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Abstract

To perform adversarial attacks in the physical world,
many studies have proposed adversarial camouflage, a
method to hide a target object by applying camouflage pat-
terns on 3D object surfaces. For obtaining optimal physi-
cal adversarial camouflage, previous studies have utilized
the so-called neural renderer, as it supports differentiabil-
ity. However, existing neural renderers cannot fully rep-
resent various real-world transformations due to a lack of
control of scene parameters compared to the legacy photo-
realistic renderers. In this paper, we propose the Differen-
tiable Transformation Attack (DTA), a framework for gen-
erating a robust physical adversarial pattern on a target ob-
Jject to camouflage it against object detection models with a
wide range of transformations. It utilizes our novel Dif-
ferentiable Transformation Network (DTN), which learns
the expected transformation of a rendered object when the
texture is changed while preserving the original properties
of the target object. Using our attack framework, an ad-
versary can gain both the advantages of the legacy photo-
realistic renderers including various physical-world trans-
formations and the benefit of white-box access by offering
differentiability. Our experiments show that our camou-
flaged 3D vehicles can successfully evade state-of-the-art
object detection models in the photo-realistic environment
(i.e., CARLA on Unreal Engine). Furthermore, our demon-
stration on a scaled Tesla Model 3 proves the applicability
and transferability of our method to the real world.

1. Introduction

Deep neural networks (DNNs), despite their renowned
capability for solving computer vision tasks [10, 12, 19],
have been proven vulnerable to adversarial examples [28].

# Equal contribution * Corresponding author

Figure 1. (a) Neural renderer used in prior work (Dual At-
tention Suppression (DAS)) [32]. Although it is differentiable, it
possesses a limitation in physical properties representation (e.g.,
transparency for windshield) and lacks background blending (e.g.,
shadowing) because the object and the background scene are ren-
dered separately. (b) Our Differential Transformation Network
(DTN). DTN considers both differentiability and photo-realistic
aspects by learning the correct transformation when the object’s
texture is changed. As shown, transparency for the windshield
and shadowing at the bottom and the top of the car are rendered
correctly. (c¢) Comparison of detection results using different
textures (normal, DAS, random, DTA) on photo-realistic envi-
ronment. Unlike other examples, the adversarial camouflage gen-
erated by our DTA framework successfully evades detection.

That is, carefully crafted inputs may cause DNN models to
misrepresent a seemingly obvious image to the human eye,
giving incorrect prediction results. A deliberate act by an
adversary to take advantage of this weakness, namely the
adversarial attack, has captured the attention of many in the
past few years. Its potential applicability in not only the
digital domain but also the physical domain has drawn sig-
nificant interest.
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Compared to digital attacks, physical adversarial attacks
are more difficult to launch since they must account for vari-
ous physical constraints and conditions (e.g., lighting, cam-
era pose, and occlusion). However, the fully physical at-
tack experiments in the real world such as [2,4, 15,30] are
extremely time consuming and expensive. Therefore, vari-
ous studies have been conducted through simulation of the
physical world in the digital environment by using legacy
photo-realistic rendering software, such as Unreal Engine
[8] and AirSim [26], facilitating parameter control. Exam-
ples of methods to craft physical adversarial camouflage,
i.e., adversarial attack variant that focuses on hiding an ob-
ject by fully covering the target object, in simulators can
be found in [34, 35]. However, since such simulators are
non-differentiable, the attacks employ a black-box approach
such as utilizing a clone network [35] or a genetic algo-
rithm [34], yielding an inevitably lower attack performance
than the white-box counterpart.

To obtain the advantage of differentiability, more recent
methods [7, 16,32] have proposed the use of neural render-
ers for generating adversarial camouflage. However, the ex-
isting neural renderers (e.g., [1 7]) can only support the gen-
eration of foreground objects; hence, background images
are still handled by the legacy photo-realistic renderers.
As a result, they simply attach the generated target object
to the background image, yielding inaccurate foreground-
background blending effects, such as shadow casting and
light reflection, as shown in Fig. 1a. Although workaround
efforts, such as masking for handling occlusion [16], have
been proposed, the overall adversarial camouflage results
using existing neural renderers are still inferior in terms of
photo-realistic attributes.

Motivated by the challenge faced in prior works, we
develop an attack framework that takes advantage of the
differentiability in neural renderers without compromising
the photo-realistic properties of the target object. In par-
ticular, the framework leverages our novel neural render-
ing technique, which learns the representation of various
scene properties (e.g., object material, lighting effects, and
shadows) from legacy photo-realistic renderers. As a result,
truly robust physical adversarial camouflage, verified from
our experiment using both a photo-realistic simulation and
a real-world example, can be obtained.

Our contributions can be summarized as follows:

e We present the Differentiable Transformation Attack
(DTA), a framework for generating robust physical ad-
versarial camouflage on 3D objects. It combines the
advantages of a photo-realistic rendering engine with
the differentiability of our novel rendering technique.

e We propose the Differentiable Transformation Net-
work (DTN), a brand-new neural renderer that learns
the transformations of an object when the texture is

changed while preserving its original parameters for a
realistic output that resembles the original.

e Our DTN can be embedded as an extension to pro-
vide differentiability to any rendering software (e.g.,
Unreal Engine [8]), enabling the use of any gradient-
based method.

* We demonstrate that the adversarial camouflage gen-
erated from DTA is robust and applicable for evad-
ing pre-trained object detection models under various
transformations in both simulations and the real world.

* Our attack method, DTA, outperforms previous works
in terms of our evaluation of target object detection
models and transferability to other models.

2. Related Works

Physical Adversarial Attack To launch an adversarial
attack in the physical world, one of the most notable pro-
posals is the Expectation Over Transformation (EOT) [2],
which generates robust adversarial examples under various
transformations, such as viewing distance, angle, and light-
ing condition. Most of the recent physical adversarial attack
methods employ EOT-based algorithms to make the attack
performance robust in the real world.

Adversarial Camouflage Physical perturbation [4] and
patch-based methods [20, 22, 30] targeting planar and rigid
objects were mainly proposed for real-world adversarial
camouflage attacks. Subsequently, Huang et al. [15] pro-
posed Universal Physical Camouflage (UPC) to generate
adversarial camouflage that also covers non-planar and non-
rigid objects. However, these methods can only be applied
to a segment of an object and, due to their nature, can only
attack at certain viewing angles.

A more recent approach of adversarial camouflage in-
volves manipulating the color texture pattern of the target
3D object to degrade the detection performance of object
detectors. This technique has the advantage of the ability
of attack from any viewing angle by covering all parts of
the object. Initially, black-box attack methods were com-
monly proposed since the rendering process, including tex-
ture mapping, is non-differentiable. For instance, Zhang
et al. [35] proposed CAMOU, an adversarial camouflage
method to hide vehicles from detectors by training a clone
network that imitates both applying camouflage to vehicles
and detecting the camouflaged vehicles. Meanwhile, Wu et
al. [34] presented adversarial camouflage based on genetic
algorithms to be applied on vehicle surfaces so that it is not
recognizable by detectors in the CARLA simulator [6].

Neural Renderer-based Methods To gain white-box
access —and in turn, improve the attack performance, there
is a rising trend of leveraging the differentiability intrinsic
in neural renderers for the adversarial camouflage genera-
tion, such as in [7, 16,32]. For example, [32] proposed the
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Figure 2. DTA framework for generating robust adversarial texture.

Dual Attention Suppression (DAS) attack to generate nat-
ural adversarial camouflage using a Neural 3D Mesh Ren-
derer [17] by suppressing the model and human attention.
However, existing neural renderers pose limitations on han-
dling complex 3D interactions among scene properties. In-
evitably, the resulting camouflage may not properly address
the photo-realistic effects of the physical world.

To tackle these issues, we design an attack framework
that combines the best of both worlds; that is, it has the dif-
ferentiability of a neural renderer while retaining the photo-
realistic attributes of the object. Our attack, namely the Dif-
ferentiable Transformation Attack (DTA), utilizes our novel
neural rendering model called Differentiable Transforma-
tion Network (DTN), which learns the representation of var-
ious scene properties from a legacy photo-realistic renderer,
giving a more applicable solution in the physical world.

3. Methodology

In this section, we first describe DTN, our differentiable
renderer that learns the expected transformation of project-
ing a specific pattern from a photo-realistic rendering en-
gine. Furthermore, we describe DTA, the attack framework
utilizing DTN for generating robust adversarial camouflage.

3.1. Problem Definition

The final goal of our proposed method is to generate a
robust adversarial pattern to be applied to 3D objects in the
simulated physical world to significantly degrade the detec-
tion score of that object in a variety of transformations, such
as object materials, camera poses, lighting conditions, and
background interactions.

Let hy be a hypothesis function for the object detection
task, that satisfies hy(z) = y. The notion z as the input de-

notes the 2D image (which includes the target object gener-
ated from the rendering process) and y as the output denotes
the label of the detection result of the corresponding target
object. The goal of our proposed method is to generate ad-
versarial example 2,4, which satisfies hg(2q4y) # ¥, by
modifying the texture pattern of the target object. Suppose
L(ho(z),y) is a loss function applied to hy that enables de-
tection of an object in = as y. We can generate x,4, by
solving Eq. 1.

argmax L(hg(Tadv),y) ()

Ladv

Unlike 2D adversarial examples where we can directly
modify the input image pixels, applying texture in 3D ob-
jects requires a rendering process with many parameters af-
fecting the final image, such as shadows and light reflection.

Suppose R is a rendering function used in the photo-
realistic rendering engine g, that satisfies Eq. 2,

R(T,n) == (2)

where 7' is a transformation matrix encoding various trans-
formations, such as camera pose ¢, lighting conditions,
meshes, and material properties, as well as the target object
and its location, whereas 7 is a texture that will be applied
to the target object. If R is differentiable, we can find a ro-
bust adversarial texture 7,4, that works in a wide variety of
T using EOT [2] method. However, since R is not always
differentiable, we propose a neural network f,, that learns
the texture transformations by solving Eq. 3,

fw(xrefanewp) = Tren (3)

where 7. is the reference image obtained from the ren-
dering function containing the transformation information,
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Neap 15 the expected texture variable, and .., is the ren-
dered image with the expected texture. When 7)c,,, is the
same texture used in Z,.c s, then T,oy = Tpey. Since f is dif-
ferentiable, we can generate adversarial texture 7,4,, Which
satisfies fo,(Tref, Nadv) = Tadv, bY solving Eq. 4.

arg maXL(hG(fw(xref7 77adv))7y) (4)

Nadv

3.2. DTA Framework

The proposed DTA framework uses DTN, a neural net-
work designed to solve the problem described in Eq. 3.
DTN learns the transformation of the rendered object in
ZTren given a reference image z,.y and expected texture
Neap- 1t TElies on the photo-realistic image synthesized from
a non-differentiable renderer to produce a differentiable ver-
sion of the photo-realistic reference image after applying
the expected texture. Furthermore, the differentiability of
DTN is used to generate the robust adversarial pattern ap-
plied to the target object as the rendered adversarial tex-
ture to camouflage from the object detector. As a result,
DTN provides a white-box ability for lowering specific at-
tack loss. Depicted in Fig. 2, the DTA framework com-
prises four components: a photo-realistic rendering engine,
a Repeated Texture Projection function, DTN, and the target
object detection model.

Photo-Realistic Rendering Engine In our proposed
DTA framework, the photo-realistic rendering engine is any
software that can produce a photo-realistic image similar to
the real physical world. One example is a game engine. It
can be used for building a fully simulated physical world
and synthesizing a photo-realistic image —even some can
also synthesize semantic segmentation image, thanks to its
detailed features and interactivity. In comparison, the in-

teractivity has not been properly addressed in the existing
differentiable renderers. Then, DTN is embedded as an ex-
tension to enable differentiability of the texture space, al-
lowing adversarial texture generation for the target object.

DTN This technique uses photo-realistic RGB images
synthesized from a rendering engine as the input reference
image x,.s. The reference image only contains the masked
target object where the expected texture 7)c., will be ap-
plied. This masked image enables DTN to solely focus on
learning and applying the transformation of the target object
while ignoring the background.

In terms of architecture, DTN mainly consists of the
Transformation Feature Extractor and Expected Texture
Transformer, as illustrated in Fig. 3. The Transformation
Feature Extractor is a convolutional autoencoder-like neural
network that learns to extract transformation features of ref-
erence image ..y and encode them as stacked transforma-
tion features T'F'. They are then sliced and used for trans-
forming expected texture 7.z, into a rendered image %, .

The final output of the Transformation Feature Extractor
isTF.Ithasa N x N x 12 shape, where N is the resolution
of input and output images and 12 is the last channel repre-
senting the four stacked RGB transformation features used
to transform the expected texture to the image rendered by
the Expected Texture Transformer. T'F’ will have the same
value no matter what the expected texture is. The idea is
to prevent the Transformation Feature Extractor from over-
fitting because the expected texture is designed to never be
shown directly as input to the network.

The transformation of 7, into x,..,, is performed using
basic mathematical operations, such as subtraction, addi-
tion, and multiplication by each slice of TF. The design
of this expected texture transformer is assumed to cover all
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Figure 4. Sequence of transformation in Repeated Texture Projec-
tion Function.

kinds of basic transformations.

Repeated Texture Projection Function We propose a
repeated pattern as our final attack camouflage texture. The
repeated pattern has several advantages, such as ease of ap-
plication because the texture can be used to cover the object
while ignoring the texture mapping. The repeated pattern
will also look more similar when we vary the viewing an-
gle, creating a more robust attack.

In Figs. 2 and 4, we define an n X n adversarial pat-
tern 7)qqy_p that will be transformed into 7,4, _, until it has
the same size as N x N DTN input requirement. We pro-
pose a Repeated Texture Projection function for simply pro-
jecting the repeated pattern based on the same camera pose
¢ used by the photo-realistic rendering engine. We add
random pose ¢, for adding a variety of transformations
when it is used to generate the adversarial pattern, which is
expected to increase the attack texture robustness and an-
ticipate projection error. The Repeated Texture Projection
function contains a sequence of operations for transforming
the adversarial pattern with transformation matrix M.

The transformation matrix M used by repeated texture
projection function covers shift, scale, and 3D rotation on
2D image operations. We can write it as Eq. 5,

Nadvp = M3pRrot + Mscaic Mshift * Nadv-b (5)

where M;p,; s is a shift operation that determines the pattern
order or initial location, M4, is a scale operation that de-
termines how large the texture will be when it is resized,
and Msprot is a 3D rotation operation that determines how
the 2D texture is rotated along the 3D axis. Each matrix
M is calculated or calibrated based on a given camera pose
¢ + ¢4 such that the projection covers the majority of the
target’s flat surface. Fig. 4 describes the result of each trans-
formation sequence. For filling points outside boundaries,
we use wrap mode, which extends the output by wrapping
around the opposite edge, giving a repeated texture effect.

3.3. Framework Procedure

DTN Model Training Before using DTA for generat-
ing the adversarial pattern, DTN is trained with the dataset
generated by the photo-realistic rendering engine. We set
the dataset with two inputs, 2.y and 7.4, and one output,

Tren. First, we select a set of random flat color texture and
predefined transformations. Then, we use the rendering en-
gine to produce the photo-realistic images that will later be
used as reference image z,.r, expected texture 7;,, and
ground truth of rendered image x,.,,. We use flat color tex-
ture as the expected texture so that there is no error caused
by texture mapping during the training.

For each training example, x,.r only contains the
masked target object applied with specific color and trans-
formations. 7., contains the flat color texture that will be
applied to the target object and has a masked shape of the
target object. We set the ground-truth of x,.¢,, as the result of
applying the flat color texture used in 7, to the target ob-
ject using the photo-realistic rendering engine. In this case,
the same transformations used in z,.. y except the texture are
applied to the target object. Additionally, we utilize binary
cross-entropy loss as per-pixel construction loss for train-
ing the DTN. The detailed algorithm of the DTN training
process is described in the supplementary material.

DTA Attack Phase In the attack phase, the attack goal
is to minimize the original target confidence score, which
prevents the object detector from detecting the target object
correctly. Since the object detection model outputs multiple
boxes and class confidence scores, we just take the maxi-
mum target object confidence scores C' and measure the log
loss when we set the ground truth to zero. We can write the
attack loss L, representing the above process as Eq. 6.

Lauk(h(z)) = Einr[=log(1 — maz(C(h(z))))]  (6)

Nadv = arg min Latk (h(fw ($T6f7 77))) (7)
n

Minimizing L. has the same effect as solving Eq. 4. We
can use the differentiability of the full attack pipeline to find
the best adversarial pattern 7,4, that minimizes the attack
loss by updating the 7,4, based on the loss gradient. Eq.
7 describes the calculation of the best adversarial pattern
Nadv- The full pipeline of the DTA framework for gener-
ating a robust attack pattern can be seen in Fig. 2 and Al-
gorithm 1. In Algorithm 1, DTN f,, is the model that has
completed the training process.

4. Experiments
4.1. Implementation Details

DTA Framework We utilize TensorFlow 2 [1] for im-
plementing our DTA framework, except for the photo-
realistic renderer, in which we use CARLA [6] simulator on
Unreal Engine 4 [8]. CARLA provides ready-to-use APIs
and digital assets (e.g., urban layouts, buildings, and vehi-
cles) to simulate the physical world required for self-driving
car research experiments. In our case, we tweak the original
CARLA code to allow modification of car texture required
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Algorithm 1: Generating attack texture using DTA

Input: Transformation set 7 = {t() ... t(M)} Base
flat color texture C', Rendering function R,
Segmentation function S, Repeated texture projection
function P, DTN f,,
Output: Attack texture 7,4,
(1) Export X5, Xgeg, and X, from the
photo-realistic rendering engine
for m = 1to M do

x™ o R ©)

orig
X 5(tm)
X e x(m o x

end for

(2) Generate attack texture

Initialize 1,4, With random values

for number of training iterations do
Sample minibatch of each b samples x5 € X,ef,
Tseg S Xseg
Derive ¢ corresponding to each x,.. ¢ from T’
Nadv_p <~ P(T]adv,ba ¢ + ¢Td)
Nadv < Nadvp X Tseg
Derive Zqqy from fo,(Zref, Nado)
Tadv = Tadv T (‘rorig X _‘xseg)
Calculate Lok (h(2qdv)) by Eq. 6
Update 744y for minimizing Lt (h(2q4y)) via
backpropagation

end for

for dataset generation and texture evaluation. Also, we em-
ploy world-aligned texture in Unreal for repeated texture
implementation instead of the original car’s UV mapping.

Target Object We choose Toyota Camry as our target
object for adversarial camouflage generation and evalua-
tion, Audi TT for camouflage transferability evaluation, and
Tesla Model 3 for real-world evaluation.

Datasets For DTN model training and evaluation, we se-
lect a map in CARLA and randomly choose 75 spawn lo-
cations for generating both training and validation datasets,
and another 50 for generating testing datasets. We spawn
the target car at each location and capture the images using
cameras with Sm distance, 15-degree pitch, and every 45-
degree rotation as a single transformation. For each trans-
formation, we sequentially change the car texture with 50
random flat color textures. Our train and test datasets use
different transformations and colors. For adversarial pattern
generation, we select 250 spawn locations in the same map
and generate datasets of the target object with the flat color
texture used as the reference image during DTN training.

Evaluation Metrics To measure DTN’s accuracy in pre-
dicting the transformation (with respect to the ground truth
from the photo-realistic renderer), we use the model loss
(i.e., binary cross-entropy) and mean squared error (MSE).

[

Figure 5. DTN model evaluations with different architectures
[ResNet (red), DenseNet (orange), ConvNet (green)] and numbers
of layers k = [2, 3,4].

Reference Image

Expected Texture Predicted Image Ground Truth Mean Square Error

Figure 6. Example of DTN prediction results.

To evaluate the performance of our proposed DTA, we use
Average Precision@0.5, a commonly used metric for eval-
uating object detection models, including in the previous
works. Furthermore, since our framework’s main objective
is to lower the target object’s confidence score, it is also
considered as another evaluation metric.

Target Models For ease of reproducibility, we choose
the state-of-the-art COCO pre-trained object detection
model [14] and employ both EfficientDetDO [29] and
YOLOV4 [3] as the target models. Furthermore, we evaluate
the transferability of the generated pattern to other models
(i.e., SSD [21], Faster R-CNN [25], and Mask R-CNN [9]).

Compared Methods We compare our adversarial cam-
ouflage with previous works on 3D physical attacks:
CAMOU [35], ER [34], UPC [15], DAS [32], and an ad-
ditional random pattern. However, UPC and DAS have dif-
ferent settings to recreate in our environment; thus, we only
evaluate them on the transferability experiment.

DTN Parameters We employ a batch size of 32, 25
epochs, the Adam optimizer [18], and the same random
seeds on each trial as the fixed parameters for training
all networks. The input and output size of DTN are
512512 %3 to match the target object detection input size.

DTA Framework Parameters We select the 16x16
texture size as the adversarial camouflage following
CAMOU’s best implementation. We employ batch size of
32 for generating adversarial camouflage on EfficientDetD0
and 16 for YOLOv4. Each generation uses 200 epochs.

4.2. DTA Experiments

DTN Evaluation We employ k = [2, 3, 4] layers for the
Transformation Feature Extractor and utilize either residual
[11] or dense connection [13] on the encoder besides a plain
CNN. Fig. 5 shows that DTN with residual connection has
the overall lowest average test loss and MSE, followed by
DTN with dense connection. In our experiments, increasing
the number of layers to four lowers the overall model loss,
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random car: 0.6817

attack texture car: 0.1907

Figure 7. DTN texture rendering results with detection. From left
to right: normal texture (detected as car), random texture (detected
as car), attack texture (mis-detection). The car’s confidence score
for attack textures is the lowest at 0.1907.
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Table 1. Camouflage comparison on photo-realistic simulator. (J.)
denotes performance drop with respect to normal texture.

Model Texture AP@0.5(]) Conf. (})
Normal 0.98 0.75
Random 0.62 (0.36)  0.39 (0.36)
EffDetDO | CAMOU [35] 0.53(0.44) 0.34(0.41)
[29] ER [34] 0.46 (0.51)  0.31(0.47)
DTA 0.34 (0.63)  0.27 (0.48)
Normal 0.99 0.96
Random 0.89 (0.10)  0.76 (0.20)
YOLOv4 | CAMOU [35] 0.81(0.18) 0.64 (0.32)
[3] ER [34] 0.77 (0.22)  0.60 (0.35)
DTA 0.76 (0.23)  0.57 (0.38)

Table 2. Transferability comparison on photo-realistic simulator.

AP@0.5

om m I 35
Distance Pitch

Figure 8. Average Precision@(.5 of various rendered textures
with different camera poses on the photo-realistic simulator. First
row: EfficientDetDO; Second row: YOLOv4.

with the best model achieving a 0.05942 average test model
loss and 0.00068 average test MSE, resulting in an accurate
rendering prediction as shown in Fig. 6.

Adversarial Camouflage Generation During the adver-
sarial camouflage generation, we use DTN with ResNet and
k of 4. We first generate a random pattern texture and opti-
mize it to lower the attack loss using the full pipeline of the
DTA framework. Fig. 7 shows how the texture is rendered
and detected by DTA. As shown, after the completion of at-
tack camouflage generation, the target confidence score is
much lower, which may cause miss-detection. Moreover, it
can be seen that a sole random pattern texture is not suffi-
cient for camouflaging the object detector.

Comparison on Photo-Realistic Simulator We per-
form a comparative experiment to evaluate our adversarial
camouflage on CARLA simulator. We generate evaluation
datasets with 200 random locations from four different sim-
ulated towns with camera settings: distance (5 m, 10 m, 15
m), pitch angles (0°, 15°, 30°), and a 30 degree rotation
interval. This also evaluates whether the generated adver-
sarial camouflage is robust enough to generalize the attack
performance on an untrained transformation distribution.

As shown in Tab. 1, our attack pattern (in bold) lowers
both the target AP@0.5 and confidence score more than the
random texture or the other methods, such as CAMOU and
ER, which consider the system as a black box. The details
of the average performance for each camera pose can be
seen in Fig. 8, which implies that our adversarial camou-

Average Precision @0.5 ()

Texture Faster Mask
SSD[21] R-CNN [25] R-CNN [9]

Normal 0.85 0.94 0.94

Random 0.52(0.34) 0.69 (0.25) 0.74 (0.19)
UPC [15] 0.66 (0.20) 0.82 (0.11) 0.90 (0.03)
DAS [32] 0.79 (0.06) 0.89 (0.04) 0.97 (-0.03)
CAMOU [35] | 0.27 (0.59) 0.55(0.39) 0.65 (0.29)
ER [34] 0.27 (0.59) 0.56 (0.38) 0.64 (0.30)
DTA 0.18 (0.67) 0.41 (0.53) 0.56 (0.37)

flage has the overall lowest AP score on all camera poses.
Additionally, Fig. 9 shows the example of our adversar-
ial pattern evaluation with different transformations on the
photo-realistic simulator.

We further perform a comparative experiment to evalu-
ate the transferability of our adversarial camouflage to an-
other car (i.e., Audi TT), other transformations, and target
models that are not used in the attack phase. We use the
same camera settings as those used in the previous experi-
ment. Specifically, UPC and DAS target their original pa-
per’s model while the others target EfficientDetDO.

As presented in Tab. 2, our attack also outperforms other
camouflage methods in the transferability setting. Notably,
UPC and DAS, which are patch-based camouflage meth-
ods, show lower performance compared to repeated pattern
camouflage, which covers the car’s entire paintable surface.

Physical Camouflage in Real World We conduct a real-
world experiment by fabricating a 1:10 scaled Tesla Model
3 cars using a 3D printer. Due to limited production time
and resources, we only fabricate two scaled models: one
for the camouflaged vehicle with our DTA texture targeting
EfficientDetD0, and another for representing a standard ve-
hicle for reference. To achieve a realistic experiment, we
place the scaled vehicles in real-life locations indoors and
outdoors. We randomly select ten places and capture car
images for every 45-degree interval with a similar distance
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Figure 9. Adversarial camouflage evaluation on photo-realistic simulator. Camera angle is added by 30° for each column, and pitch by 15°
for each row. Border: Red = misdetection; Yellow = partially correct (other labels also detected); Green = correct (detected as car).

Figure 10. Real-world evaluation using two 3D-printed scaled
models of Tesla Model 3. The upper rows are the standard model
while the bottom rows are the attack model.

and pitch using a Samsung Galaxy Note 20 Ultra. Fig. 10
illustrates how our camouflage can hide the car from the ob-
ject detection model or result in misdetection while in con-
trast, the standard vehicle and the background objects are
detected correctly. On evaluation, results on EfficientDetD0
and YOLOv4 for each vehicle model are presented on Tab.
3, which shows that our generated camouflage can success-
fully perform adversarial attack even in the real world.

5. Discussion

Implications DTN as a rendering method can easily be
extended for use in texture transfer, e.g., [5,24,33], giving
it potentially wide applicability, yet relatively harmless to
the public. On the other hand, DTA as an attack certainly
poses potentially dangerous consequences if it is to be im-
plemented. Firstly, the attack pattern is more robust as it ac-
counts for the photo-realistic effect, leading to an increase
in attack success rate. This is concerning, particularly in the
future era of autonomous vehicles. Secondly, the method
of printing the adversarial pattern on vehicles rather than on
traffic signs also adds to its hazard since painting cars can be
done legally [35], whereas the latter is a violation and more
likely to be removed by the authorities. On cars, it is easier
for the adversary to launch the attack, and it can even be
done in a coordinated fashion with other adversaries’ cars.
For mitigation, a possible solution is to reinforce object de-
tection models with adversarial training [23,31].

Table 3. Texture evaluation of vehicle model on real world.

Model Texture AP@0.5(]) Conf. ()
Normal 0.94 0.33
720
EffDeDO 9] Ha 034 0.60) 035 0.49)
R Normal 0.96 0.94
YOLOVA Ll 7 0.61035)  0.53 04D

Limitations DTN leverages a simple projection instead
of a more sophisticated mapping for transferring the tex-
ture to the target object. Hence, an inaccurate texture may
be produced for objects with a complex shape. For mitiga-
tion, we currently generate the pattern with random scaling,
shifting, and rotation to improve robustness. Additionally,
the current approach has not considered the naturalness of
the pattern so that it does not look suspicious to a person,
which may be important for some cases. This can be done
by implementing additional loss, such as the smooth loss in-
troduced in [27]. In the future, we plan to investigate further
the internal texture mapping and naturalness of our adver-
sarial camouflage approach.

6. Conclusion

In this paper, we proposed DTA, a framework that con-
siders differentiability as well as photo-realistic aspects in
its adversarial pattern generation, giving robust adversarial
camouflage at any viewing angle. In particular, we lever-
aged our novel rendering technique, namely DTN, which
can extract the expected transformation of a rendered object
and retain its original attributes. Our experiments included a
comparison with previous works (i.e., UPC [15], DAS [32],
CAMOU [35], and ER [34]) in a photo-realistic simulator
as well as a demonstration in the real world, showing the
applicability and transferability of our approach.
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