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Figure 1. GOAL generates whole-body motions for approaching and grasping an unseen 3D object. The figure shows generated motions
for 2 people (top, bottom), each grasping a different novel object. For each sequence we show 4 different views (left to right), as well as
zoomed-in circular snapshots of the final grasp. GOAL is the first method to generate such a natural motion and grasp for the full body.

Abstract

Generating digital humans that move realistically has
many applications and is widely studied, but existing meth-
ods focus on the major limbs of the body, ignoring the hands
and head. Hands have been separately studied, but the fo-
cus has been on generating realistic static grasps of objects.
To synthesize virtual characters that interact with the world,
we need to generate full-body motions and realistic hand
grasps simultaneously. Both sub-problems are challenging
on their own and, together, the state space of poses is sig-
nificantly larger, the scales of hand and body motions dif-
fer, and the whole-body posture and the hand grasp must
agree, satisfy physical constraints, and be plausible. Addi-
tionally, the head is involved because the avatar must look
at the object to interact with it. For the first time, we ad-
dress the problem of generating full-body, hand and head
motions of an avatar grasping an unknown object. As in-
put, our method, called GOAL, takes a 3D object, its pose,

and a starting 3D body pose and shape. GOAL outputs a
sequence of whole-body poses using two novel networks.
First, GNet generates a goal whole-body grasp with a re-
alistic body, head, arm, and hand pose, as well as hand-
object contact. Second, MNet generates the motion be-
tween the starting and goal pose. This is challenging, as
it requires the avatar to walk towards the object with foot-
ground contact, orient the head towards it, reach out, and
grasp it with a realistic hand pose and hand-object con-
tact. To achieve this the networks exploit a representation
that combines SMPL-X body parameters and 3D vertex off-
sets. We train and evaluate GOAL, both qualitatively and
quantitatively, on the GRAB dataset. Results show that
GOAL generalizes well to unseen objects, outperforming
baselines. A perceptual study shows that GOAL’s gener-
ated motions approach the realism of GRAB’s ground truth.
GOAL takes a step towards generating realistic full-body
object grasping motion. Our models and code are available
at https://goal.is.tue.mpg.de.
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1. Introduction
Virtual humans are important for movies, games, AR/VR

and the metaverse. Not only do they need to look realistic,
but also must move and interact realistically. Most work on
human motion generation has focused only on bodies, with-
out the head and hands. Often, these bodies are considered
in “isolation”, with no scene or object context. Other work
focuses on bodies interacting with scenes, but ignores the
hands. Similarly, work on generating hand grasps often ig-
nores the body. We argue that these are all just parts of the
problem. What we really need, instead, is to generate the
motion of whole-body avatars grasping objects, by jointly
considering the body, head, feet, hands, as well as objects.
We address this here for the first time.

The problem is challenging and multifaceted. Think of
how we grasp objects in real life (see Fig. 2); we walk to-
wards the object with our feet contacting the ground, we ori-
ent our head to look at the object, lean our torso and extend
our arms to reach it, and dexterously pose our hands to es-
tablish fine contact and grasp it. Humans are able to grace-
fully execute these steps, yet, these are challenging and in-
volve motion planning, motor control, and spatial aware-
ness. Some of these steps have been studied separately, but
we cannot simply combine the partial solutions since the
entire action must be coordinated. This is challenging be-
cause: (1) full bodies have a much higher-dimensional state
space than bodies or hands alone; (2) the body and hands
have very different sizes, motion scales and level of dex-
terity; (3) the body, head and hands must move in a coor-
dinated fashion. Currently, there are no automatic tools to
generate such coordinated full-body grasping motions.

We address this with GOAL, which stands for Generat-
ing Object-interActing whoLe-body motions. GOAL gen-
erates whole-body avatar motion for grasping an unknown
object, by jointly considering the body, head, feet, hands
and the object. GOAL takes three inputs: (1) a 3D object,
(2) its position and orientation, and (3) a “starting” 3D body
pose and shape, positioned near the object and roughly ori-
ented towards it. As output, GOAL generates a sequence
of 3D body poses from the starting pose through to an ob-
ject grasp. To do so, GOAL uses two novel networks (for
an overview see Fig. 3): (1) First, GNet generates a “goal”
whole-body grasp, with a realistic body pose, head pose,
arm pose, and hand pose, as well as realistic finger-object
and foot-ground contact. GNet is formulated as a condi-
tional variational auto-encoder (cVAE), thus, it learns a dis-
tribution over grasping poses, and can generate a variety of
“goal” grasps. (2) Then, MNet inpaints the motion between
the “starting” and “goal” poses, by generating a sequence
of whole-body poses in an auto-regressive fashion. This is
challenging because the avatar needs to (see Fig. 1) walk
by taking a number of steps proportional to the distance to
the object, while having natural foot-ground contact with-

Figure 2. Grasping an object involves several motions. We walk
towards the object with our feet contacting the floor, we orient our
head to look at the object, we lean our torso, extend our arms,
and pose our hand to contact and grasp the object. The depicted
examples use motions captured in the GRAB dataset [57].

out “skating”, and continuously orient the head to look at
the object. Then, when it is near the object, it needs to slow
down, stop walking, lean the torso, extend the arms to reach
the object. It must also pose the hand to contact the object
and grasp it. All body parts need to move gracefully and in
full coordination, so that the motion looks natural.

Achieving this level of realism requires technical nov-
elties. GOAL goes beyond recent work [38, 65, 67] to
jointly infer both SMPL-X [46] parameters and 3D off-
sets. GNet infers 3D hand-to-object vertex offsets to give
spatial awareness and guide object grasping. MNet infers
3D SMPL-X vertex offsets to guide SMPL-X deformation
from the previous to the current frame. These offsets lie in
3D Euclidean space, thus, they can be more accurately in-
ferred than SMPL-X parameters, and are used in an offline
optimization scheme to refine SMPL-X poses. We train
GNet and MNet on the GRAB [57] dataset, which contains
whole-body SMPL-X humans grasping objects.

We evaluate GOAL, both quantitatively and qualita-
tively, on withheld parts of the GRAB dataset. Specifically,
we withhold 5 objects for testing. Results show that GOAL
generalizes well and produces natural motions for full-body
walking and object grasping; see Fig. 1. Quantitative evalu-
ation shows that GOAL outperforms baselines, and ablation
studies show a positive contribution of all major compo-
nents. A perceptual study verifies the above, while showing
that GOAL’s generated motions achieve a level of realism
comparable to GRAB’s ground-truth motions.

GOAL takes a step towards generating whole-body grasp
motion for realistic avatars. Models and code are available
at https://goal.is.tue.mpg.de.
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2. Related Work
Motion generation for bodies “in isolation”: Research

on human motion generation has a long history [2, 4, 61].
However, even recent methods [41, 49, 64, 67], mostly
study the body “in isolation”; i.e., with no scene con-
text. Most methods generate the motion of 3D skeletons
[15, 24, 41–43, 64], while others [18, 49, 67] generate the
motion of a human model like SMPL [39]. Typically, 1-2
seconds of motion synthesis is referred to as “long term”.
Early deep-learning methods employ RNNs [12,15,44], but
they struggle with discontinuities between the observed and
predicted poses, as well as with long-range spatio-temporal
relations. Other methods tackle these with phase-functioned
feed-forward neural networks [23, 56], i.e., by conditioning
network weights on phase, but they focus on cyclic motions.
More recent methods [36, 41, 49, 58] use attention [59].

Motion generation for bodies in 3D scenes: Most early
methods extend MoCap databases with point annotations
for foot and hand contact [14, 27, 33, 34]. Then, they fit
motion to contacts with optimization and space-time con-
straints for 3D body motion re-targeting [14], and animating
bodies that move over 3D terrain [27, 33, 34].

Some methods use deep reinforcement learning (RL) for
body-scene [6, 47, 48] or hand-object [7, 8, 13] interactions.
These methods show promising results for navigating ter-
rain with varying height and gaps [47, 48], sitting on chairs
[6, 56], hammering [13], opening a door [13], moving ob-
jects [8], and for in-hand object re-orientation [7]. Gen-
eralization to new bodies, object geometry, and interaction
types remains a challenge.

Others follow a 3D geometric approach. Pirk et al. [50]
place virtual sensors on objects to sense the flow of points
sampled on an agent interacting with these, and build func-
tional object descriptors. Al-Asqhar et al. [1] re-target body
motion by encoding human joints w.r.t. fixed points sam-
pled on a scene. Ho et al. [22] use body and object vertices
to compute per-frame “interaction meshes”, and minimize
their Laplacian deformation to re-target body motion. These
pure geometric methods are not robust to real-world noise.

In contrast, GOAL is in the category of data-driven meth-
ods. Corona et al. [9] generate the context-aware motion of
a human skeleton interacting with objects, where “context”
is encoded as a directed graph connecting person and object
nodes. More relevant are methods for generating motion be-
tween a “start” and a “goal” pose in a 3D scene. Hassan et
al. [19] estimate a “goal” position and interaction direction
on an object, plan a 3D path from a “start” body pose to this,
and finally generate a sequence of body poses with an auto-
regressive cVAE for walking and interacting, e.g., sitting on
a chair. Wang et al. [60] first estimate several “sub-goal”
positions and bodies, divide these into short start/end pairs
to synthesize short-term motions, and finally stitch these to-
gether in a long motion with an optimization process.

Motion generation for hands: ElKoura1 et al. [11] esti-
mate physically plausible hand poses for music instruments,
using a learned low-dimensional pose space. Pollard et
al. [51] use MoCap to learn a controller for physically-based
grasping. Kry et al. [32] capture hand MoCap and forces
with instrumented objects, and build “interaction trajecto-
ries” for synthesizing or re-targeting motions with physics
simulation. More related to us, Lie et al. [62] take as input
MoCap data of body and object motion, and add the missing
hand motion by searching for feasible contact-point trajec-
tories and then generating smooth hand motion with space-
time optimization that satisfies the estimated contacts.

Pose generation for bodies in 3D scenes: Early meth-
ods use contact annotations [37] or detections [29] on 3D
objects, and fit human skeletons to these. Other methods
use physics simulation to reason about contacts and sitting
comfort [26,35,69]. Focusing on rooms, Grabner et al. [16]
predict all areas on a 3D scene mesh where a 3D human
mesh can sit, using proximity and intersection metrics. Re-
cent methods generate static SMPL-X [46] humans interact-
ing with a given scene; Zhang et al. [68] learn an implicit
interaction representation given a depth image and semantic
segmentation of the scene, Zhang et al. [66] use an explicit
scene-centric representation of interaction, while Hassan et
al. [20] use a human-centric one, called POSA, that they
embed in the SMPL-X [46] statistical body model. In con-
trast, Yi et al. [63] reconstruct and refine object poses to
better “support” a given human motion, using POSA-based
contact, collision and relative-depth constraints.

Pose generation for hand-object grasps: Taheri et
al. [57] infer MANO [55] grasps for a 3D object, by first
predicting a rough grasp, and then refining it with distance
and contact metrics. Grady et al. [17] first estimate contacts
on both the hand and object, and then refine hand poses with
optimization to satisfy contacts. Karunratanakul et al. [28]
infer a “grasping” distance field and then fit MANO to it.

Motion for full-body interactions: People use their
body and hands together for interacting with the world.
Hsiao et al. [25] build a database of whole-body grasps with
a human operating an avatar, and perform imitation learn-
ing. Borras et al. [3] capture whole-body MoCap data [40]
of people interacting with scene objects and handheld ob-
jects using a humanoid model, and define a pose taxonomy.
Taheri et al. [57] capture whole-body SMPL-X [46] inter-
actions with handheld objects, but learn a cVAE that gener-
ates only static grasping hands, due to the task complexity.
Merel et al. [45] use deep RL and human MoCap demon-
strations to learn a vision-guided neural controller for pick-
ing up and carrying boxes, or catching and throwing a ball.

Summary: The community has focused only on bodies
or hands, using unrealistic models. We learn to generate
full-body SMPL-X motion for walking towards an object
up to grasping it, given a “start” object and human pose.

13265



Figure 3. Overview of GOAL. There are two main stages: (1) GNet takes as input a 3D object, its position and orientation, and generates
a “goal” whole-body grasping pose. GNet’s output pose is refined with optimization post processing to look more realistic and physically
plausible. (2) MNet takes as input a starting human pose and GNet’s “goal” pose, and generates the motion in between as a sequence of
poses in an auto-regressive fashion. MNet’s output poses are refined with optimization post processing to better “reach” the “goal” pose.

3. Method

An overview of our method, GOAL, is shown in Fig. 3.
GOAL takes three inputs: (1) a 3D object, (2) its posi-
tion and orientation, and (3) a “starting” 3D body pose and
shape, positioned near the object (roughly 0.5− 1.5 m) and
oriented towards it (roughly ±10◦). As output GOAL gen-
erates SMPL-X motion with two main networks: (1) GNet
synthesizes a “goal” SMPL-X mesh that grasps the 3D ob-
ject with a realistic body pose and hand-object contact; (2)
MNet “inpaints” the motion from the “start” to the “goal”
pose, by generating a sequence of “moving” SMPL-X bod-
ies in an auto-regressive way. Without loss of generality,
we model right-handed grasps; which can be transferred to
the left hand easily through “mirroring” data and retraining.
Extending these to two-handed grasps, with or without out
hand coordination, is left for future work.

3.1. Human Model

We use the SMPL-X [46] statistical 3D whole-body
model, which jointly represents the body, head, face and
hands. SMPL-X is a differentiable function that takes as in-
put shape, β, pose, θ, and expression, ψ, parameters and
then outputs a 3D mesh, M , with 10, 475 vertices, V , and
20, 908 triangles, F . The shape vector β ∈ R20 contains
coefficients of a low-dimensional space, created via PCA
on 3D meshes of roughly 4, 000 different people [54]. The
vertices are posed with linear blend skinning with a learned
rigged skeleton with joints J ∈ R55×3. Let Θ = {θ,γ}
represent the articulated pose θ ∈ R55×6 [70] and transla-
tion γ ∈ R3 of the body. In the following, instead of using
all SMPL-X vertices, we sample N vertices on body areas
that are important for interactions using GRAB’s [57] con-
tact heatmaps.

3.2. Interaction-Aware Attention

Two common representations for body-object interaction
are: vertex-to-vertex distances and binary contact labels for
mesh vertices, However, the former carries information that
is irrelevant to the interaction (e.g., vertices far away from
the object), while the latter is too compact and carries no
information about 3D proximity before/after contact.

Here, we use vertex-to-vertex distances, but introduce a
new “interaction-aware attention” (IAA) that focuses more
on body vertices that are important for interaction (e.g.,
hands for grasping, feet for walking) and less on irrelevant
vertices (e.g., knees are less relevant than hands for grasp-
ing). Our “interaction-aware” attention is formulated as:

Iw(d) = e−wd, (1)

where w > 0 is a scalar weight, d ∈ RN
+ is a body-to-

object distance, andN is the number of sampled vertices on
SMPL-X; we sample N b = 400 for the body and Nh = 99
for each hand. Our IAA gives exponentially more attention
to vertices relevant for interaction. As visualized in Fig. 4,
this focuses attention on body areas that are meaningful for
interaction. We set w = 5, which empirically results in
realistic grasps.

3.3. Goal Network (GNet)

GNet is a conditional variational auto-encoder (cVAE)
[31] that generates a static whole-body grasp, conditioned
on the given object and its pose. To do this, we first encode
whole-body grasps into an embedding space.

Input: GNet’s encoder takes as input:

X in
GNet =

[
Θ,β ,v , q ,γo, bo,db )o

]
, (2)

where Θ and β are SMPL-X’s pose and shape parameters,
respectively, v ∈ RNb×3 are the 3D coordinates of the N b
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sampled SMPL-X vertices, q ∈ R3 is a unit vector for head
orientation, γo ∈ R3 is the object translation, and bo ∈
R1024 is the Basis Point Set (BPS) [52] representation of the
3D object shape. Finally, db )o ∈ RNb×3 denotes 3D offset
vectors that encode the body-to-object proximity; for each
of the N b sampled body vertices, v , it contains a 3D offset
vector to the closest object vertex in vo.

At training time, GNet’s encoder maps the inputs X to
the parameters of a normal distribution, {µ,σ} ∈ R16. At
inference time, we “skip” the encoder, and sample a latent
whole-body grasp code, zg ∈ R16, from this distribution.

Output: GNet’s decoder takes the grasp code, zg , and
the input conditions for the object, C = [bo,γo], and in-
fers SMPL-X pose parameters Θ̂, the head direction vector
q̂ , and 3D offset vectors d̂h )o from the Nh sampled hand
vertices, vh ⊂ v , to the closest object vertex.

Output space: We make two empirical observations: (1)
Networks struggle to predict accurate SMPL-X parameters,
possibly due to their non-Euclidean space. (2) Networks
predict interaction features in a Euclidean space much more
precisely. These observations are in line with recent work
[38, 65, 67]. However, we go beyond prior work by infer-
ring 3D offsets together with SMPL-X parameters, instead
of regressing vertex positions and fitting SMPL-X to these.

Training: GNet is trained with the loss:

LGNet = λvLv + λhvLh
v + λΘLΘ+

λqLq + λh )od Lh )o
d +λKLLKL,

(3)

where Lv = ‖v − v̂‖1, Lh
v = ‖vh − v̂h‖1, LΘ =

‖Θ − Θ̂‖2, Lq = ‖q − q̂‖2, Lh )o
d = ‖dh )o − d̂h )o‖1,

LKL is the Kullback-Leibler divergence, and λ are weights.
Hat variables are inferred; non-hat ones are ground truth.
GNet’s encoder and decoder use fully-connected layers with
skip connections. For architecture details, see Sup. Mat.

Optimization: We use the predicted offsets to refine
our SMPL-X predictions with optimization post processing.
Specifically, we optimize over SMPL-X parameters, Θ, ini-
tialized with GNet’s predictions. Instead of hand-crafted
contact constraints [10, 21, 60] during optimization, we use
data-driven constraints generated from GNet, namely: (1)
hand-to-object vertex offsets, (2) the head-orientation vec-
tor, (3) pose coupling to the initial value, and (4) foot-
ground penetration. In technical terms, to refine the hand
to realistically grasp the object, we define a term that pe-
nalizes differences between GNet’s inferred offsets d̂h )o,
and offsets dh )o, computed online during the optimization,
from SMPL-X’s hand vertices to the closest object vertices:

Eh )o
d (θ,γ ; d̂h )o) = ‖dh )o − d̂h )o‖1. (4)

Coupling for pose, θ , and translation, γ , parameters dis-
courages deviation from GNet’s inferred values, θ̂ and γ̂ :

Eθ (θ; θ̂) = ‖θ − θ̂‖2, Eγ (γ ; γ̂) = ‖γ − γ̂‖1. (5)

Figure 4. Visualization of the “interaction-aware attention” (IAA)
for the body-to-object vertex distances, Iw(d), of Sec. 3.2. For
each pair: (Left) Input 3D meshes for the human (pink) and the
object (yellow). (Right) The color-coded body mesh visualizes
the interaction-aware attention; blue denotes body vertices that are
far from the object (i.e., irrelevant for the specific interaction), and
red denotes vertices that are near the object (i.e., very relevant).

Similarly, head-orientation coupling is formulated as:

Eq(θ,γ ; q̂) = ‖q(θ,γ)− q̂‖1. (6)

To encourage ground contact and discourage penetration,
given the current SMPL-X parameters in every optimization
step, we find, online, the lowest vertex of the body along the
“y” vertical axis and encourage its y-coordinate to be zero:

Ef = |vy(k)|, k = arg min
i

vy(i), (7)

where i and k are vertex indices in the body mesh. Our final
energy is a combination of the above terms:

EGNet = λh )od Eh )o
d +λθEθ+λγEγ+λqEq+λfEf . (8)

3.4. Motion Network (MNet)

MNet generates the motion from the “start” to the “goal”
frame; the latter is generated by GNet, described above in
Sec. 3.3. The length of a sequence depends on several fac-
tors, such as the object location w.r.t. the body and motion
speed. Therefore, to generate motion of arbitrary duration,
we use an auto-regressive network architecture [19, 56].

Input: MNet takes as input (auto-regressive fashion):

Xin
MNet = [Θt-5:t,β ,vt, v̇t, d

h
t→g, b

h
g ], (9)

where t is the current frame, Θt-5:t are SMPL-X parameters
of the last 5 frames, β is the subject’s shape, vt and v̇t are
the locations and velocities of theN b sampled body vertices
in the current frame, and dht→g are the hand vertex offsets
from the current frame, t, to the “goal” frame, g. Finally,
bhg is the BPS representation [52] of the hand in the “goal”
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Figure 5. GNet’s generated SMPL-X grasp poses (Sec. 3.3) be-
fore (pink) and after optimization (green). Results show that
optimization-based post-processing effectively refines the initial
prediction towards a more realistic and physically plausible grasp.

grasping frame using the same BPS basis points as for the
object; using the same basis points for the BPS representa-
tion encodes the spatial relationship between the hand and
the object in the “goal” frame, and is empirically important
for “guiding” the motion towards a realistic grasp.

We empirically find that using as input the pose, Θ, of
more than 1 past frame leads to a smoother motion predic-
tion, in agreement with Starke et al. [56]; using more than 5
frames does not lead to noticeable improvement.

Output: MNet produces as output:

Xout
MNet = [∆Θt:t+10,∆vt:t+10,∆d

h
t:t+10] (10)

where t : t+10 is the future 10 frames, ∆Θt:t+10 is the
change of SMPL-X parameters, ∆vt:t+10 is the change of
SMPL-X vertex positions, and ∆dht:t+10 is the change of
hand vertex offsets. All changes, ∆, are relative to the cur-
rent frame.

Output space: MNet focuses both on SMPL-X param-
eters and Euclidean-space interaction features, similarly to
GNet. This empirically helps inference; the generated mo-
tion is smoother and better “reaches” the “goal” grasp.

Auto-regression: MNet estimates SMPL-X parameters
for future poses, and then these are fed back to MNet as in-
puts for the next iteration, along with other inputs in Eq. (9).
For architecture details, see Sup. Mat. Unlike HuMoR [53]
where in each iteration only 1 future frame is generated,
MNet’s generated motion improves when generating more
number of future frames; note that the improvement satu-
rates for 10 future frames, see Tab. 2-right in Sec. 4.2.

Training: MNet is trained with the loss: LMNet =

λvLv + λhvLh
v + λΘLΘ + λh )od Lh )o

d + λfvLfv , (11)

where the losses on body vertices, Lv , hand vertices, Lh
v ,

SMPL-X parameters, LΘ , and hand-to-object offsets, Lh )o
d

are borrowed from Eq. (3). Finally, Lfv = ‖vf − v̂f‖1 is a
new loss on foot vertices that are close to the ground. This
loss and the input velocities of Eq. (9) help foot-ground con-
tact and reduce sliding; see the video on our website.

Optimization: We refine MNet’s generated motion with
a post-processing optimization such that the final hand
grasp gets closer to the “goal” grasp generated by GNet.
Since we need precision only when the hand is close to
the object, we conduct optimization only when MNet’s esti-
mated hand vertices get closer than 10 cm to the “goal” hand
vertex positions. Following GNet’s scheme, we use MNet’s
predictions from Eq. (10) as constraints, instead of hand-
crafted ones. Specifically, we first compute the average per-
vertex velocity of MNet’s predicted hands, v̇ht . Then, we
linearly interpolate hand vertices for the next frame, vht+1,
between the current, vht , and “goal” ones, vhg :

vht+1 = vht + ‖v̇ht ‖l, where l =
vhg − vht
‖vhg − vht ‖

(12)

where ‖v̇ht ‖ is the average-velocity magnitude, and l is a
unit vector pointing from current to “goal” hand vertices. In
practice, we “force” hands to move towards the “goal” grasp
in a locally linear trajectory; this is simple and intuitive, but
might result in some hand-object penetrations. Since our
focus here is the hand grasp, for the rest of the body we
keep MNet’s predicted pose and velocity intact.

The energy function for optimization is:

EMNet = λΘEΘ + λhvE
h
v , (13)

where the term EΘ is on SMPL-X parameters, and Eh
v is

on hand vertices; their definition is borrowed from Eq. (3).

3.5. Implementation Details

Optimization: We refine GNet’s and MNet’s inferred
SMPL-X bodies with gradient descent using Adam [30].

Data: We use GRAB [57], a dataset of whole-body
3D SMPL-X humans grasping objects; it has a separate
training and testing set. For data preparation, see Sup. Mat.

4. Experiments
4.1. Qualitative Evaluation

GNet: Figure 5 shows representative generated static
grasps before and after optimization. Before optimization,
body and head poses are plausible, but hand grasps can be
improved (pink). The optimization refines hands for more
realistic and physically plausible grasps (green). Figure 7
shows GNet ’s generalization ability with grasps generated
for 2 unseen and complex objects from the YCB dataset [5].

MNet: Figure 6 shows motions generated for several ob-
ject shapes and locations, body shapes and “start” poses.
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Figure 6. Representative motions generated by GOAL (GNet and MNet) for several object shapes, locations, body shapes and “start” poses.

Grasp Synthesis Penetration Vol. (cm3) ↓ Contact Ratio [68]
1. GrabNet [57] 2.65 1.00
2. –"– SMPL-X 7.33 0.87
3. GNet-w/o-opt 5.32 0.87
4. GNet (ours) 2.22 1.00

GRAB (GT) 1.95 1.00

Table 1. Penetration and contact-ratio evaluation for GNet. We
compare GNet with-/out optimization and GrabNet variants.

4.2. Quantitative Evaluation

GNet: Table 1 reports the penetration volume (cm3)
and contact ratio [68] of four models: (1) “GrabNet” [57],
which generates MANO grasps, (2) “GrabNet-SMPL-X”,
a variant that uses SMPL-X, (3) GNet without optimiza-
tion, and (4) “GNet” with optimization. We see that gener-
ating whole-body grasps (row 2) is harder than hand-only
grasps (row 1), yet “GNet” (row 4) outperforms baselines.
Thus, post-processing optimization helps improve contact
and reduce penetrations; small penetrations are inevitable as
SMPL-X does not model soft tissue deformation; see [17].

MNet – IAA & output features: Table 2-left compares
MNet with similar models that infer: (1) only SMPL-X
pose parameters, “MNet-Pose”, (2) only markers akin to
MOJO [67], “MNet-Marker”, and (3) MNet outputs with-
out Interaction-Aware Attention, “MNet-w/o-IAA”. We re-
port vertex-to-vertex (V2V) errors for the full body, hands
and feet on GRAB’s held-out test set. Errors drop with: (1)

Motion V2V (mm) ↓ # Output V2V (mm) ↓

Network Body Hand Feet Frames Body Hand Feet

1. MNet-Pose 22.0 30.2 10.4 1 26.7 35.7 17.9
2. MNet-Marker [67] 21.1 30.1 9.8 2 21.5 29.6 13.2
3. MNet-w/o-IAA 21.0 29.1 10.5 3 20.3 25.5 12.2
4. MNet (ours) 19.7 28.0 9.9 5 19.7 28.1 10.5

10 19.7 28.0 9.9

Table 2. (Left) Effect of MNet outputs and use of “Interac-
tion Aware Attention” (IAA) on the V2V error. “Pose” refers to
SMPL-X pose parameters, and “Markers” to a MOJO-like [67]
setup for the whole body. (Right) As the number of MNet’s output
frames increase, results improve but saturate around 10 frames.

using IAA features and (2) jointly inferring SMPL-X pose
and marker offsets as output. We empirically observe that
our combination of inputs and outputs, inspired from work
on character control [56], leads to more realistic results.

MNet – Output frames number: We train 5 networks
with outputs ranging from 1 to 10 frames, and report in
Tab. 2-right the vertex-to-vertex (V2V) error for the body,
feet, and hands between the generated and ground-truth
meshes. Results show that generating more frames in each
iteration of our auto-regressive scheme helps generate bet-
ter results. We empirically observe that, when inferring a
small number of future frames, sometimes the motion does
not converge to a grasp and hands gradually deviate away
from the object, instead of contacting it.
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Figure 7. We show how GOAL generalizes by sampling 4 grasps
from GNet’s latent space for 2 complex, unseen YCB [5] objects.

Foot sliding: We evaluate foot-ground contact with a
“foot sliding” metric. For each frame, we find the clos-
est body vertex to the ground and compute its veloc-
ity. For contact, velocity should ideally be zero; if it is
higher than 1 cm per frame, we consider the foot to be
“sliding”. GOAL generates sequences with 13.7% “foot-
sliding” frames; GRAB’s ground truth has 6.7%. Although
there is room for improvement, GNet’s feet “slide” less than
existing work [19, 67].

4.3. Perceptual Evaluation

We evaluate GNet and MNet by generating grasping
poses and motions, respectively, on GRAB’s test set, and
running a perceptual study via Amazon Mechanical Turk.

GNet: For each test-set object, we generate 2 “goal”
whole-body grasps and render a “turntable animation” of
these, before and after optimization, and the corresponding
ground-truth grasps. Participants rate the quality of 4 fea-
tures: (1) grasping pose, (2) foot-ground contact, (3) hand-
object grasp, and (4) head orientation. They rate the realism
of each feature on a Likert scale of scores between 1 (un-
realistic) to 5 (very realistic). Each grasp is evaluated by at
least 10 Participants. To remove invalid ratings, e.g., those
who do not understand the task, we use catch trials simi-
lar to [57]. Results are shown in Tab. 3. The optimization
step improves the realism of whole-body grasps. Moreover,
it improves head orientation compared to the ground truth;
this is because some GRAB subjects look away from the ob-
ject while grasping it, while GNet produces heads oriented
towards the object due to the explicit head orientation, q ,
in Eq. (2). The same applies also for foot-ground contact,
due to the explicit foot term, Lfv , in Eq. (11). Overall, the
quality of the generated grasps is close to the ground truth.

MNet: We show generated and ground-truth sequences
to participants, and ask to rate the quality of: (1) overall
body motion, (2) foot-ground contact, (3) hand-object grasp
at the end of motion, (4) head orientation. Table 4 shows the
results; GOAL generates grasping motions that approach
the realism of ground truth. Note that MNet has a harder
task than GNet as it generates a full motion. Also, Tabs. 3

Metric GNet GNet + Opt Ground-truth [57]
Overall Grasping Pose ↑ 3.89± 0.93 3.98± 0.94 3.78± 1.06

Foot-Ground Contact ↑ 3.98± 1.06 4.10± 0.93 3.82± 1.11

Hand-Object Grasp ↑ 2.70± 1.37 3.63± 1.16 3.98± 1.04

Head Orientation ↑ 3.83± 1.01 4.01± 0.97 3.84± 1.07

Average ↑ 3.60± 1.22 3.93± 1.02 3.86± 1.07

Table 3. Perceptual study for GNet with-/out optimization. Sub-
jects rate the realism of the grasp from 1 (unrealistic) to 5 (very
realistic). We report the average rating value ± the standard de-
viation, computed across all valid participants. The optimization
step (“GNet + Opt”) improves all of the four studied features.

Metric GOAL Ground-truth [57]

Overall Body Motion ↑ 3.74± 0.97 4.20± 0.90

Foot-Ground Contact ↑ 3.88± 1.14 4.18± 1.05

Final Hand-Object Grasp ↑ 3.66± 1.05 4.32± 0.91

Head Orientation ↑ 3.86± 1.03 4.18± 1.00

Average ↑ 3.79± 1.05 4.22± 0.97

Table 4. Evaluation of MNet motions. Participants rate the gener-
ated and ground-truth motions on a Likert scale of 1 (unrealistic)
to 5 (very realistic) for 4 factors:overall body motion realism, feet-
ground contact, final hand-object grasp, and head orientation.

and 4 show that ground truth is rated higher for motions
than for static poses; this is harder for MNet to match.

5. Conclusion
We introduce GOAL, the first model to generate realistic

human motions to grasp previously unseen 3D objects. We
use two novel networks (GNet and MNet) to first generate
a static “goal” grasp and then inpaint the motion between
the frames. We exploit the ability of both networks to infer
interaction features in Euclidean space and introduce an op-
timization step after each network to improve the quality of
the grasps and motion based on the regressed features. The
evaluation shows that our framework is able to synthesize
natural and physically plausible grasping motions.
Future work: GOAL opens up many possibilities for future
studies on grasping motion generation. Even though GOAL
generates realistic grasping motions, it is constrained to be
close to the object and can not generate motions when the
body is far away. We plan to extend this to synthesize longer
walking motions, prior to interaction with objects. In addi-
tion, here we focus on human-object interaction; we plan to
combine GOAL with human-scene interaction models.
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