. This is due to the fact that
the image-level augmentation is limited in its ability to pro-
duce instance-level transformations that cover the full range
of expected movement for a person.

To address this limitation, we exploit the temporal con-

!'Under such assumption, several public data sets for person detection
are not appropriate for the proposed learning framework, such as CityPer-
son [54], Caltech Pedestrian [12], to name a few.

tinuity of videos to automatically generate multiple views
of the same person with large pose and viewpoint changes
that are not present in our image-level augmentation. We
achieve this by linking a person across time, as the em-
beddings between consecutive frames are very similar for
the same person. This is reminiscent of object track-
ing [1,20,28,42,55]. However, their embeddings could be
very different if they are extracted from distant timestamps,
and thus they can be naturally used as hard training exam-
ples in our similarity learning formulation. Visual examples
are provided in supplementary materials. Analogous to the
presumption underlying the person instance discrimination
task, we assume that the same person does not appear in a
different video. 2

Specifically, we extract person bounding boxes and
their embeddings by using our PointID network trained in
Sec. 4.2. We cluster all detected people in a video by us-
ing the density-based clustering method DBSCAN [17] on
all detected person identity embeddings. As DBSCAN is
able to identify outliers in the embedding space, each de-
tected person instance would be assigned to either a unique
identity or an invalid identity that would not be used during
training. This video-level embedding clustering serves as
an offline solver to produce person trajectories in a video,
within which a person’s appearance can change substan-
tially. This approach to generating pseduo-labels resem-
bles other unsupervised learning methods in image classi-
fication [3] and person re-identification [6, | 8].

To compute the id loss ¢;4, we sample two different
frames Iy, Is from a video. For a particular person ¢, we
construct its positive feature set P; by sampling all feature
vectors for person ¢ on both frames where it appears. We
construct the negative feature set N; using the same queue
strategy presented in Sec. 4.2. As ground truth person boxes
are not available, we only fine-tune the weights of the iden-
tity feature encoder with id loss ¢;4 and freeze the weights
of detection head. This ensures that the noise in detection
boxes does not derail the model training. Finally, we freeze
the identity feature encoder and fine-tune the detection head
with £4¢; on ground truth person boxes provided by the im-
age dataset in Sec. 4.2.

5. Experiments

Image-based person detection dataset. We use the
COCO [30] and CrowdHuman [41] datasets, which have
been widely used for general object and person detection.
We discard all images in which no person bounding boxes
are annotated. That leaves in total 64,115 images with

2In general, this is a fair assumption for two random in-the-wild videos.
However, this assumption would not hold in multi-camera surveillance sce-
nario where the same person can appear in different videos. We would like
to come back to this issue during discussion and explore this specific situ-
ation in the future.
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257,249 person boxes for COCO and 15,000 images with
339,563 person boxes for CrowdHuman.

Unlabeled video dataset. We use the Kinetics-700
dataset [20] that is primarily used for action recognition.
We anticipate that the person’s pose and viewpoint change
drastically in those videos due to camera motion and people
performing different actions. We randomly sample 150,000
videos in our study, from which 45,108 (roughly 30%)
videos are identified to include at least 1 valid person tra-
jectory. In total, that includes 57,200 unique person identi-
ties and more than 1 million person boxes. Specifically, we
name this dataset Kinetics-150K.

Person search dataset. We validate the performance of
our person detection and re-identification model on person
search. To this end, we adopt both CUHK-SYSU [49] and
PRW [57] in our study. In detail, CUHK-SYSU includes
18,184 images (11, 206 train/ 6, 978 val) with 8,432 unique
ids (5,532 train / 2,900 val), and PRW includes 11,816
(5,704 train / 6,112 val) images with 932 unique ids (482
train / 450 val). Following other literature [ 13,34,49,50,58],
we report both MAP and Top-1 metrics by using the default
gallery size of 100.

Network configuration and training. We take ResNet-
50 [23] as the backbone of our id feature encoder unless
specified otherwise. As shown in Fig. 2, we upsample
the feature maps from previous layers and concatenate it
with the output of the corresponding skip layer, which is
parametrized as a single deformable convolution kernel [9]
with 256 output channels. The scaling temperature used
in Eq. 1 is set to be 0.07 and the id loss modulating fac-
tor A is empirically set to 0.2 (the effect of X is studied
in supplementary materials). We first train the model on
COCO and CrowdHuman with 32 unique image pairs per
iteration (64 actual images due to augmentation). We opti-
mize the model with momentum-based SGD starting with
the initial learning rate of 0.01, which is modulated with
0.1 after the model completes 60% and 80% of all itera-
tions (25,000 in total). The size of the latest encountered
person pool Q is set to be 32,768 unless specified other-
wise. Next, we fine-tune the identity feature encoder on
Kinetics-150K for 20, 000 total iterations. Finally, we fine-
tune the detection head on COCO and CrowdHuman fro
another 10, 000 iterations. During training, each image is
resized to have a shorter size that is randomly drawn from
{480, 560, 640, 720,800} while constraining it with larger
size to be less than 1024 pixels. During inference, images
are resized to have 640 x 1024 pixels.

Image-level augmentation. We apply the following
image-level transformation in image training: rotation,
occlusion (random patch erasing [59]), video
jitter (e.g. motion blur, JPEG compression), image

Train data Person Id Loss MAP  Top-1
CUHK v Lget +Liqg 927% 93.7%
n/a X n/a 28.0% 27.8%
COCO+CH X Liet 17.0% 15.8%
COCO+CH X Let 143% 12.5%
COCO+CH X Laet +4ia 76.5% 78.0%
COCO+CH+Kinetics x Laet +4;qa 82.5% 84.6%

Table 1. Results on CUHK-SYSU dataset. Results in gray in-
dicate that the models use oracle boxes during inference. CH is
CrowdHuman dataset.

mirror, zoom-in motion transformation. In the supple-
mentary materials, we define those transformations and also
show the concrete visual examples of the effect for those
transformations.

5.1. Main result

We firstly train PointID on CUHK-SYSU with full su-
pervision. We adopt the id loss in Eq. 1 and manage the
memory for all ids as that elaborated in Sec. 4.1. The imple-
mentation details are included in the supplementary materi-
als. In Tab. 1 and Tab. 3, we show that our model achieves
92.7% MAP and 93.7% Top-1 accuracy, which performs
competitively well against state-of-the-art ResNet-50 based
models [13,34,49,50,58]. The model runs at 29.7 FPS on a
single V100 GPU. We don’t dig into analysing different net-
work components of PointID, as this is not the focus of this
work and much of its design philosophies are derived from
AlignPS [50] and dense prediction networks [31,35,40].

To understand the difficulty of unsupervised person sim-
ilarity learning, we setup two baseline models: the first one
being the model whose weights are initialized from an Im-
ageNet pre-trained model [10]; the second one being the
model whose weights are optimized for person detection on
COCO [30] and CrowdHuman [41]. As the detection head
is not trained in the first model, we introduce oracle detec-
tion based inference in which feature vectors correspond-
ing to the center points of ground truth boxes are used for
matching. In this case, the result of the model would be
better than the same model under default inference. We re-
port their results in Tab. 1, which shows that both models
perform abysmally. Interestingly, the feature trained for the
person detection task does even worse, suggesting that fea-
tures used for person detection and re-identification tasks
are not naturally compatible.

In Tab. 1, we further report the results of the same model
trained on person bounding boxes from COCO and Crowd-
Human but with the proposed contrastive similarity loss,
as well as a model that is further fine-tuned on unlabeled
videos from Kinetics-150K [26]. Their benefits over base-
lines are substantial. Even without training our model on the
target dataset, it does not trail significantly behind the fully-
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Loss data ‘ MAP Top-1

Frame sampling ‘ MAP Top-1

Augment  data ‘ MAP Top-1

Cross Entropy ~ part | 544%  55.7% n/a (memory)
Contrastive part | 75.5%  77.8% Random
Contrastive full 76.5%  78.0% Biased

843%  86.2% Image
84.4%  85.4% Image
85.5% 86.7%

CO+CH 789%  79.8%
CO+CH+K | 732% 74.4%

Instance CO+CH+K | 85.5% 86.7%

(a) Result comparison of models trained with different (b) Result comparison of models trained with differ-  (c) Result comparison of models trained with different

losses on COCO (CO) and CrowdHuman (CH).

ent frame sampling strategies on Kinetics-100K.

augmentation on Kinetics-100K (K).

Table 2. Ablation experiments on CUHK-SYSU [49]. Results in gray indicate that ground truth person boxes are used during inference.

CJ (Color Jitter)
VI (Video Jitter)
RT (Rotation)
OC (Occlusion)
MR (Mirror) 2. b 51.9

ZI (Zoom-in) 59.8 60.5
ocC MR 71

Figure 4. Results (MAP) of the model trained with pairwise com-
binations of transformations on CUHK-SYSU dataset [49].

supervised model. We compare those models with qualita-
tive visual examples in the supplementary materials. In the
following, we conduct careful ablation experiments to un-
derstand how this model achieves this level of performance.

5.2. Image Training

In this section, all models are trained with £4.; and ¢;4
on the COCO [30] and CrowdHuman [4 1] dataset.

How does image-level augmentation affect similarity
learning? To answer this question, we enumerate all pair-
wise combination of transformations and summarize their
results in Fig. 4. As shown, zoom—1in motion transforma-
tion and image mirror are the two most significant aug-
mentations that heavily influences the results of the model,
as the model trained with these two transformations trails
behind the full model by only 1.8%. This is not surprising
as zoom—1in motion transformation introduces large scale
variation and image mirror augmentation breaks short-
cut solutions that simply memorizing the person’s pose.

Cross entropy loss vs contrastive loss. We compare the
proposed contrastive similarity loss with cross entropy loss,
which is widely used in similarity learning [52,55]. How-
ever the cross entropy loss is not scalable to a large num-
ber of person identities, in which the model needs to learn
a gigantic projection matrix (e.g. R2°6*N and N being the
number of unique person identities) before feature vectors
are optimized for re-identification. We found the model
struggles to converge on the full COCO and CrowdHuman
datasets that includes approximately N = 600,000 boxes
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(a) number of training videos (x1,000).
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Figure 5. Ablation studies on CUHK-SYSU dataset [49].

(ids). To make the training feasible, we sample a subset
of images that includes roughly 50,000 boxes (8.3% of all
boxes) for this particular study. Results are summarized in
Tab. 2 (a). As shown, the model trained with contrastive
similarity loss substantially outperforms the one trained on
cross entropy loss, and its results continue to improve when
all person boxes are used during training.

Size of latest encountered person embeddings Q. We
further show how the size of Q affects the model training
in Fig. 5b. We observe that the model’s performance keeps
improving when more person identities are cached into Q.
This is expected as more hard examples can be retrieved
from Q, which benefits the embedding learning in our sim-
ilarity loss formulation (Eq. 1). We identify |Q| = 32,768
to be a good trade-off between memory consumption and
performance optimization.

5.3. Video Fine-tuning

In this section, all models are fine-tuned with ¢;, alone,
so we use the ground truth boxes during inference.

Does frame sampling affect model training? As shown
in Fig. 4, it becomes clear that having a diverse set of views
of the same person is one key aspect to contrastive simi-
larity learning. To test how frame sampling influences the
model training, we compare two models trained with the
following strategies: 1) sample two random frames from a
video; and 2) sample one random frame from the first half
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of the video and one from the second, which we call biased
sampling. In the latter case, the appearance of the same
person is more likely to be different, which is expected to
produce a harder positive feature set P; for that particular
person. As shown in Tab. 2 (b), the model trained with bi-
ased sampling does have a clear edge over the one trained
with random sampling. In addition, we compare against the
model trained with memory-based contrastive loss, as the
memory conceptually aggregates the feature of a particular
person from the full video. In Tab. 2 (b), we also find it is
outperformed by the model trained with non-memory based
contrastive loss. As discussed earlier, this is largely due to
the difficulty of maintaining an up-to-date memory. In prac-
tice the memory degenerates to only summarizing a random
view of the person in the video.

Does the number of training person identities affect the
model’s performance? To answer this question, we ran-
domly sample a subset of videos from Kinetics-150K. For
example, Kinetics-10K is a subset of Kinetics-150K that
includes 10,000 videos, in which there are 3,060 videos
that include at least 1 valid person trajectory. We in-
clude the statistics of different subsets in the supplemen-
tary materials. We train the model on those subsets with
the same training configurations, and their results are sum-
marized in Fig. 5a. Overall, we observe a clear upward
trend when more videos (or person identities) are used dur-
ing training. For example, adding 9,594 unique person in-
stances from the Kinetics-25K subset to the model training
brings in 4.27% MAP improvement. This result suggests
that videos introduce instance-level appearance transforma-
tions that are possibly missing in the image training. The
benefit saturates beyond the Kinetics-100K subset that in-
cludes 38,266 unique person identities and covers as many
as 765,000 person bounding boxes. That amount of data is
sufficient for the model to exploit the instance-level appear-
ance diversity for robust similarity learning.

Do the benefits really come from instance-level diver-
sity? This question emerges naturally when videos are
used during model fine-tuning, as encountering extra video
frames could be the major cause that lifts the model’s per-
formance. To this end, we fine-tune the model by adopting
the same techniques as that in Sec. 4.2: a frame I is firstly
sampled for each video and then the other frame I’ is gener-
ated by applying image-level transformation to I. We com-
pare the results of different models in Tab. 2 (c). As shown,
fine-tuning the model on video frames alone in fact harms
the model’s performance. This is probably due to the fact
that the hard-to-detect people are excluded during training,
so the learning is relatively straightforward to discriminate
a set of prominent people in easy background. In this case,
it’s clear that it’s the instance-level appearance diversity that
largely contributes to improving the model’s performance.

CUHK-SYSU PRW
methods MAP  Top-1 | MAP  Top-1
QEEPS [34] 88.9% 89.1% | 37.1% 76.1%
APNet [58] 88.9% 89.3% | 412% 81.4%
BiNet [13] 90.0% 90.7% | 453% 81.7%
NAE [5] 91.5% 924% | 433%  80.9%
AlignPS [50] 93.1% 93.4% | 459%  81.9%
Ours (baseline) 92.7% 93.7% | 41.3% 81.1%
Ours (detection pretrain) 932% 94.1% | 424% 83.1%
Ours (similarity pretrain) | 94.8% 95.5% | 47.4% 84.1%

Table 3. Result comparison on person search datasets.

5.4. Similarity pre-training

In this section, we further investigate the benefits of us-
ing the proposed learning framework as a pre-training step.

It helps to reduce annotation cost. We first study how
similarity pre-training helps reduce the need for manual
identity annotation. For this purpose, we randomly sample a
fraction of annotated person identities and mask out the rest
as if they are not annotated. Then we compare two mod-
els, one being trained as normal (ImageNet pre-training),
the other one being pre-trained with our proposed id loss.
Their results are summarized in Fig. 1. As clearly shown:
1) the similarity pretrained model consistently outperforms
its counterpart, especially when the number of identity an-
notations are limited and 2) with only 40% of identity an-
notation, the similarity pretrained model achieves the same
level of performance of the standard model that is trained
on the full dataset. Those results suggest that the similarity
pre-training has the potential to reduce the annotation cost
to achieve a certain level of re-identification performance.

It improves the model’s performance. Next, we train
the above two models on the full target datasets. Tab. 3
lists the results on both CUHK-SYSU [49] and PRW
[57] datasets. As shown, our similarity pre-trained model
achieves significantly better results than baseline, and the
benefit is more pronounced (4+6.1% MAP ) on the smaller
PRW. We also compare the model that is pre-trained with
L4er on COCO [30] and CrowdHuman [41]. Although de-
tection pre-training boosts the model’s performance, it sig-
nificantly lags behind the similarity pre-trained one. This
result indicates that it is the proposed similarity loss that
makes the difference.

6. Multi-person tracking

In order to validate the greater potential of our model,
we further apply it to multi-person tracking, specifically to
MOT17 [33]. We find that person re-identification is less
challenging in person tracking compared to that in person
search. This is due to the fact that the person’s appearance
changes slightly from frame to frame, and that there are
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Methods ‘ Train data ~ Personld ~ MOTA?T  IDFIT  IDswl
CenterTrackV1 [60] CH X 58.1 533 946
SiamMOT [42] CH X 63.4 60.8 616
FairMOT [55] CH X 62.9 63.2 813
Ours | CH X 66.9 70.9 372

Table 4. Result comparison on full MOT17 train set, and CH is for
CrowdHuman dataset [41].

Methods ‘ Train data Person Id MOTA?T IDF11T MT1 MLJ IDsw]

TubeTK [37] | MOT17 v 63.0 58.6 312 19.9 4137
CTrackerV1 [39] | MOT17 v 66.6 574 322 244 5529
QuasiDense [38] | MOT17 v 68.7 663 40.6 219 3378

CenterTrackV1 [60] | CH+MOT17 v 67.3 599 349 248 2898
CenterTrackV2 [60] | CH+MOT17 v 67.8 67.1 34.6 24.6 2583
SOTMOT [56] | MIX v 71.0 709 427 153 5184
FairMOT [55] | CH+MIX v 73.7 723 447 159 3303

Ours ‘ CH X 742 724 46.6 122 2748

Table 5. Result comparison on MOT17 test set with “private de-
tection” protocol. MIX [47,55] is a combined dataset that includes
MOT17 and 5 other datasets, all of which are manually annotated
with person identities.

very few long occlusions of a person (e.g. longer than 10
seconds) that induces large appearance changes. Therefore,
we train our model only on CrowdHuman [41] (amodal
bounding box annotation) with the techniques elaborated in
Sec. 4.2. We adopt the online solver implemented by Fair-
MOT [55] to generate temporal trajectory for each person,
which takes as input the detected person boxes and their
embedding per frame. Following the common standard,
we report the following metrics: MOTA, IDF1, IDsw (ID
switches), MT (Mostly Tracked), ML (Mostly lost).

Comparison with other self-supervised tracking models.
There are a few tracking models that can also be trained
without person identity annotation. For example, Center-
Track [60] and SiamMOT [42] train a person motion model
with image pairs generated from the same image. Similar to
ours, FairMOT [55] learns a person re-identification model
but with cross entropy loss. We compare their end-to-end
results on the full MOT17 train set in Tab. 4. As shown, our
model has an impressive performance edge over all other
models on every key metric. Note that all models use the
standard DLA-34 [51] as the feature backbone, so their re-
sults are comparable.® Particularly, it’s interesting to com-
pare our model with FairMOT [55], as both models use the
same online solver during inference. The substantial perfor-
mance benefits of our model over FairMOT can be largely
attributed to a better person re-identification model, which
is consistent with the observation in Tab. 2 (a).

3We generate the results by using the official implementation of the
above methods and by using the provided model weights pretrained on the
CrowdHuman dataset. Then we use the same evaluation code to generate
their corresponding evaluation metrics.

Comparison with state-of-the-arts. We generate the re-
sults on the MOT17 test sequence [33] by submitting the
output of our model to the evaluation server. As shown in
Tab. 5, our model outperforms recent state-of-the-art meth-
ods even though it has not been trained either on the target
dataset or with person identity annotations. This promising
result suggests that we are able to develop a generalized and
well-performing person tracking model without first curat-
ing a multi-person tracking dataset for training purposes,
whose cost is prohibitively high in reality.

7. Discussion and Conclusion

In this work, we aim to learn a generalized model for
joint person detection and re-identification. Unfortunately,
the existing datasets that can be used to train such a model
are limited both in scope and scale. To this end, we de-
velop a contrastive similarity learning framework such that
the person embedding model can be jointly optimized with
the person detection model on images / videos without man-
ual id annotations. We show that our model generalizes
to both person search and person tracking datasets, where
it achieves promising results compared to fully-supervised
state-of-the-art methods. In the following, we first talk
about the limitation of our assumption underlying the learn-
ing framework, and we further discuss the potential of our
work to reduce the annotation cost to a larger degree.

Limitation. The essential assumption underlying our
contrastive similarity learning framework is that each im-
age / video is independent, which means that the same per-
son does not appear in different images or videos. In the
cases in which the same person is captured by multiple dif-
ferent images or videos, the proposed learning framework
would not work properly. To leverage those precious im-
ages/videos for training, we can adopt similar techniques
used in unsupervised person re-identification work [6, 18].
We would like to explore using a wider range of images /
videos for Id-Free person similarity learning in the future.

Annotation cost reduction. As we have shown in Tab. 3
and Tab. 5, our model can achieve very competitive results
on both person search and person tracking tasks even if it is
not trained on the target data set. As also shown in Fig. 1,
adding as little as 10% of person identity annotations signif-
icantly lifts the model’s performance on the target dataset.
In the same spirit of active learning, we are interested in
exploring how to automatically identify a few hard training
examples with our model that are needed for human annota-
tion. This is an important step to achieve the best trade-off
between annotation cost and performance maximization.
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