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Abstract

In many different fields interactions between objects play
a critical role in determining their behavior. Graph neural
networks (GNNs) have emerged as a powerful tool for mod-
eling interactions, although often at the cost of adding con-
siderable complexity and latency. In this paper, we consider
the problem of spatial interaction modeling in the context
of predicting the motion of actors around autonomous ve-
hicles, and investigate alternatives to GNNs. We revisit 2D
convolutions and show that they can demonstrate compa-
rable performance to graph networks in modeling spatial
interactions with lower latency, thus providing an effective
and efficient alternative in time-critical systems. Moreover,
we propose a novel interaction loss to further improve the
interaction modeling of the considered methods.

1. INTRODUCTION
Interactions or relations between objects are critical for

understanding both the individual behaviors and collective
properties of many systems. Conceptually, these interac-
tions can be modeled with graph structures that comprise
a set of objects (nodes) and their relationships (edges).
By applying deep learning techniques, graph neural net-
works (GNNs) have demonstrated great expressive power
in modeling interactions in various fields, including physi-
cal science [3,12,30,33], social science [17,23], knowledge
graphs [16], and other research areas [20, 26, 28, 37].

Some of the interactions strongly depend on geometries,
such as the Euclidean distance and relative directions be-
tween objects, which in this work is referred to as spatial
interactions. One problem where spatial interaction is criti-
cal is motion forecasting, a key task in the fields of computer
vision, robotics in general and autonomous driving (AD) in
particular. Specifically, anticipating the future movements
of an object requires understanding not only its history, but
also the object’s interactions with other objects and its en-
vironment. These interactions strongly depend on relative
spatial features between objects, such as their relative loca-
tions, orientations, and velocities.

Graphs have achieved success in modeling spatial inter-
action [22,31,32,34]. Features of individual objects are typ-
ically encoded into attributes of graph nodes, and the graph
edges are built by passing node attributes and the relative
geometries of the node pair through a mapping function.
GNNs follow a message passing scheme, where each node
aggregates features of its neighboring nodes to compute its
new node attributes. These approaches have two character-
istics, as seen in the experimental section: (1) the relative
spatial features are not represented implicitly in the graph
and need to be handcrafted into the graph edge features; (2)
even a single iteration of GNN may be slower than convo-
lutional neural networks (CNNs), which makes GNNs less
suitable for applications in fields such as AD where fast in-
ference is safety-critical.

Alternatively, data structures for 2D or 3D convolutional
operations are presented in common grid forms, such as
through voxelization in 3D, rasterization in 2D bird’s-eye
view (BEV), or as intermediate CNN features. Importantly,
spatial relations are intrinsically represented in these Eu-
clidean space. Thus, they theoretically allow spatial rela-
tions between objects to be learned by CNNs with suffi-
ciently large receptive fields [11]. In other words, CNNs
have the potential to model spatial interactions. However,
even though deep CNN backbones with large receptive
fields are widely utilized in trajectory forecasting models,
research has shown that adding a GNN after a CNN back-
bone can still improve interaction modeling [4,31,32]. This
suggests the CNN backbones often do not fulfill their the-
oretical potential in modeling spatial interactions between
the traffic actors.

In this work, we consider spatial interaction model-
ing through 2D convolutions and compare them to GNNs
within the context of motion forecasting for AD. A key de-
terminant of future motion for other drivers is the avoid-
ance of collisions, which represents a critical interaction
that we model explicitly. Collisions can be approximated as
geometric overlapping, which provides unambiguous defi-
nitions for interaction metrics. We evaluate the methods on
large-scale real-world AD data to draw general conclusions.
Our contributions are summarized below:
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• we identify three components to facilitate modeling
spatial interaction with convolutions: (1) large actor-
centric interaction region, (2) projecting feature maps
into the actor’s frame of reference, and (3) aggregation
of per-actor feature maps using convolutions;

• we perform empirical studies to compare interaction
modeling using convolutions and graphs, and find that
(1) CNNs can perform similarly to or better than
GNNs; (2) adding the CNN can considerably improve
interaction modeling even when a GNN is used; (3)
adding a GNN demonstrates only minor additional
gain when the convolutional approach is already used.

• we propose and study a novel interaction loss.

2. RELATED WORK

2.1. Motion forecasting

There exists a significant body of work on forecasting the
motion of traffic actors. An input to the forecasting mod-
els can be a sequence of past actor states such as positions,
headings, or velocities [7, 8, 10, 13, 19, 31], or a sequence
of raw sensor data such as LiDAR or radar returns [5, 25]
where joint object detection and motion forecasting are per-
formed in an autonomous vehicle’s (AV) frame of reference.
While the latter approach may accelerate inference and joint
learning by sharing common CNN features among all ac-
tors, these single-stage models could benefit from actor-
centric features. Two-stage models [4, 9] address this issue
by using a first stage to detect the actors and extract features,
and then adding a second stage in the frame of reference of
detected actors. The two stages are then learned jointly in
an end-to-end fashion. The interaction modeling study in
this paper adapts a two-stage architecture. Note that the de-
signs used in the study, including rotated region of interest
(RROI) [27] and actor-centric design [4, 9, 10], have been
developed and applied in previous research in a context dif-
ferent from interaction modeling. However, our empirical
study demonstrates that utilizing these ideas allows convo-
lutions to effectively model spatial interaction as well.

2.2. Interaction modeling

GNNs have recently been applied to explicitly express
interactions in motion forecasting. NRI [22] models the
interaction between actors by using GNNs to infer inter-
actions while simultaneously learning dynamics. Vector-
Net [13] and CAR-Net [32] model actor-context interac-
tions. Closely related to our work, SpaGNN [4] is also
a two-stage detection-and-forecasting model that builds a
graph for vehicles in the second stage to model vehicle-
vehicle interaction. The GNN models used for comparison
in the study of this paper follow the same design.

Beyond graph models, grid-based spatial relations have
been explored using social pooling approaches [1, 7, 15],
where pooling is used to capture the impact of surrounding
actors in the recurrent architecture. In social-LSTM [1,15],
the LSTM cell receives pooled spatial hidden states from
the LSTM cells of neighbors that are embedded into a grid.
Besides the parameter-free pooling, convolutional layers
have also been explored [7]. By contrast, our proposal is
fully convolutional. Moreover, these approaches pool the
spatial context of interacting actors while excluding the ac-
tor itself, thus the actor-context interaction is not directly
modeled in the process.

2.3. Interaction metrics

It is interesting to note that while various techniques
have been developed to model spatial interaction, most prior
work reports motion forecasting displacement errors. As
shown in this study, reducing displacement errors does not
necessarily indicate improvement in interaction modeling
for a motion forecasting task. An alternative metric that can
more explicitly indicate the level of interaction modeling
is to measure whether vehicle motion forecasts incorrectly
predict overlap with other vehicles [4, 31]. In this work,
we also propose vehicle-obstacle overlap rate within mo-
tion forecasts as another measure for interaction modeling.

3. METHODOLOGY

In this section we formulate the motion forecasting prob-
lem, followed by a discussion of two approaches to interac-
tion modeling: implicitly through 2D convolutions and ex-
plicitly through graphs. Fig. 1 illustrates the architectures of
the considered end-to-end models that jointly solve tasks of
object detection and motion forecasting, taking BEV repre-
sentation of the sensor data as an input and outputting both
object detections and their future trajectories. We empha-
size that we purposefully choose a commonly used input
representation, neural network design, and loss functions in
order to focus on understanding the interaction modeling
aspect of these approaches. Moreover, to quantify the anal-
ysis we limit our discussion to vehicle actors (see Appendix
for analysis of other actor types).

3.1. Problem formulation

Given input data comprising the past and current in-
formation of V interacting actors and the environment, a
model outputs their current and future states x represented
as X0:H = {xv

t , v = 1, . . . , V, t = T0, . . . , TH}. As men-
tioned previously, our study considers raw sensor data as
an input to the model. Following the joint detection and
forecasting architecture [5,9], we encode the sensor data by
voxelizing and stacking a sequence of current and P past
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Figure 1. Three model architectures in a scene illustrated with three vehicle actors and one obstacle (denoted by the white spot). All
models share the same first-stage design shown from left to middle: input is a BEV raster image comprising past and current point clouds
and a semantic map in the AV frame. Through a CNN feature extractor we obtain a 4× downsampled feature map in the AV frame.
(a) Single-stage baseline: Object detection and trajectory forecasting are performed at a pixel-level. (b) Adding the proposed Interaction
Convolutional Module (ICM). For each actor we define an interaction region (IR) in the actor frame that is used to crop an area from the
feature map. Through the weight-sharing interactive CNN (ICNN) a feature vector is aggregated for each actor and then utilized to predict
a future trajectory in its frame. (c) Adding GNN into the architecture shown in (b).

LiDAR point clouds around AV at time T0 in BEV rep-
resentation, as well as rasterizing semantic map that pro-
vides an additional environmental prior, which are used as
the model input. The 2D detection at time T0 for each
actor is parameterized by a bounding box represented as
(cx, cy, cos θ, sin θ, w, l), denoting the x and y coordinates
of the actor’s centroid, the cosine and sine of its heading an-
gle, and the width and length of the box, respectively. As-
suming rigid SE2 transformations, future trajectories can be
represented as a sequence of tuples (cxt, cyt, cos θt, sin θt),
with t ∈ {T1, . . . , TH} [35].

3.2. Feature extraction and loss functions

As illustrated in Fig. 1a, the first stage of the joint model
detects objects and extracts features. From the input BEV
raster, a 4× downsampled feature map is extracted by a
deep CNN that follows common design (see Appendix for
the complete network design). It consists of 3 operations:
(1) convolutional block (ConvB) including a convolution
(kernel size 3×3), batch normalization, and ReLU option-
ally; (2) ResNet v2 block (ResB) [18]; and (3) upsampling
using bi-linear interpolation. Features are processed at mul-
tiple scales to provide larger receptive fields for capturing
wider context and past motion of the actors.

Following the computation of the BEV feature map,

classification and regression are performed on the 1D fea-
ture vector for each grid cell. Through a fully-connected
(FC) layer and a softmax function, we obtain the likeli-
hood pc of existence of a vehicle actor whose center is lo-
cated in the cell c. We use focal loss ℓf [24] to address
the foreground/background imbalance. Through a separate
FC layer, the network at the same time regresses the de-
tection bounding boxes X0. The centroid and heading are
relative to the cell center and the AV heading, respectively.
Then, the first-stage detection loss is given as follows (the
hat-notation ∗̂ indicates the ground-truth targets)

Ldet =
∑
c∈all

ℓf (p̂c, pc) +
∑

v∈veh

(
ℓ1(l̂

v − lv)

+ ℓ1(ŵ
v − wv) + ℓ1(ĉ

v
x0 − cvx0) + ℓ1(ĉ

v
y0 − cvy0)

+ ℓ1(cos θ̂
v
0 − cos θv0) + ℓ1(sin θ̂

v
0 − sin θv0)

)
,

(1)

where all and veh represent all grid cells and vehicle fore-
ground grid cells, respectively, p̂c equals 1 for foreground
cells and 0 otherwise, ℓ1 is smooth-L1 loss (with the transi-
tion value set to 0.1).

In addition to the detection loss, end-to-end models also
optimize for the prediction loss that is only applied to fu-
ture waypoints of the actors. Moreover, we model the mul-
timodality of the predictions [9] by classifying three modes
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for each actor (i.e., turning left, turning right, or going
straight), where a separate trajectory is regressed for each
mode along with the corresponding mode probability [6]
based on the focal loss. In addition, regression loss is ap-
plied only to the trajectory mode that is closest to the ob-
served trajectory. Then, the prediction loss is given as

Lpred =
∑

v∈veh

M=3∑
m=1

(
ℓf (p̂

v
m, pvm)

+
1m̂=m

H

TH∑
t=T1

(
ℓ1(ĉ

v
xt − cvxmt) + ℓ1(ĉ

v
yt − cvymt)

+ ℓ1(cos θ̂
v
t − cos θvmt) + ℓ1(sin θ̂

v
t − sin θvmt)

))
,

(2)

where pvm denotes probability of m-th trajectory mode of
actor v, 1c is an indicator function equaling 1 if the condi-
tion c holds and 0 otherwise, and m̂ indicates an index of
the mode closest to the ground truth. Future centroids and
headings are relative to the cell center and the AV heading,
respectively (see Fig. 1a), while they are in the actor frames
in the two-stage models (see Fig. 1b-c). Then, Ldet and
Lpred can be optimized together in a joint training.

For single-stage models the detection and prediction val-
ues are both optimized in the first stage (Fig. 1a). On the
other hand, when the first stage serves as a part of the two-
stage architecture (Fig. 1b-c), Ldet is optimized as a part of
the first-stage output while Lpred is optimized in the second
stage, discussed in the remainder of this section.

3.3. Interaction using convolutions implicitly

In the previous section we discussed the first-stage fea-
ture extraction, that computes per-actor grid features which
are then used as an input to the second-stage models to pre-
dict future motion. In this section we discuss how to com-
pute the per-actor features better at capturing interactions:

• To capture relationship to nearby actors for the actor
for whom the future trajectories are predicted (called
the actor of interest), an input of the forecasting mod-
ule can be a region covering the interacting actors and
objects on the feature map, instead of only using the
feature pixel. For the traffic use-case this interaction
region (IR) should cover the area within which the ob-
jects should be paid attention to. Our results show that
for vehicle actors, a large region ahead of the vehicle
provides good context to model interaction.

• To overcome rotational variance of convolutions, in-
stead of cropping the IR features in the coordinate
frame of the original BEV grid whose orientation is
determined by AV, we define IR in the frame of the
actor of interest (i.e., actor frame), in which the out-
put trajectories are also defined (commonly referred to

as RROI [27]). Our results confirm the importance of
rotational invariance in modeling interactions.

• To effectively propagate non-local information of the
interacting actors to the actor of interest, we can use an
interactive CNN (ICNN) consisting of a few downsam-
pling convolutional layers that eventually condense an
IR comprising the actor of interest itself, its surround-
ing actors, and the environment, into a feature vector
used as the final feature for this actor.

As mentioned, the actor-centric feature map and the
RROI techniques have been utilized in a number of applica-
tions [4,9,10], where it was found to lower displacement er-
rors in trajectory forecasting tasks. In this paper we demon-
strate that, by combining these ideas, convolutions are ef-
fective in modeling spatial interactions as well. Moreover,
as shown by our experiments, by varying the parameters
of these ingredients one can control the level of interaction
modeling, providing further evidence that spatial interac-
tions can be effectively captured by convolutions.

The implementation of these three components are illus-
trated in the dashed box in Fig. 1b, which we refer to as
the interaction convolutional module (ICM). For each actor
we define a square IR around it, which is then used to crop
actor-centric features from the global feature map using bi-
linear interpolation. We vary the size, orientation, and the
position of the actor in the IR to study their effects on the
performance of interaction modeling (e.g., in the extreme
case where the IR has no area, the cropped feature is just
the feature pixel on the feature map). We choose a square
IR to simplify the discussion. The length of the square side
is referred to as IR size in the following discussion. Simi-
larly, the ICNN module always consists of six ConvBs and
one ResB to gradually reduce the cropped feature map to
a 1D feature vector fc (e.g., if the crop size is 32 × 32,
setting the strides of the last five ConvBs to 2 yields a 1D
vector; see Appendix for detailed discussion on crop sizes
and ICNN design). The final multimodal classification and
future trajectory regression in the actor frame are obtained
from this 1D vector via a single FC layer, one for each task.

3.4. Interaction using graphs explicitly

The purely convolutional approach described in the pre-
vious section provides implicit interaction modeling. To ex-
plicitly account for interactions, a common approach is the
use of GNNs, discussed in this section. As there exist many
variants, we choose one of the more general approaches,
the message passing neural network [14,36], which has also
been adapted to the motion forecasting problem [4].

Indicated by the dashed box in Fig. 1c, a fully connected
graph comprises all of the V actors (represented as nodes),
with bi-directional edges between every two actors. The

6586



Figure 2. Schematic of interaction loss. The actor (blue) is ap-
proximated with 3 costing circles (green), with minimal distances
(black) to an obstacle (grey) and resulting gradients (red).

feature attribute ni of the i-th node is initialized by

n0
i = MLPinit(fci), (3)

where fci is the final feature vector of the i-th actor com-
puted in the previous section. All multi-layer perceptrons
(MLPs) in this GNN have two layers. The message passing
at the k-th iteration via edge from node j to i is given by

mk
j→i = MLPk

e([n
k
i , relj→i, n

k
j , reli→j ]), (4)

where [·] denotes concatenation. Unlike the implicit convo-
lutional approach in the previous section where the relative
spatial relation of actors are intrinsically represented within
the crop, spatial relationships are additionally required in a
graph representation. The relative geometric feature relj→i

consisting of the coordinates and heading of actor j in the
frame of actor i, is computed as

relj→i = MLPrel([xj→i, yj→i, cos θj→i, sin θj→i]).
(5)

All of the messages sent to the i-th graph node are aggre-
gated by a max-pooling operation, denoted as

mk
i = Poolj(mk

j→i). (6)

Finally, the node attribute is updated with a Gated Recurrent
Unit (GRU) [4, 14, 36] whose hidden state is nk

i and the
input is mk

i ,
nk+1
i = GRU(nk

i ,m
k
i ). (7)

In general, the update iterates for K times. Finally, multi-
modal classification and future trajectories for the actor are
computed from nk+1

i , as discussed in Section 3.3.

3.5. Interaction loss

In this section we introduce a novel interaction loss to
improve interaction awareness of the model, which directly
penalizes predicted forecast of an actor that overlap with
static traffic objects (defined as objects with speed less than
0.2m/s). Traffic objects comprise objects that a vehicle
should avoid, including vehicles, cyclists, pedestrians, con-
struction fences, etc. At each prediction horizon, the pre-
dicted actor is approximated with 3 inscribed costing cir-
cles, as illustrated in Fig. 2. The loss is then computed as

Lcol =
1

3V H

V∑
v

N∑
n

H∑
t=1

L=3∑
l=1

max(0, Rvl − dvntl), (8)

where V , N , H , and L are the numbers of actors, non-
moving obstacles, prediction time horizons, and costing cir-
cles, respectively. Rvl is a radius of a costing circle (deter-
mined by the size of a ground-truth bounding box), while
dvntl is a signed minimum distance between the l-th costing
circle center of the v-th actor and the n-th obstacle bound-
ing box at time t. The distance is negative when the center
is inside the obstacle’s bounding box.

Note that the loss only considers overlaps between pre-
dicted trajectories and the ground-truth bounding boxes of
static obstacles. Moving actors may have multimodal tra-
jectory distributions, and it can be unclear when an overlap
between the trajectories of two moving actors should be pe-
nalized by the loss. In summary, when the costing circles
overlap with an obstacle bounding box, the interaction loss
would only back-propagate gradients through the predicted
centroid and heading. The loss is added to the prediction
loss Lpred where it is applied to the m̂-th predicted trajec-
tory, and optimized jointly in the end-to-end training.

4. EXPERIMENTS

Input and output. The considered area is of size
150 × 100 × 3.2m, centered at AV and discretized as a
960× 640× 16 grid into which the LiDAR sweep informa-
tion is encoded. The input contains 10 LiDAR sweeps col-
lected at 0.1s interval, as well as a semantic HD map from
the current timestamp. The models detect the vehicle actors
at the current time step and forecast their trajectories at fu-
ture time horizons t ∈ {0.1, 0.2, . . . , 4.0s}. Non-maximum
suppression (NMS) [29] with Intersection over Union (IoU)
threshold set at 0.1 is applied in order to eliminate duplicate
detections.

Metrics. The studies are focused on prediction accuracy
and interaction performance. IoU threshold for object de-
tection matching is set at 0.5. We observe that the detection
performance changes little in all of the considered models
reported in the paper, with average precision at 94.0 ± 0.4.
Furthermore, we ensure equal numbers of trajectories are
considered in the metrics by adjusting the detection proba-
bility threshold at a fixed recall of 0.8 [4]. Each actor has 3
predicted trajectory modes, and we assign the trajectory of
the most probable mode to the actor in the following met-
ric computation. We use displacement error (DE) at 4s to
measure the prediction accuracy, averaged over all actors.

To quantify the interaction performance of the models
we consider two overlap metrics in our experiments (addi-
tional results of other metrics are provided in Appendix):
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Figure 3. Effects of the ICM components: interaction region (IR), interaction CNN (ICNN), and actor frame (AF). Extractor is the single-
stage model; +IR+ICNN represents the two-stage model that defines IRs in the AV frame; +ICM (i.e., +IR+ICNN+AF) is the proposed
two-stage model that defines IRs in the actor frame. All IRs have a fixed 5:1 front-to-back ratio, unless specified otherwise. Inset: models
with a fixed IR size of 60m and varied front-to-back ratios.

• Actor-actor overlap rate is the percentage of predicted
trajectories of detected actors overlapping with pre-
dicted trajectories of other detected actors.

• Actor-static overlap rate is the percentage of pre-
dicted trajectories of detected actors overlapping with
ground-truth static traffic objects.

An actor overlap is defined as an intersection-over-obstacle-
polygon of more than 0.05 at any point of the 4s-long tra-
jectory, set to this value to eliminate false positive overlaps
due to small noise in the labeled bounding boxes.

Data. We conducted an evaluation on a large in-house
data set, containing 19,000 scenes of 25s each and collected
across several cities in North America with high-quality
10Hz annotations. To mitigate the metric variance of the
sparse overlaps, (1) a large split of 5,000 scenes is left out
for testing; (2) the test frames in scenes have a temporal
spacing of 2s to avoid counting the same overlaps multiple
times; and (3) the training and test sets are split geograph-
ically to prevent models from memorizing the same static
obstacles and environment. Using this larger data set, as
opposed to using popular open-sourced data sets that are
significantly smaller, allows for lower metric variance and
deriving more general conclusions. Lastly, by using the
same input, backbone network, loss functions, and train-
ing settings, our studies contrast the interaction modeling
approaches. This allows us to focus on the relative perfor-
mance of these approaches, as opposed to comparing inde-
pendent models where ensuring similar network capacities
and equally well-tuned hyper-parameters are typically chal-
lenging tasks. In Appendix we provide details on the data
sets, metric variance, and comparison to other motion fore-
casting models on public data sets.

4.1. Results

Interaction using convolutions. The performance of
the single-stage model (Fig. 1a) that contains only the fea-
ture extractor is shown in Fig. 3 (Extractor, black). The

+IR+ICNN (green) curve shows the performance of the
two-stage model without rotating the interaction region for
each actor into the actor frame. In particular, starting from
the 1D per-actor feature map vectors (0m), we increase the
IR size to 80m. By cropping larger feature map regions that
contain more interacting actors and surrounding context,
displacement error and forecasted overlap rates decrease.

We then rotate IRs to match estimated actor orientation
instead of using the common AV frame (+ICM, blue). For
zero IR size (i.e., a cropped feature is still the feature pixel),
we observe DE drops significantly compared to the model
using the AV frame with zero IR size (green). This has been
explained previously as a benefit of a standardized output
representation [9]. Although defining the IR in the actor
frame reduces rotational variance, the zero-size IR covers
no interacting actors and we thus observe little change in
the actor overlap rates. Here a lower DE is not less corre-
lated to better interaction modeling. As the IR is increased
in size, both DE and the interaction metrics improve dra-
matically. Crop sizes of beyond 60m show no further im-
provement, likely because the majority of interacting actors
and obstacles are already included within the 60m region.

In all of the IRs above we have fixed the front-to-back
ratio to 5:1, meaning an IR of size 60m includes 50m ahead
and 10m behind the actor. In Fig. 3 inset we fix the to-
tal size at 60m, and vary the front-to-back ratio (blue). As
the vast majority of actors are moving forward, we can see
that placing more of the IR ahead of the actor improves in-
teraction modeling. It is interesting to note the divergence
between DE and overlap rates again: after the front-to-
back ratio is above 1:1, the overlap rates continue to drop
marginally, while the DE improvement stops. Even for the
actor-centered IR (inset, green), not rotating the IR to match
the actor orientation yields worse DE and overlap rates,
which further confirms the importance of removing rota-
tional variance for interaction modeling using convolutions.
From Fig. 3, we observe that by cropping an actor-frame
defined region of the feature map and then applying convo-
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Figure 4. Performance from adding a GNN on top of the ICM (Fig. 1c) for different ICM interaction region sizes. +GNN (only attributes)
encodes only node attributes in the graph edges; +GNN (only relative) encodes only relative locations and orientations in the graph edges.

Figure 5. Comparison of ICM and GNN (which includes ICM). +GNN (no edges) is identical to +GNN except the graph edges are cut off.
+IL represents models trained with the additional interaction loss. Note that comparing +ICM at large IR (interaction is modeled by ICM)
against +GNN at small IR (interaction is modeled by GNN) shows that a pure ICM can outperform a pure GNN in modeling interactions.

lutions improves forecasting and interaction modeling con-
siderably. Strong dependence of overlap rates on IR size
provides evidence that convolutions are effectively captur-
ing interactions once other actors are inside the IR.

Interaction using graphs. As illustrated in Fig. 1c, for
these experiments we add a GNN after the ICM. Note that,
as discussed earlier, setting the IR size to 0m deactivates
the ICM while retaining the benefit of reduced rotational
variance. For zero IR size (Fig. 4, +GNN, red) we see
that the GNN indeed improves DE and overlap rates signif-
icantly as compared to the models without designated in-
teraction modeling capability in Fig. 3 (+ICM, 0m). No-
tably, even when GNN is utilized, we observe that ICM
can still provide additional performance improvements as
we gradually increase ICM’s interaction modeling by ex-
panding the IR size. We also examine the benefit of the
hand-crafted relative geometries in the graph edges. When
the IR is small (i.e., ICM is limited), keeping only the node
attributes ni (blue) or relative geometries reli,j (green) sig-
nificantly damages the graph modeling. For large IR sizes,
the difference between the three graph models becomes mi-
nor, suggesting that with larger feature crops the ICM has
effectively compensated for missing GNN features.

The GNNs in the models above are single-iteration. We
also evaluated the effect of increasing the GNN iterations to
K = 2. An additional iteration (i.e., K = 2) reduces DE

and overlap rates further by a small amount when the IR
size is small, which could be explained by the well-known
bottleneck phenomenon of GNNs [2] and the fact that the
graph is fully connected. This improvement is negligible
for all but the smallest IRs, and no further exploration of
additional iterations is provided below.

Convolutions vs. graphs for interaction. In Fig. 5 we
compare the implicit ICM (blue) and explicit GNN (red) ap-
proaches. With zero IR size (where ICM is effectively off)
the gain of adding GNN is significant. However, as the IR
grows, we observe that the performance gap steadily nar-
rows. In other words, while turning on ICM (by increasing
IR size) can further improve the performance of GNN mod-
els, adding a graph to an ICM with a sufficiently large IR
provides only minor benefits. To understand the gaps be-
tween +ICM and +GNN with large IR sizes, we study a
graph-less model (+GNN (no edge), black) created by re-
moving graph edges in +GNN. For large IRs, the graph-less
model matches the performance of +GNN, suggesting that
explicit interaction graph of GNN contributes little to the
performance. Thus, the gaps between +ICM and +GNN
for larger IR sizes are mainly due to extra network capacity
of GNN. Lastly, we see that comparing +ICM at large IR
(i.e., interaction modeled by ICM) against +GNN at small
IR (i.e., interaction modeled by GNN) shows that a pure
ICM can outperform a pure GNN in modeling interactions.
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Figure 6. Predicted trajectories sampled at 2Hz of baseline (top)
and ICM (bottom). red: overlapped obstacles; blue: forecasts of
the actors of interest; grey: forecasts of other actors; green: labels
(also see attached videos in the Appendix).

Interaction loss. We can also see that adding the inter-
action loss (Eq. 8) reduces the overlap between actors’ pre-
dicted trajectories for both interaction modeling approaches
(green and magenta in Fig. 5). The improvement is sig-
nificant for smaller IRs, which may be due to the fact that
the smaller IRs do not provide enough information to model
the interactions effectively, benefiting more from this added
supervision. On the other hand, when interaction is mod-
eled more effectively through larger IR, the loss is sparser
and thus contributes less. Interestingly, the interaction loss
does not affect DE results except for ICM models at small
IR where the interaction modeling is limited.

Maneuver-specific qualitative results. In Fig. 6 we
present a comparison of the baseline ICM model with 0m
size (that has no designated interaction modeling) and the
ICM model with 60m size on three typical maneuvers
observed in interacting scenarios: adaptive cruise control
(ACC), turn, and nudging. We note that the 0m model in all
cases incorrectly predicts overlapping trajectories. In the
ACC case the ICM model correctly predicts that the vehicle
would decelerate and queue after others, while in the turn
case it outputs a trajectory that follows the lane and avoids
overlapping with the vehicles after the turn. In the nudging
case the vehicle motion starts with considerable curvature,
the forecast correctly reduces the curvature and straightens
the trajectory to avoid the parked cars. We also examined
the results of adding GNNs on +ICM (60m) on these ma-
neuvers, and observed no significant difference.

Inference time. The baseline model that includes
the feature extractor and other parts such as input pre-
processing and output post-processing takes 45.6ms per
frame. Next we measure the additional time costs of adding
the ICM and GNN modules to the baseline model, shown in
Table 1. The ICM of zero IR size adds an additional 5.2ms,
which includes processing of the feature pixel and computa-
tion of the final output. ICM with non-zero size uses convo-
lutions and bilinear feature cropping, operations that have
been optimized in current GPU software and hardware. As
a result, even the largest 80m ICM is only a few millisec-
onds slower than the 0m ICM. Lastly, the GNN itself takes

Table 1. Inference times of modules (tested on Nvidia Titan RTX)

Module IR size [m] Inference [ms]
ICM 0 5.2
ICM 80 8.1
GNN - 46.9

46.9ms, multiple times slower than the slowest ICM. This is
consistent with earlier results showing GNN inference may
be inefficient resulting in higher latency [21]. Coupled with
the earlier results showing that modeling interaction using
convolutions can give competitive performance compared
to GNNs, we see that the convolutional approach represents
an efficient and practical alternative to GNNs.

5. LIMITATIONS AND SOCIAL IMPACT
While graphs represent a general approach to model-

ing various relations, this work shows that convolutions are
also effective when it comes to modeling spatial interac-
tion. However, in Euclidean space where CNNs are ap-
plied, some information such as driver-driver vocal inter-
actions are not currently represented. Besides, as our stud-
ies are limited to the 2D AV application, it is unanswered
whether convolutions are still effective in capturing interac-
tions in 3D space (such as for modeling human body mo-
tion). Additionally, the overlap rates over trajectories en-
able us to explicitly evaluate quality of the interaction mod-
eling. However, the metric sparsity leads to requirement
for having larger test data to ensure the obtained results are
meaningful, which limits a wider use of the metric. Lastly,
neither of the considered approaches guarantees zero over-
laps over the trajectories, and CNN models also often have
lower interpretability than the GNN approaches.

6. CONCLUSION
We compared and contrasted 2D convolutional and

graph neural networks for the task of spatial interaction
modeling, providing empirical evidence that under certain
conditions convolutional networks can reach comparable
performance to the state-of-the-art GNNs (e.g., by modify-
ing IR), thus allowing similar motion forecasting accuracy
and interaction modeling while maintaining reduced latency
and model complexity of the model. We analyzed common
components of the interaction approaches, leading to a bet-
ter understanding of how each benefits the interaction mod-
eling. Moreover, we introduced a novel interaction-aware
loss and showed its impact on the considered approaches.
Our work presents a basis for wider use of convolutional
layers for the task of spatial interaction, providing evidence
that the gap between convolutional models and more com-
plex and computationally expensive GNN models may not
be as large as previously suspected.
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