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Abstract

The contextual information plays a core role in seman-
tic segmentation. As for video semantic segmentation,
the contexts include static contexts and motional contexts,
corresponding to static content and moving content in a
video clip, respectively. The static contexts are well ex-
ploited in image semantic segmentation by learning multi-
scale and global/long-range features. The motional con-
texts are studied in previous video semantic segmentation.
However, there is no research about how to simultane-
ously learn static and motional contexts which are highly
correlated and complementary to each other. To address
this problem, we propose a Coarse-to-Fine Feature Min-
ing (CFFM) technique to learn a unified presentation of
static contexts and motional contexts. This technique con-
sists of two parts: coarse-to-fine feature assembling and
cross-frame feature mining. The former operation prepares
data for further processing, enabling the subsequent joint
learning of static and motional contexts. The latter opera-
tion mines useful information/contexts from the sequential
frames to enhance the video contexts of the features of the
target frame. The enhanced features can be directly ap-
plied for the final prediction. Experimental results on popu-
lar benchmarks demonstrate that the proposed CFFM per-
forms favorably against state-of-the-art methods for video
semantic segmentation. Our implementation is available at
https://github.com/GuoleiSun/VSS-CFFM.

1. Introduction

Semantic segmentation aims at assigning a semantic la-
bel to each pixel in a natural image, which is a fundamen-
tal and hot topic in the computer vision community. It has
wide range of applications in both academic and industrial
fields. Thanks to the powerful representation capability of
deep neural networks [28, 39, 71, 73] and large-scale im-
age datasets [3, 14, 20, 59, 102], tremendous achievements
have been seen for image semantic segmentation. How-
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Figure 1. Illustration of static contexts (in blue) and motional con-
texts (in red) across neighbouring video frames. The human and
horse are moving objects, while the grassland and sky are static
background. Note that the static stuff is helpful for the recognition
of moving objects, i.e., a human is riding a horse on the grassland.

ever, video semantic segmentation has not been witnessed
such tremendous progress [23, 35, 53, 60] due to the lack
of large-scale datasets. For example, Cityscapes [14] and
NYUDv2 [70] datasets only annotate one or several nonad-
jacent frames in a video clip. CamVid [2] only has a small
scale and a low frame rate. The real world is actually dy-
namic rather than static, so the research on video semantic
segmentation (VSS) is necessary. Fortunately, the recent es-
tablishment of the large-scale video segmentation dataset,
VSPW [58], solves the problem of video data scarcity. This
inspires us to denoting our efforts to VSS.

As widely accepted, the contextual information plays a
central role in image semantic segmentation [5–7, 9, 16, 27,
33, 36, 37, 45, 50, 88, 90, 93, 96, 98, 99, 103, 107]. When
considering videos, the contextual information is twofold:
static contexts and motional contexts, as shown in Fig. 1.
The former refers to the contexts within the same video
frame or the contexts of unchanged content across differ-
ent frames. Image semantic segmentation has exploited
such contexts (for images) a lot, mainly accounting for
multi-scale [6, 7, 9, 88] and global/long-range information
[33, 96, 98, 107]. Such information is essential not only
for understanding the static scene but also for perceiving
the holistic environment of videos. The latter, also known
as temporal information, is responsible for better parsing
moving object/stuff and capturing more effective scene rep-
resentations with the help of motions. The motional context
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learning has been widely studied in video semantic segmen-
tation [4, 23, 32, 34, 35, 42, 47, 53, 54, 60, 69, 85, 105], which
usually relies on optical flows [19] to model motional con-
texts, ignoring the static contexts. Although each single as-
pect, i.e., static or motional contexts, has been well studied,
how to learn static and motional contexts simultaneously
deserves more attention, which is important for VSS.

Furthermore, static contexts and motional contexts are
highly correlated, not isolated, because both contexts are
complementary to each other to represent a video clip.
Therefore, the ideal solution for VSS is to jointly learn
static and motional contexts, i.e., generating a unified repre-
sentation of static and motional contexts. A naı̈ve solution
is to apply recent popular self-attention [18, 76, 80] by tak-
ing feature vectors at all pixels in neighboring frames as to-
kens. This can directly model global relationships of all to-
kens, of course including both static and motional contexts.
However, this naı̈ve solution has some obvious drawbacks.
For example, it is super inefficient due to the large num-
ber of tokens/pixels in a video clip, making this naı̈ve solu-
tion unrealistic. It also contains too much redundant com-
putation because most content in a video clip usually does
not change much and it is unnecessary to compute atten-
tion for the repeated content. Moreover, the too long length
of tokens would affect the performance of self-attention, as
shown in [12,21,29,56,84] where the reduction of the token
length through downsampling leads to better performance.
More discussion about why traditional self-attention is in-
appropriate for video context learning can be found in §3.1.

In this paper, we propose a new Coarse-to-Fine Feature
Mining (CFFM) technique, which consists of two parts:
coarse-to-fine feature assembling and cross-frame feature
mining. Specifically, we first apply a lightweight deep net-
work [83] to extract features from each frame. Then, we as-
semble the extracted features from neighbouring frames in a
coarse-to-fine manner. Here, we use a larger receptive field
and a more coarse pooling if the frame is more distant from
the target. This feature assembling operation has two mean-
ings. On one hand, it organizes the features in a multi-scale
way, and the farthest frame would have the largest receptive
field and the most coarse pooling. Since the content in a
few sequential frames usually does not change suddenly and
most content may only have a little temporal inconsistency,
this operation is expected to prepare data for learning static
contexts. On the other hand, this feature assembling oper-
ation enables a large perception region for remote frames
because the moving objects may appear in a large region
for remote frames. This makes it suitable for learning mo-
tional contexts. At last, with the assembled features, we
use the cross-frame feature mining technique to iteratively
mine useful information from neighbouring frames for the
target frame. This mining technique is a specially-designed
non-self attention mechanism that has two different inputs,

unlike commonly-used self-attention that only has one in-
put [18, 76]. The output features enhanced by the CFFM
can be directly used for the final prediction. We describe
the technical motivations for CFFM in detail in §3.1.

The advantages of this new video context learning mech-
anism are four-fold. (1) The proposed CFFM technique can
learn a unified representation of static contexts and motional
contexts, both of which are of vital importance for VSS. (2)
The CFFM technique can be added on top of frame fea-
ture extraction backbones to generate powerful video con-
textual features, with low complexity and limited compu-
tational cost. (3) Without bells and whistles, we achieve
state-of-the-art results for VSS on standard benchmarks by
using the CFFM module. (4) The CFFM technique has the
potential to be extended to improve other video recognition
tasks that need powerful video contexts.

2. Related Work
2.1. Image Semantic Segmentation

Image semantic segmentation has always been a key
topic in the vision community, mainly because of its wide
applications in real-world scenarios. Since the pioneer work
of FCN [68] which adopts fully convolution networks to
make densely pixel-wise predictions, a number of segmen-
tation methods have been proposed with different motiva-
tions or techniques [10,30,31,52,61,63,78,81,94,97,104].
For example, some works try to design effective encoder-
decoder network architectures to exploit multi-level fea-
tures from different network layers [1, 9, 25, 51, 62, 66, 68,
75]. Some works impose extra boundary supervision to im-
prove the prediction accuracy of details [44, 74, 77, 89, 99].
Some works utilize the attention mechanism to enhance the
semantic representations [8,22,33,46,67,95,101,107]. Be-
sides these talent works, we want to emphasize that most
research aims at learning powerful contextual information
[5,17,27,36,37,45,50,90,93,96,99,103], including multi-
scale [6, 7, 9, 26, 27, 45, 88] and global/long-range informa-
tion [33, 96, 98, 107]. The contextual information is also
essential for VSS, but the video contexts are different from
the image contexts, as discussed above.

2.2. Video Semantic Segmentation

Since the real world is dynamic rather than static, VSS
is necessary for pushing semantic segmentation into more
practical deployments. Previous research on VSS was
limited by the available datasets [58]. Specifically, three
datasets were available: Cityscapes [14], NYUDv2 [70],
and CamVid [2]. They either only annotate several nonadja-
cent frames in a video clip or have a small scale, a low frame
rate and low resolution. In fact, these datasets are usually
used for image segmentation. Fortunately, the recent estab-
lishment of the VSPW dataset [58] which is large-scale and

3127



fully-annotated solves this problem.

Most of the existing VSS methods utilize the optical
flow to capture temporal relations [23, 34, 40, 42, 53, 54,
57, 60, 69, 85, 105]. These methods usually adopt differ-
ent smart strategies to balance the trade-off between accu-
racy and efficiency [40, 57]. Among them, some works aim
at improving the segmentation accuracy by exploiting the
temporal relations using the optical flow for feature warp-
ing [23, 53, 60] or the GAN-like architecture [24] for pre-
dictive feature learning [35]. The other works aim at im-
proving the segmentation efficiency by using temporal con-
sistency for feature propagation and reuse [34, 47, 69, 105],
or directly reusing high-level features [4, 69], or adaptively
selecting the key frame [85], or propagating segmentation
results to neighbouring frames [42], or extracting features
from different frames with different sub-networks [32], or
considering the temporal consistency as extra training con-
straints [54]. Zhu et al. [106] utilized video prediction mod-
els to predict future frames as well as future segmentation
labels, which are used as augmented data for training better
image semantic segmentation models, not for VSS. Differ-
ent from the above approaches, STT [43] and LMANet [65]
directly models the interactions between the target and ref-
erence features to exploit the temporal information.

The above VSS approaches explore the temporal rela-
tion, here denoted as motional contexts. However, video
contexts include two highly-correlated aspects: static and
motional contexts. Those methods ignore the static contexts
that are important for segmenting complicated scenes. This
paper addresses this problem by proposing a new video con-
text learning mechanism, capable of joint learning a unified
representation of static and motional contexts.

2.3. Transformer

Vision transformer, a strong competitor of CNNs, has
been widely adopted in various vision tasks [18, 49, 55, 56,
72, 87, 91, 92, 100], due to its powerful ability of model-
ing global connection within all the input tokens. Specif-
ically, ViT [18] splits images into patches, constructs to-
kens and processes tokens using typical transformer lay-
ers. Swin [56] improves ViT by introducing shifted win-
dows when computing self-attention and a hierarchical ar-
chitecture. Focal [87] introduces both fine-grained and
coarse-grained attention in architecture design. The effec-
tiveness of transformers has been validated in segmenta-
tion [83, 100], tracking [11, 86], crowd counting [48, 72],
multi-label classification [41] and so on. Despite the suc-
cess of transformer in these tasks, the use of transformer
layers in VSS is non-trivial due to the large number of to-
kens among video frames. Here, we propose a effective and
efficient way to model the contextual information for VSS.

3. Methodology

3.1. Technical Motivation

Before introducing our method, we discuss our techni-
cal motivation to help readers better understand the pro-
posed technique. As discussed above, video contexts in-
clude static contexts and motional contexts. The former
is well exploited in image semantic segmentation [5–7, 9,
15, 26, 27, 33, 36, 37, 45, 50, 88, 90, 93, 96, 98, 99, 103, 107],
while the latter is studied in video semantic segmentation
[4, 23, 34, 40, 42, 47, 53, 54, 57, 60, 69, 85, 105]. However,
there is no research touching the joint learning of both static
and motional contexts which are both essential for VSS.

To address this problem, a naı̈ve solution is to sim-
ply apply the recently popular self-attention mechanism
[18, 76, 80] to the video sequence by viewing the feature
vector at each pixel of each frame as a token. In this way,
we can model global relationships by connecting each pixel
with all others, so all video contexts can of course be con-
structed. However, this naı̈ve solution has three obvious
drawbacks. First, a video sequence has l times more to-
kens than a single image, where l is the length of the video
sequence. This would lead to l2 times more computational
cost than a single image because the complexity of the self-
attention mechanism is O(N2C), where N is the number
of tokens and C is the feature dimension [18, 56, 76]. Such
high complexity is unaffordable, especially for VSS that
needs on-time processing as video data stream comes in
sequence. Second, such direct global modeling would be
redundant. Despite that there are some motions in a video
clip, the overall semantics/environment would not change
suddenly and most video content is repeated. Hence, most
of connections built by the direct global modeling are un-
necessary, i.e., self-to-self connections. Last but not least,
although self-attention can technically model global rela-
tionships, a too long sequence length would limit its per-
formance, as demonstrated in [12, 21, 29, 56, 79, 84] where
downsampling features into small scales leads to better per-
formance than the original long sequence length.

Instead of directly modeling global relationships, we
propose to model relationships only among necessary to-
kens for the joint learning of static and motional contexts.
Our CFFM technique consists of two steps. The first step,
Coarse-to-Fine Feature Assembling (CFFA), assembles the
features extracted from neighbouring frames in a temporally
coarse-to-fine manner based on three observations. First,
the moving objects/stuff can only move gradually across
frames in practice, and the objects/stuff cannot move from
one position to another far position suddenly. Thus, the re-
gion of the possible positions of (an) moving object/stuff in
a frame gradually gets larger for farther frames. In other
words, for one pixel in a frame, the farther the frames,
the larger the correlated regions. Second, although some
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Figure 2. Overview of the proposed Coarse-to-Fine Feature Mining. All frames are first input to an encoder to extract features, which
then go through the coarse-to-fine feature assembling module (CFFA). Features for different frames are processed by different pooling
strategies to generate the context tokens. The principle is that for more distant frames, the bigger receptive field and more coarse pooling
are used. The shown feature size (20 × 20), receptive field and pooling kernel are for simple explanation. The context tokens from all
frames are concatenated and then processed by cross-frame feature mining (CFM) module. The context tokens are exploited to update the
target features by several multi-head non-self attention layers. Finally, we use the enhanced target features to make segmentation prediction
for the target frame. Best viewed with zooming.

content may change across frames, the overall semantics
and environment would not change much, which means
that most video content may only have a little temporal
inconsistency. Third, the little temporal inconsistency of
the “static” content across neighbouring frames can be eas-
ily handled by the pooling operation which is scale- and
rotation-invariant. Inspired by the second and third obser-
vations, a varied-size region sampling through the pooling
operation in neighbouring frames can convey multi-scale
contextual information. Therefore, the designed CFFA can
perceive multi-scale contextual information (static contexts)
and motional contexts. Specifically, each pixel in the tar-
get frame corresponds to a larger receptive field and a more
coarse pooling in the farther frame, as depicted in Fig. 2.
Note that the length of the sampled tokens is much shorter
than that in the default self-attention.

The second step of CFFM, Cross-frame Feature Min-
ing (CFM), is designed to mine useful information from
the features of neighbouring frames. This is an attention-
based process. However, unlike traditional self-attention
[18,76,80] whose query, key, and value come from the same
input, we propose to use a non-self attention mechanism,
where the query is from the target frame and the key and
value are from neighbouring frames. Besides, we only up-
date the query during the iterative running of non-self atten-
tion, but we keep the context tokens unchanged. This is in-
tuitive as our goal is to mine information from neighbouring
frames and the update of context tokens is thus unnecessary.
Compared with self-attention that needs to concatenate and
process all assembled features, this non-self attention fur-

ther reduces the computational cost.

3.2. Coarse-to-Fine Feature Assembling

Without loss of generalizability, we start our dis-
cussion on training data containing video frames
{It−k1 , · · · , It−kl

, It} with ground-truth segmen-
tation of {St−k1

, · · · ,St−kl
,St}, and we focus on

segmenting It. Specifically, It is the target frame and
{It−k1

, · · · , It−kl
} are l previous frames which are

{k1, · · · , kl} frames away from It, respectively. Let us
denote U = {t − k1, · · · , t − kl, t} as the set of all frame
subscripts. We first process {It−k1 , · · · , It−kl

, It}
using an encoder to extract informative features
F = {Ft−k1

, · · · ,Ft−kl
,Ft}, each of which has the

size of Rh×w×c (h, w, and c represent height, width, and
the number of channels, respectively). We aim to exploit
F to generate better features for segmenting It as relevant
and valuable video contexts exist in previous frames.

To efficiently establish long-range interactions between
the reference frame features ({Ft−k1

, · · · ,Ft−kl
}) and the

target frame features Ft, we propose the coarse-to-fine fea-
ture assembling module, as showed in Fig. 2. Inspired by
previous works [56, 79, 87], we split the target frame fea-
tures Ft into windows and each window attends to a shared
set of context tokens. The reason behind this is that attend-
ing each location in Ft to a specific set of context tokens
requires huge computation and memory cost. When using
window size of s×s, Ft is partitioned into h

s ×
w
s windows.

3129



We obtain the new feature map F
′

t as follows:

Ft ∈ Rh×w×c → F ′t ∈ R(h
s
×s)×(w

s
×s)×c → F ′t ∈ R

h
s
×w

s
×s×s×c.

(1)

Then, we generate context tokens from different frames.
The main idea is to see a bigger receptive field and use a
more coarse pooling if the frame is more distant from the
target, which is why we call this step coarse-to-fine fea-
ture assembling. The motivation behind this is described in
§3.1. Formally, we define two sets of parameters: the recep-
tive fields r = {rt−k1 , · · · , rt−kl

, rt} and the pooling ker-
nel/window sizes p = {pt−k1 , · · · , pt−kl

, pt}, when gener-
ating corresponding context tokens. For t− k1 < t− k2 <
· · · < t− kl < t, we have rt−k1

≥ rt−k2
≥ · · · ≥ rt−kl

≥
rt and pt−k1

≥ pt−k2
≥ · · · ≥ pt−kl

≥ pt. With this def-
inition, we partition {Ft−k1 , · · · ,Ft−kl

,Ft} using pooling
windows p = {pt−k1 , · · · , pt−kl

, pt} to pool the features,
respectively. The result is processed by a fully connected
layer (FC) for dimension reduction. This is formulated as

Fj ∈ Rh×w×c → Ej ∈ R
h
pj
× w

pj
×c×p2j FC→ Ej ∈ R

h
pj
× w

pj
×c

,
(2)

where j ∈ U . In Fig. 2, we have r = {20, 12, 6, 4} and
p = {4, 3, 2, 1} for all frames (3 reference and 1 target).

For each window partition F ′t [i] ∈ Rs×s×c (i ∈
{1, 2, · · · , hw

s2 }) in the target features, we extract rj
pj
× rj

pj

elements from Ej around the area where the window lies
in. This can be easily implemented using the unfold func-
tion in PyTorch [64]. Let ci,j denote the obtained context
tokens from j-th frame and for i-th window partition in the
target features. We concatenate ci,j into ci as follows,

ci = Concat[ci,j ], (3)

where j ∈ U , ci ∈ Rm×c and m =
∑

j∈U
r2j
p2
j

. The context
tokens from the target frame are obtained by using parame-
ter set (rt, pt) to process the target features. In practice, we
additionally use another parameter set (r

′

t, p
′

t) to generate
more contexts from the target since the target features are
more important. For simplicity, we focus our discussion by
omitting (r

′

t, p
′

t) and using only (rt, pt) for the target.
To sum up, ci contains the context information from all

frames, which is used to refine the target frame features. As
discussed in §3.1, on one hand, ci covers the tokens at pos-
sible positions that moving objects/stuff would appear, so
it can be used for learning motional contexts. On the other
hand, ci is a multi-scale sampling of neighbouring frames
with the temporal inconsistency solved by the pooling op-
eration, so it can be used for learning static contexts.

3.3. Cross-frame Feature Mining

After that we obtain the context tokens ci, for each win-
dow partition in the target features, we propose a non-
self attention mechanism to mine useful information from
neighboring frames. Unlike the traditional self-attention

mechanism that computes the query, key, and value from
the same input, our non-self attention mechanism utilizes
different inputs to calculate the query, key, and value. Since
F

′

t is the input to the first layer of our cross-frame feature
mining module, we re-write it as F 0

t = F
′

t . For the i-th
window partition in F 0

t , the query Qi, key Ki, and value Vi

are computed using three fully connected layers as follows:

Qi = FC(F 0
t [i]), Ki = FC(ci), Vi = FC(ci), (4)

where FC(·) represents a FC layer. Next, we use non-self
attention to update the target frame features, given by

F 1
t [i] = Softmax(

QiK
T
i√
c

+B)Vi + F 0
t [i], (5)

where B represents the position bias, following [56]. Note
that we omit the formulation of the multi-head attention
[18, 76] for simplicity. Equ. (4) and Equ. (5) are repeated
for N steps, and we finally obtain the enhanced feature
FN
t ∈ Rh

s×
w
s ×s×s×c for the target frame. Long-range

static and motional contexts from neighbouring frames are
continuously exploited to learn better features for segment-
ing the target frame. Note that in this process, we do not
update the context tokens ci for simplicity/elegance and re-
ducing computation. Since this step is to mine useful infor-
mation from the reference frames, it is also unnecessary to
update ci. This is the advantage of non-self attention.

To generate segmentation predictions, we reshape FN
t

into Rh×w×c and concatenate FN
t with Ft. Then, a simple

MLP projects the features to segmentation logits. The com-
mon cross entropy (CE) is used as the loss function for train-
ing. Auxiliary losses on original features are also computed.
During inference, our method does not need to extract fea-
tures for all l + 1 frames when processing It. Instead, the
features of the reference frames, which are the frames be-
fore the target frame, have already been extracted in previ-
ous steps. Only the target frame is passed to the encoder to
generate Ft, and then features {Ft−k1

, · · · ,Ft−kl
,Ft} for

all frames are passed to the CFFM.

3.4. Complexity Analysis

Here, we formally analyze the complexity of the pro-
posed CFFM and the recent popular self-attention mech-
anism [18, 76, 80] when processing video clip features
{Ft−k1

, · · · ,Ft−kl
,Ft}. The coarse-to-fine feature assem-

bling (Equ. (2)) has the complexity ofO((l+1)hwc), which
is irrespective of p. The cross-frame feature mining has two
parts: Equ. (4) has the complexity of O(hwc2) +O(mc2),
and Equ. (5) is with the complexity of O(hwmc). As men-

tioned early, m =
∑

j∈U
r2j
p2
j

. To sum over, the complexity
of our method is given by

O(CFFM) = O(hwmc) +O(hwc
2
) +O(mc

2
) +O((l + 1)hwc)

= O(hwmc) +O(hwc
2
),

(6)
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where the derivation is conducted by removing less signifi-
cant terms. For the self-attention mechanism [18,76,80], the
complexity is O((l+ 1)2h2w2c) +O((l+ 1)hwc2). Since
m� (l+1)2hw, the complexity of the proposed approach
is much less than the self-attention mechanism. Take the
example in Fig. 2, m = 66 while (l + 1)2hw = 6400.

3.5. Difference with STT

We notice that a concurrent work STT [43] also uti-
lizes bigger searching regions for more distant frames and
self-attention mechanisms to establish connections across
frames. While two works share these similarities, there are
key differences between them. First, two methods have dif-
ferent motivations. We target at exploiting both static and
motional contexts, while STT focuses on capturing the tem-
poral relations among complex regions. Note that the con-
cept of static/motional contexts is similar to the concept of
simple/complex regions in STT. As a result, STT models
only the motional contexts, while our method models both
static and motional contexts. Second, the designs are dif-
ferent. For query selection, STT selects 50% of query lo-
cations in order to reduce the computation. However, our
method splits the query features into windows and the query
features in each window share the same contexts to reduce
the computation. For key/value selection, STT operates in
the same granularity, while our method processes the se-
lected key/value into different granularity, which reduces
the number of tokens and models the multi-scale informa-
tion for static contexts. Third, our cross-frame feature min-
ing can exploit multiple transformer layers to deeply mine
the contextual information from the reference frames, but
STT only uses one layer. The reason may be that STT only
updates the query features of the selected locations and us-
ing multiple STT layers could lead to inconsistency in the
query features in un-selected and selected locations.

4. Experiments
4.1. Experimental Setup

Implementation details. We implement our approach
based on the mmsegmentation [13] codebase and conduct
all experiments on 4 NVIDIA GPUs. The backbones are the
same as SegFormer [83], which are all pretrained on Ima-
geNet [39]. For other parts of our model, we adopt random
initialization. Our model uses 3 reference frames unless
otherwise specified, and {k1, k2, k3} = {9, 6, 3}, follow-
ing [58]. We found that this selection of reference frames is
enough to include rich context and achieve impressive per-
formance. For the receptive field, pooling kernel and win-
dow size, we set r = {49, 20, 6, 7}, p = {7, 4, 2, 1} and
s = 7. For the target frame, we additionally have r

′

t = 35
and p

′

t = 5. During training, we adopt augmentations in-
cluding random resizing, flipping, cropping, and photomet-

ric distortion. We use the crop size of 480 × 480 for the
VSPW dataset [58] and 512 × 1024 for Cityscapes [14].
For optimizing parameters, we use the AdamW and “poly”
learning rate schedule, with an initial learning rate of 6e-5.
During testing, we conduct single-scale test and resize all
images on VSPW to the size of 480× 853 and 512× 1024
for Cityscapes. Note that for efficiency and simplicity, the
predicted mask is obtained by feeding the whole image to
the network, rather than using sliding window as in [100].
We do not use any post-processing such as CRF [38].
Datasets. Our experiments are mainly conducted on the
VSPW dataset [58], which is the largest video semantic
segmentation benchmark. Its training, validation and test
sets have 2,806 clips (198,244 frames), 343 clips (24,502
frames), and 387 clips (28,887 frames), respectively. It
contains diverse scenarios including both indoor and out-
door scenes, annotated for 124 categories. More impor-
tantly, VSPW has dense annotations with a high frame rate
of 15fps, making itself the best benchmark for video se-
mantic segmentation till now. In contrast, previous datasets
used for video semantic segmentation only have very sparse
annotation, i.e., only one frame out of many consecutive
frames is annotated. In addition, we also evaluate the pro-
posed method on the Cityscapes dataset [14], which anno-
tates one frame out of every 30 frames.
Evaluation metrics. Following previous works [68], we
use mean IoU (mIoU), and weigheted IoU to evaluate the
segmentation performance. In addition, we also adopt video
consistency (VC) [58] to evaluate the smoothness of the pre-
dicted segmentation maps across the temporal domain. For-
mally, for a video clips {Ic}Cc=1 with ground truth masks
{Sc}Cc=1 and predicted masks {S′

c}Cc=1, VCn is computed
as follows,

VCn =
1

C − n+ 1

C−n+1∑
i=1

(∩i+n−1
i Si) ∩ (∩i+n−1

i S
′
i)

∩i+n−1
i Si

, (7)

where C ≥ n. After computing VCn for every video, we
obtain the mean of VCn for all videos as mVCn. The pur-
pose of this metric is to evaluate the level of consistency in
the predicted masks among those common areas (pixels’ se-
mantic labels don’t change) across long-range frames. For
more details, please refer to [58]. Note that to compute VC
metric, the ground-truth masks for all frames are needed.

4.2. Comparison with State-of-the-art Methods

We compare the proposed method with state-of-the-art
algorithms on VSPW [58] in Tab. 1. The results are ana-
lyzed from different aspects. For small models (# of param-
eters < 20M), our method outperforms corresponding base-
line with a clear margin, while introducing limited model
complexity. For example, using the backbone MiT-B0, we
obtain 2.5% mIoU gain over the strong baseline of Seg-
Former [83], with the cost of increasing the parameters from
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Methods Backbone Params (M) ↓ mIoU ↑ Weighted IoU ↑ mVC8 ↑ mVC16 ↑ FPS (f/s) ↑
SegFormer [83] MiT-B0 3.8 32.9 56.8 82.7 77.3 73.4
SegFormer [83] MiT-B1 13.8 36.5 58.8 84.7 79.9 58.7
CFFM (Ours) MiT-B0 4.7 35.4 58.5 87.7 82.9 43.1
CFFM (Ours) MiT-B1 15.5 38.5 60.0 88.6 84.1 29.8

DeepLabv3+ [7] ResNet-101 62.7 34.7 58.8 83.2 78.2 -
UperNet [82] ResNet-101 83.2 36.5 58.6 82.6 76.1 -
PSPNet [98] ResNet-101 70.5 36.5 58.1 84.2 79.6 13.9
OCRNet [93] ResNet-101 58.1 36.7 59.2 84.0 79.0 14.3

ETC [54] PSPNet 89.4 36.6 58.3 84.1 79.2 -
NetWarp [82] PSPNet 89.4 37.0 57.9 84.4 79.4 -

ETC [54] OCRNet 58.1 37.5 59.1 84.1 79.1 -
NetWarp [82] OCRNet 58.1 37.5 58.9 84.0 79.0 -
TCBst-ppm [58] ResNet-101 70.5 37.5 58.6 87.0 82.1 10.0
TCBst-ocr [58] ResNet-101 58.1 37.4 59.3 86.9 82.0 5.5

TCBst-ocr-mem [58] ResNet-101 58.1 37.8 59.5 87.9 84.0 5.5
SegFormer [83] MiT-B2 24.8 43.9 63.7 86.0 81.2 39.2
SegFormer [83] MiT-B5 82.1 48.2 65.1 87.8 83.7 17.2
CFFM (Ours) MiT-B2 26.5 44.9 64.9 89.8 85.8 23.8
CFFM (Ours) MiT-B5 85.5 49.3 65.8 90.8 87.1 11.3

Table 1. Comparison with state-of-the-art methods on the VSPW [58] validation set. Our model outperforms the compared methods, with
better balance in terms of model size, performance and speed.

13.8M to 15.5M and reducing the FPS from 73.4 to 43.1.
Our method also provides much more consistent predictions
for the videos, outperforming the baseline with 5.0% and
5.6% in mVC8 and mVC16, respectively.

For large models, our approach achieves the new state-
of-the-art performance in this challenging dataset and also
generates visually consistent results. Specifically, our
model with 26.5M parameters (slightly larger than Seg-
Former [83] with MiT-B2) achieves 44.9% mIoU at the
frame rate of 23.8fps. Our large model (based on MiT-
B5) achieves mIoU of 49.3% and performs best in terms of
visual consistency, with mVC8 and mVC16 of 90.8% and
87.1%, respectively. For all backbones (MiT-B0, MiT-B1,
MiT-B2 and MiT-B5), CFFM clearly outperforms the corre-
sponding baselines, showing that the proposed modules are
stable. The results validate the effectiveness of the proposed
coarse-to-fine feature assembling and cross-frame feature
mining in mining informative contexts from all frames.

For Cityscapes [14] dataset, our method is compared
with recent efficient segmentation methods. Only using
4.6M parameters, our model obtains 74.0% mIoU with
frame rate of 34.2fps, achieving an excellent balance on
model size, performance and speed. When using deeper
backbone, we achieve 75.1% mIoU with the frame rate of
23.6fps. Note that this dataset has sparse annotations, the
excellent performance demonstrates that our method works
well for both fully supervised and semi-supervised settings.

The qualitative results are shown in Fig. 3. For the given
example, our method resolves the inconsistency existing in
the predictions of the baseline, due to the use of rich con-

Methods Backbone Params (M) mIoU FPS (f/s)
FCN [68] MobileNetV2 9.8 61.5 14.2
CC [69] VGG-16 - 67.7 16.5

DFF [105] ResNet-101 - 68.7 9.7
GRFP [60] ResNet-101 - 69.4 3.2

PSPNet [98] MobileNetV2 13.7 70.2 11.2
DVSN [85] ResNet-101 - 70.3 19.8
Accel [34] ResNet-101 - 72.1 3.6
ETC [54] ResNet-18 13.2 71.1 9.5

SegFormer [83] MiT-B0 3.7 71.9 58.5
CFFM (Ours) MiT-B0 4.6 74.0 34.2

SegFormer [83] MiT-B1 13.8 74.1 46.8
CFFM (Ours) MiT-B1 15.4 75.1 23.6

Table 2. Comparison with recent efficient video semantic segmen-
tation methods on the Cityscapes [14] dataset.

Methods Backbone N mIoU mVC8 mVC16 Params (M)
SegFormer [83] MiT-B0 - 32.9 82.7 77.3 3.8

CFFM (Ours) MiT-B0 1 35.4 87.7 82.9 4.7
MiT-B0 2 35.7 87.7 83.0 5.5

SegFormer [83] MiT-B1 - 36.5 84.7 79.9 13.8

CFFM (Ours)

MiT-B1 1 37.8 88.3 83.6 14.6
MiT-B1 2 38.5 88.6 84.1 15.5
MiT-B1 3 38.7 88.6 84.1 16.3
MiT-B1 4 38.8 88.5 83.9 17.2

Table 3. Ablation study on the number of attention layers in cross-
frame feature mining module.

textual information from the all frames.

4.3. Ablation Study

All ablation studies are conducted on the large-scale
VSPW [58] dataset and follows the same training strategies
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Figure 3. Qualitative results. We compare the proposed method with the baseline (SegFormer [83]) visually. From top to down: the input
video frames, the predictions of SegFormer [83], our predictions, and the ground truth. It shows that our model produces more accurate
and consistent results, compared to the strong baseline. Best viewed in color.

Methods k1 k2 k3 mIoU mVC8 mVC16

SegFormer - - - 36.5 84.7 79.9

CFFM (Ours)

- - 3 37.4 87.4 82.4
- - 6 37.7 88.0 83.3
- - 9 37.9 88.4 83.9
3 2 1 37.7 88.3 83.6
9 6 3 38.5 88.6 84.1

Table 4. Ablation study on the selection of the reference frames.
We use MiT-B1 as the backbone.

as described above, for fair comparison.
Influence of the number of attention layers. Tab. 3
shows the performance of our method with respect to the
number of non-self attention layers in cross-frame feature
mining module. For two backbones of MiT-B0 [83] and
MiT-B1 [83], our method clearly outperforms the corre-
sponding baseline (SegFormer) when only using a single at-
tention layer and introducing a small amount of additional
parameters. It demonstrates the effectiveness of the pro-
posed coarse-to-fine feature assembling module and the at-
tention layer. The former efficiently extracts the context in-
formation from the frames and the latter effectively mine
the information to refine target features. In addition, we
observe there is a trade-off between performance and the
model complexity on MiT-B1 backbone. When using more
attention layers, better mIoU is obtained while the model
size linearly increases. For our method on MiT-B1, we
choose N = 2 since better trade-off is obtained.
Impact of selection of reference frames. We study the
impact of the selection of reference frames in Tab. 4. We
start by using a single reference frame. There seems to
be a trend that when increasing the distance between the
reference frame and the target frame, better performance
is obtained. The possible reason for this is that the far-

away reference frame may contain richer and different con-
text which complements the one of the target frame. When
using more reference frames (k1 = 9, k2 = 6, k3 = 3),
the best performance is achieved. It is worthy noting that
the reference frames combination of k1 = 3, k2 = 2, and
k3 = 1, performs similarly as the cases when using sin-
gle reference frame, possibly due to the fact that the close
reference frames don’t give much new information for seg-
menting the target frame.
Impact of CFFA and CFM Starting from Seg-
Former [83], we first add CFFA by using MLP to process
the context tokens and then merge them with the target fea-
tures. We obtain mIoU of 37.6. Then we add both CFFA
and CFM on the baseline, which is our final model. The
segmentation mIoU is 38.5. It shows that both CFFA and
CFM are valuable for the proposed CFFM mechanism.

5. Conclusion
The video contexts include static contexts and motional

contexts, both of which are essential for video semantic
segmentation. Previous methods pay much attention to
motional contexts but ignore the static contexts. To this
end, this paper proposes a Coarse-to-Fine Feature Min-
ing (CFFM) technique to jointly learn a unified presenta-
tion of static and motional contexts, for precise and effi-
cient VSS. CFFM contains two parts: coarse-to-fine fea-
ture assembling and cross-frame feature mining. The for-
mer summarizes contextual information with different gran-
ularity for different frames, according to their distance to
the target frame. The latter efficiently mines the contexts
from neighbouring frames to enhance the feature of the tar-
get frame. While adding limited computational resources,
CFFM boosts segmentation performance in a clear margin.
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