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Abstract

Recent text-to-image matching models apply contrastive

learning to large corpora of uncurated pairs of images

and sentences. While such models can provide a power-

ful score for matching and subsequent zero-shot tasks, they

are not capable of generating caption given an image. In

this work, we repurpose such models to generate a descrip-

tive text given an image at inference time, without any fur-

ther training or tuning step. This is done by combining the

visual-semantic model with a large language model, ben-

efiting from the knowledge in both web-scale models. The

resulting captions are much less restrictive than those ob-

tained by supervised captioning methods. Moreover, as a

zero-shot learning method, it is extremely flexible and we

demonstrate its ability to perform image arithmetic in which

the inputs can be either images or text and the output is

a sentence. This enables novel high-level vision capabili-

ties such as comparing two images or solving visual anal-

ogy tests. Our code is available at: https://github.

com/YoadTew/zero-shot-image-to-text.

1. Introduction

Deep learning has led to at least three major revolutions

in computer vision: (i) machines that achieve, in multiple

domains, what is considered a human level of performance

earlier than anticipated [39,64], (ii) effective transfer learn-

ing, which supports rapid modeling of new domains [74],

and (iii) a leap in unsupervised learning through the use of

adversarial and self-supervised learning [9, 23].

A fourth revolution that is currently taking place is that

of zero-shot learning. A seminal work by OpenAI presented

the transformer-based [65] GPT-3 model [6]. This model is

trained on extremely large text corpora and can then gener-

ate text given a prompt. If the prompt contains an instruc-

tion, GTP-3 can often carry it out. For example, given the

prompt “Translate English to French: typical → typique,

house→ . . . ” would generate the word “maison.”

Impressive zero-shot capability was later on demon-

strated, also by OpenAI, in computer vision. While state-

of-the-art computer vision models are often trained as task-

specific models that infer a fixed number of labels, Rad-

ford et al. [55] have presented the CLIP image-text trans-

former model, which can perform tens of downstream tasks,

without further training, with an accuracy comparable to the

state of the art. This is done by selecting, given an image,

the best match out of sentences of the form “This is an im-

age of X.” Subsequently, Ramesh et al. [57] presented a bi-

modal Transformer termed DALL-E, which generates im-

ages that match a given description in unseen domains with

unprecedented performance.

In this work, we employ CLIP to perform the inverse task

of DALL-E, namely zero-shot image captioning. Given an

image, we employ CLIP together with the GPT-2 language

model [56] (we do not have access to GPT-3) to generate

a textual description of the input image. This adds a new

image-analysis capability to CLIP, beyond the fixed-prompt

zero-shot learning demonstrated by Radford et al.

As a zero-shot method, our approach does not involve

any training. One can argue that the underlying CLIP model

is trained with exactly the same type of supervision that im-

age captioning methods [62, 76] are trained on, i.e., pairs

of matching images and captions. However, image caption-

ing methods are trained from curated sources, such as MS-

COCO [43] or Visual Genome [38], while CLIP is trained

on WebImageText (WIT), which is an automatically col-

lected web-scale dataset. Previous attempts to train a cap-

tioning model on WIT have led to poor performance in rec-

ognizing the objects in the image, see Sec. 2.

As a result of the difference in both methodology and un-

derlying data, the captions produced by our method are very

different from those obtained by the supervised caption-

ing methods. While supervised methods can mimic human

annotators and provide similar sentences, in terms of con-

ventional NLP metrics (such as BLEU [53]) to the ground

truth sentences, our results exhibit much more freedom and

match the image better in the visual-semantic CLIP em-

bedding space (ours is optimized for this). Moreover, the

semantic knowledge incorporated into CLIP and GPT-2 is

manifested in the resulting caption, see Fig. 1.

In addition to the different nature of the obtained cap-

tions, our method is also more flexible, since all the com-

puting occurs at inference time. Specifically, we show the
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A young
queen. 

(

(

)

)CLIP-VL: A blue hat sitting on top
of a black table.

Ours: A promotional cap from the
Toronto Blue Jays 10/09 season.

CLIP-VL: A living room with a
television and a book shelf.

Ours: A room dedicated to games
and other forms of entertainment
that were popular in the late 90s.

CLIP-VL: A birthday cake with
candy on top of it.

Ours: Sean's truck cake.

A cow's
milk. 

OCRDiversity Visual-Semantic Arithmetics
Real-world
knowledge

VinVL: A police hat sitting on top
of a toilet.

VinVL: A living room with a
television and pictures on the wall.

VinVL: A blue cake with candy
on top of it.

Figure 1. Our novel captioning method ZeroCap exhibits real-world knowledge, generates text that is more diverse and less scripted than

existing methods, can address the written content of an image, and can perform visual-semantic arithmetic.

ability to perform semantic analysis in image space by us-

ing a new form of arithmetic. A well-known example for

concept arithmetic in NLP is that of retrieving the word

‘queen’ as the closest word, in the embedding space, to the

equation involving the embedding vectors associated with

‘king,’ ‘man,’ and ‘woman,’ after subtracting the 2nd from

the 1st and adding the 3rd. We present the novel ability to

do the same, only with images instead of words, such that

the result is generated as a short sentences, and not just a

word, see Fig. 1.

As a corollary, we can, for example, ask what the dif-

ference is between two scenes. This ability to compare two

images semantically is a novel computer vision capability,

which further demonstrates the power of zero-shot learning.

2. Related work

The first deep captioning methods applied RNNs to gen-

erate sequences of words [37, 48]. Attention was added to

identify relevant salient objects [59, 61, 71]. Graph neural

networks and scene graphs incorporated spatial as well as

semantic relationships between objects [36, 72, 73]. Subse-

quently, Transformers modeled interactions among all im-

age elements with self-attention [17,51,60,65]. On the text

modeling side of the problem, language models (LMs) have

also advanced with the development of LSTMs [16, 69],

CNNs [4] and Transformers [27, 29, 47]. Language im-

provements include devising better image grounding [46],

decoding non-visual words (e.g., ‘the,’ ‘and’) [45], generat-

ing fine, novel and diverse sentences [7,24,70], and incorpo-

rating information from different semantic taggers [12, 33].

In recent years, significant improvements have been

achieved by utilizing large-scale vision-language data sets.

The unsupervised data is used as a pre-training phase, to

initialize models with image-text correspondence [15, 41,

76]. With this technique, millions of image and text pairs

from the web can be adopted. Nevertheless, in previ-

ous work we are aware of, all captioning models employ

human-annotated datasets, such as MS-COCO or the Visual

Genome, in the last stage of training.

It is likely impossible to construct a database of curated

captions that is large enough, to describe even a modestly

large fraction of plausible images and objects. This re-

sults in biases [20, 21, 68]. Several approaches focused

on describing novel objects by conditioning the model on

external unsupervised data during training [1, 28, 67]. Al-

ternatively, external object taggers can be used during dif-

ferent phases (e.g., pre-training, training, or inference) [3,

18, 31, 42, 46]. Semi-supervised methods are also avail-

able [35]. Unsupervised approaches can be achieved by

training with a visual concept detector or by learning a joint

image-language embedding space [19, 40]. In contrast, our

method makes use of an existing image-text alignment score

to direct an existing large-scale LM toward a given image

without training.

CLIP is trained on 400M images/sentence pairs from

the web [55], resulting with a powerful text-image match-

ing score. Originally CLIP’s authors explored training an

image-to-caption language model with this training set, but

found that it struggled with zero-shot transfer. In a 16 GPU-

day experiment, a language model only achieved 16% ac-

curacy on ImageNet [14]. CLIP achieves the same level of

accuracy roughly 10x faster.

Using prompts, it is possible to imitate some capabili-

ties of text generation. For example, CLIP-based applica-

tions exhibit zero-shot solving capabilities in various sce-

narios never seen before. With careful engineering of the

prompt, one can, for example, improve detection of unseen

objects [26]. Zero-shot prompt engineering has also been

used for higher-level tasks (e.g., VQA), but it is nowhere

near the level of supervised methods [62].

CLIP also provides powerful means for supporting text-

driven image manipulation with Generative Adversarial

Networks (GANs) or other generative models [8, 54, 58].

Our work explores the other direction: generating text us-
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ing an image, by guiding a large-scale LM with CLIP.

Guided language modeling has become a primary chal-

lenge, as researchers strive to tune prior knowledge within

large-scale LMs, such as GPT-2 [56]. Fine-tuning is often

accomplished by employing Reinforcement Learning [77]

or GANs [75] for each attribute separately. Disentangling

the latent representations into style and content is also rel-

evant in terms of text style transfer [32, 63]. A controllable

LM can also be formed using fixed control codes [34]. Ide-

ally, conditioning should be applied directly to the exist-

ing large-scale LM, without the need for fine-tuning. Sev-

eral studies have explored the idea of steering an LM using

small neural networks [10, 25]. Following that, PPLM [13]

demonstrated that a simple attribute classifier could steer

a model without any further training. With our work, we

present a novel visual LM guidance from visual cues.

3. Method

Visual captioning is the process of generating a descrip-

tive sentence for an image. It can be formalized as a se-

quence generation problem given an input image I , i.e., as

a conditional probability inference for the i-th word xi of

the sentence, i.e., p(xi|[xt]t<i, I).
This is typically accomplished in a supervised manner,

by optimizing weights to reproduce ground truth sentences.

However, since carefully curated datasets are small, and

cannot adequately describe all images, the sentences gen-

erated often describe the content at the basic level of the

objects present in the scene and sound artificial. Such prob-

lems can be mitigated with the use of web-scale datasets.

We present a zero-shot method for guiding large-scale

language models with a large-scale text-image alignment

model.

Overview Our approach uses a transformer-based LM

(e.g., GPT-2) to infer the next word from an initial prompt,

such as “Image of a,” as illustrated in Fig. 2. To incorporate

image-related knowledge to the auto-regression process, a

calibrated CLIP loss LCLIP stimulates the model to gener-

ate sentences that describe a given image. An additional

loss term LCE is used to maintain the next token distribu-

tion similar to the original language model. Optimization

occurs during auto-regression, and repeated for each token.

Furthermore, the flexibility of our method enables the

capturing of semantic relations through simple arithmetic of

visual cues in CLIP’s embedding space. Finally, combining

multi-modal encoders with our method allows knowledge

to be extracted in a new way that mixes between text and

images.

.

Language models In recent years, LMs have improved

significantly and are getting closer to AI-complete capabili-

ties, including broad external knowledge and solving a wide

variety of tasks with limited supervision. A Transformer-

based LM typically models interactions between the gener-

ated token and past tokens at each time-step.

Recall that the transformer block has three embedding

functions K,Q, V [65]. The first two, K,Q, learn the to-

ken interactions that determine the distribution over V . The

attention mechanism pools values based on the similarity

between queries and keys. Specifically, the pooled value

for each token i depends on the query associated with this

token Qi, which is computed using the function Q over the

current embedding of this token. The result is obtained as

the weighted average of the value vectors, based on the co-

sine similarity between Qi and the keys associated with all

tokens Kj .

While K and V are functions, the obtained key and val-

ues Kj and Vj are used repeatedly when generating text,

one word at a time. Kj and Vj can therefore be stored in

what is called a context cache, in order to keep track of past

embedding outputs of K and V . The sequence generation

process can then be written as

xi+1 = LM
(

xi, [(K
l
j , V

l
j )]j<i,1≤l≤L

)

, (1)

where xi is the i-th word of the generated sentence, Kl
j , V

l
j

are the context transformer’s key and value of the j-th token,

and l indicates the index of the transformer layers, out of a

total of L layers. Our method employs GPT-2, which has

L = 24 layers.

We next describe how we align our LM with the input

image. We do so by modifying, during inference, the values

of the context cache Ci = [(Kl
j , V

l
j )]j<i,1≤l≤L leaving the

LM unchanged.

CLIP-Guided language modelling Our goal is to guide

the LM towards a desired visual direction with each genera-

tion step. The guidance we propose has two primary goals:

(i) alignment with the given image; and (ii) maintaining lan-

guage attributes. The first goal is obtained through CLIP,

which is used to assess the relatedness of a token to an im-

age and adjust the model (or, rather, the cache) accordingly.

For the second goal, we regularize the objective to be simi-

lar to the original target output, i.e., before it was modified.

The solved optimization problem adjusts the context

cache Ci at each time point and is formally defined as

argminCi
LCLIP(LM (xi, Ci) , I)

+ λLCE (LM (xi, Ci) , x̂i+1) , (2)

where x̂i+1 is the token distribution obtained using the orig-

inal, unmodified, context cache. The second term employs

CE loss to ensure that the probability distribution across

words with the modified context is close to the one of the

original LM. The hyperparameter λ balances the two loss

terms. It was set to 0.2 early on in the development process

and was unmodified since. Next, we explain how the CLIP

loss term is calculated.
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Image of a bald

eagle
 

man

 

LM

Figure 2. An overview of our approach. We guide the model towards the phrase ‘eagle’ instead of ‘man’. We do this by adjusting the

context (C4), using the gradients of CLIP loss (LCLIP) illustrated with a red arrow. To maintain language attributes, we optimize the

minimum distance to the original distribution of the LM (LCE).

CLIP loss We calculate image relevance for the possible

tokens at time i. It is sufficient to compute potentials for the

top 512 token candidates and set the rest to zero potential

for efficiency. To this end, the corresponding candidate sen-

tence ski = (x1, ..., xi−1, x
k
i ) for the k-th candidate token is

matched against the image I .

The clip potential of the k-th token is computed as

pki ∝ exp(DCLIP(EText(s
k
i ), EImage(I))/τc)), (3)

where DCLIP is the cosine distance between CLIP’s embed-

dings of the text (i.e., EText) and the image (i.e., EImage), and

τc > 0 is a temperature hyperparameter that controls the

sharpness of the target distribution. In all our experiments,

we set τc to 0.01.

The CLIP loss is defined as the cross-entropy loss be-

tween the clip potential distribution and the target distribu-

tion of the next token xi+1 obtained by the language model:

LCLIP = CE(pi, xi+1). (4)

This loss encourages words that lead to higher CLIP match-

ing scores between the image and the generated sentence.

Inference As a zero-shot method, no training takes place.

At inference time one optimizes the problem in Eq. (2),

which we denote as p(xi+1|Ci), by conducting five steps

of gradient descent, i.e.,

Ci ←− Ci + α
∇Ci

p(xi+1|Ci)

∥∇Ci
p(xi+1|Ci)∥

2
. (5)

This update rule is simplified for brevity. With each newly-

generated token, the optimization is re-done. In our imple-

mentation, the gradients are normalized with Euclidean nor-

malization before each step, separately for each transformer

layer. We set the learning rate α to 0.3.

Beam search The byte-level tokenizer used employs

256 bytes of base tokens to represent every word in ex-

istence [56]. Any word can also be split into more than

one subwords, e.g., the word ‘zebra’ is tokenized as ‘zeb’

and ‘ra’. As a result, we found that images of zebras are

described as striped animals, since the token ‘zeb’ is not

picked. Beam search inference helps solve this problem by

enabling the search to be conducted in a less myopic way.

4. Visual-Semantic Arithmetic

Recent studies suggested that CLIP multi-modal repre-

sentation holds an elaborate concept taxonomy [22]. In ac-

cordance with this intuition, we find that our method can ex-

press CLIP’s embedding in a textual way. For instance, sub-

tracting between CLIP-encoded images and applying our

method transcribes a relationship between the two images.

Furthermore, by summing vectors we can steer the gener-

ated caption towards a conceptual direction.

To perform arithmetic in CLIP’s embedding space, we

first encode the image/text using CLIP’s image/text en-

coder. For instance, let I1, I2 be two images. We encode

the images with CLIP’s encoder, i.e., Eimage(I1), Eimage(I2).
Next, we carry out the desired arithmetic, e.g., addition with

Eimage(I1) +Eimage(I2). Finally, we use the obtained result

instead of the image encoding Eimage(I) within Eq. (3) to

steer the generated sentence.

Consequently, we can generate detailed knowledge of

the external world by moving in conceptual directions. This

way, our method can answer questions expressed visu-

ally, for example, “who is the president of Germany?” To

achieve this, we subtract “America’s flag” from an image of

“Obama” and obtain a presidential-direction, to which we

can then add the image of a second country’s flag.

Our approach extends beyond visual interactions alone.

Using CLIP’s textual encoder, interaction with a natural lan-
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Supervised Metrics Diversity Metrics Unsupervised Metric

Method B@4 M C S CLIP-SRef Vocab %Novel CLIP-S

ClipCap [50] 32.15 27.1 108.35 20.12 0.81 1650 66.4% 0.77

CLIP-VL [62] 40.2 29.7 134.2 23.8 0.82 2464 85.1% 0.77

VinVL [76] 41.0 31.1 140.9 25.2 0.83 1125 77.9% 0.78

Ours 2.6 11.5 14.6 5.5 0.79 8681 100% 0.87

Table 1. For each method, we report supervised metrics (i.e., ones requiring human references): B@1 = BLEU-1, M = METEOR, C =

CIDEr, S = SPICE. We also report diversity metrics, which measures the vocabulary size (Vocab), and the number of novel sentences w.r.t

the training set (%Novel). Finally, we report semantic relatedness to the image (CLIP-S), and to the human references (CLIP-SRef) based

on CLIP’s embeddings.

guage is possible. In this case, one performs arithmetic op-

erations in the embedding space such that the expression

contains both image- and text-embeddings.

5. Experiments

For all the results reported in this section, we used a

strategy for reducing repetitions, in which the probability

for generating tokens that were generated at the last four

time-steps was decreased by a factor of two. We also in-

corporated a mechanism that directly controls the length of

the generated text by multiplying the probability of the end

token by a factor of fe, starting from time-step te. We use

fe = 1.04 and te = 3 for image captioning, and fe = 1.06
and te = 1 for image arithmetic. On a single Titan X GPU,

five beams and 512 candidate tokens can be generated in

three seconds. Inference time is proportional to the number

of candidates and beams.

5.1. Image Captioning

We begin by studying our zero-shot method for cap-

tion generation. Notably, we find our captions to exhibit

human-like characteristics, such as generating diverse cap-

tions, reading, exploiting a wide range of external knowl-

edge, and coping with abstract concepts. In Tab. 1, we

present our results for COCO’s test set [43]. Two recent

baselines that use CLIP’s embedding are compared to: Clip-

Cap [50] and CLIP-VL [62]. In ClipCap, the image is en-

coded using CLIP and the representation is transferred and

plugged as a token into a fine-tuned GPT-2. CLIP-VL incor-

porates spatial grid features from CLIP into a transformer

network. Another method, VinVL [76] is a state-of-the-art

technique.

We first consider supervised metrics, i.e., metrics re-

quiring human references. These metrics include the

BLEU [52], METEOR [5], CIDEr [66], SPICE [2], and

CLIPScoreRef that we discuss below. As can be seen, our

method lags in these metrics in comparison to the super-

vised captioning methods. Since the ground truth human

annotation is obtained similarly to the training set, with the

same group of annotators using similar terms, there is a

clear advantage for methods trained on COCO annotations.

We next consider diversity metrics. Our vocabulary over

COCO’s test set is significantly larger than previous ap-

proaches (8681 vs. 2464). In addition, none of the gen-

erated sentences appear in the training set of COCO (100%

on %Novel).

CLIPScore [30] is a reference-free method for evaluating

relatedness between an image and its caption, using CLIP’s

alignment score. Evidently, our method is much better in

this metric than the supervised method (87% vs. 77%). As

an alternative to exact correspondence with human refer-

ence, we use CLIPScoreRef to measure the semantic dis-

tance from the references. Although supervised methods

outperform our method in this score (similarity in the vo-

cabulary and the sentence style still provide an advantage),

the gap is narrower than in other supervised metrics.

Qualitative Analysis Fig. 3 compares our zero-shot ap-

proach with other baselines, demonstrating that our method

can generate human-like captions, i.e., textually richer, bet-

ter at image reasoning, and more effective at grounding ob-

jects. We discuss each image from left to right. First, as

opposed to CLIP-VL, which assumes a toilet is in the bath-

room, and VinVL, which disregards the background build-

ings and presumes it is on a sidewalk, our method deter-

mines it is on a rooftop. Next, our method attempts to gen-

erate the written text on a boat’s side. The following im-

age describes a flight meal as a regular tray of food with

the baselines, whereas our method describes it as a flight

meal. We accurately describe the next image as a bar re-

stroom with portraits and not a bathroom. Our method and

VinVL specify specific birds in the following photo (red fal-

cons and hawks are hard to tell apart). Next, the baselines

repeat the same sentence, while our method mentions an in-

teresting mesh tile pattern. In the next photo, our method

identifies a family rather than a general group. Last, our

method accurately describes a room’s interior, such as a

bedroom with posters, and deduce that the posters depict

bands. Note that the baselines’ captions are generally of the

same pattern, while our method generates novel sentences.

Also, note that the images are taken from COCO dataset,
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CLIP-VL: A toilet sitting on
a ledge in a bathroom.

Ours: A new rooftop toilet
being installed on a
residential street.

CLIP-VL: A boat with a
picture on it in the water.

Ours: A boat with message
on the side saying "token".

CLIP-VL: A tray of food on a
table with bread and drinks.

Ours: A flight meal being
served on the Boeing 707
aircraft.

CLIP-VL: A bathroom with a
sink and a mirror.

Ours: A bar restroom with
portraits of the late 19th and
20th century.

CLIP-VL:  A bird sitting on
top of a window.

Ours: A Red Falcon in the
exhibit. 

CLIP-VL:  A bathroom with a
sink and a mirror.

Ours: A bathroom with a
mesh tile pattern. 

CLIP-VL:  A group of people
standing in the snow with skis.

Ours: Winter activities of
parents with children. 

CLIP-VL:  A mirror on the
wall in a bedroom with a bed.

Ours: A bedroom with
posters on the wall that
shows bands. 

VinVL: A white toilet sitting
on a sidewalk next to a wall.

VinVL: A sail boat is tied up
in the water.

VinVL: A tray of food on a
table with a lot of items.

VinVL: A bathroom sink with
a mirror and pictures.

VinVL: A hawk perched on
top of a window sill..

VinVL: A bathroom with a
sink and a mirror.

VinVL: A group of people
standing in the snow with skis.

VinVL: A bedroom with a bed
and posters on the wall.

Figure 3. Examples of our zero-shot image captioning compared against supervised captioning methods.

The president
Kennedy's death. 

Welcome. The University
of Stanford. 

Central PARK. 

Figure 4. Examples of OCR capabilities.

The President
Trump smiles.

The Simpsons. Manhattan on
the iconic island.

Stanford
University. 

Mario driving. The Avengers
poster. 

Figure 5. Examples of real-world knowledge.

which was used to fine-tune CLIP-VL and VinVL.

OCR The ability of CLIP to classify text within an im-

age from a closed set of possible prompts is impressive [55].

We show in Fig. 4 that these capabilities can be exploited in

a generative manner. To accomplish this, we change the

prefix prompt we use in our method from “Image of a” to

“Image of text that says.” Results include impressive un-

derstanding. e.g., “The president Kennedy’s death” from an

image of a paper declaring it or generating “The University

of Stanford” from a sign depicting its name.

External knowledge The generated captions comprise a

wealth of real-world knowledge on a variety of topics. In

Fig. 5 we show samples of famous people (e.g., Trump),

animated shows (e.g., Simpsons), cities (e.g., Manhattan),

movies (e.g., Avengers), games (e.g., Mario driving), and

places (e.g., Stanford).

5.2. Visual­Semantic Arithmetic Study

We demonstrate how our method can generate text

for subtraction to explain semantic directions. Next, we

demonstrate that the summation operator allows guidance

of the generated text through visual cues. One can then ap-

ply the above insights to solve visual analogy puzzles.

Subtraction Subtracting vectors intuitively represents a

direction between the vectors. In Fig. 6 we demonstrate

our method’s ability to express relations through several ex-

amples. “A caricature illustration” is the result of subtract-

ing a real photo of an airplane from a caricature. To put

it another way, adding the concept “A caricature illustra-

tion” to the right image of a real plane will match the im-

age on the left of a caricature plane. Concepts of quantity

and color can also be seen, for example, a comparison of a

green apple versus a red apple yields ‘Red,’ and vice-versa,

subtracting one basketball from many basketballs results in

“a bunch.” Furthermore, we find directions related to a geo-

graphical area, e.g., ‘Snow,’ and ’Desert.‘ Further, a concept

directly tied to day and night, and a concept of prison (i.e.,

‘Jailed’). It should be noted that the operator is not symmet-

ric, and cannot always be derived textually. For instance, on

the right images, the concept direction from a skateboard to

a skateboard tournament can be generated as “The event.”

However, the direction from a skateboard tournament to a

skateboard generated “schematic fossil view,” which is ir-

relevant.

Summation Through the addition operation, the gener-

ated text can be guided through visual semantics. In Fig. 7

we show examples of guidance. On the left side, with the

addition of a police officer’s hat, the caption describes a man

running as “A police officer...,” if we add a hammer to a

man, we get “The judge.” On the right side, we show that a

concept can be abstract. For example, the Apple company

can be represented by an apple. Thus, adding an apple to

a phone, results in the text “Apple’s iPhone released.” Ad-

ditionally, a country’s concept can be represented visually

with flags. If Canada’s flag is added to a tree, “Toronto

Maple” results.

Guidance with Visual-Relations In the field of natu-

ral language processing, semantic relations have long been

studied [49]. Previous efforts studied visual relations with

expensive annotated language-priors [44]. With the intro-

duction of CLIP, richer visual concepts from large-scale

data became available [22]. Through visual arithmetic, we

are able to exploit this richer embedding space.

In Fig. 8, we show our proposed strategy. Using subtrac-

tion, we first determine the direction. For example, the con-

cept of leadership is represented by an image of Obama mi-

nus the American flag. With this direction in hand, we can

now manipulate the case of other nations. By adding the

direction to the German flag, we obtain “Angela Merkel.”

A different example is to examine the concept direction of

CEO-to-company. With different images (e.g., Bill Gates

17923



A caricature
illustration. 

The event. Red. 
A  
bunch. 

Earth
night. 

Green. 

Snow. 

Desert. schematic
fossil view. 

Jailed,  

imprisoned.

Figure 6. Examples of vector directions derived by subtracting representations from CLIP’s embedding space. By generating text for the

given direction, the concept is revealed.

A police officer
running from
left to right. 

The judge. 

Apple's iPhone
released. 

Toronto Maple. 

Figure 7. Examples of caption guidance with an image through

the addition operator.

and Microsoft, Jeff Bezos and Amazon), the direction can

be summed to Mark Zuckerberg and Steve Jobs generating

‘Facebook’ and ‘Apple,’ respectively. On the right side, we

study various interactions with country-related representa-

tions. We guide the image of a baguette to generate ‘France’

by taking photos of pizza and Italy and deriving the country-

to-food direction.

The Visual Relations benchmark To further study the

relation capabilities of our technique quantitatively, we

introduce a new benchmark of visual relations, VR for

short. This benchmark comprises 320 relations of the fol-

lowing templates: buildings→country, countries→capital,

foods→country, leaders→country, and CEO→company.

These were chosen because they are roughly many to one,

i.e., a country has many buildings, but a building only re-

lates to one country. The benchmark is designed to measure

both the ability to model relations visually and to apply real-

world knowledge to perform the task.

We constructed the benchmark through the following

steps: (i) we created semantic directions by subtracting vi-

sual pairs and (ii) we then used each direction and added it

to a visual element in another pair to create its correspond-

ing text companion. As an example, we used images of

(’japan,’ ’sushi’) to convey the direction of food→country,

and then we added this direction to an image of a pizza and

examined the appearance of Italy in the generated text.

We focused on single-word answers. The three evalua-

tion metrics we find relevant to this setting are (1) BLEU-1,

which measures unigram precision; (2) Recall@5, which

indicates a word’s appearance within the first five words

generated; and (3) CLIP-score, which indicates semantic re-

latedness. To calculate the CLIP-score, we first add “Image

of” as a prefix to the ground truth. Using CLIP’s textual

encoder, we then use a cosine distance. More details are

provided in the supplementary material.

In Tab. 2, we show performance for each relation. While

this task is challenging, our approach resulted in a signif-

icant success rate of 30% at R@5 in most relations. Note

that, since the benchmark lacks multiple references, it is still

limited, e.g., we mark a miss if the generated word is ‘US,’

while the ground truth is ‘USA’. Observing the returned an-

swers reveals that some mistakes are understandable, e.g.,

answering Sydney instead of Canberra or the Sinai province

instead of the country Egypt. However, other cases return

truncated sentences, e.g., returning ‘flag’ instead of a coun-

try name or returning general concepts such as “flickr im-

age”. See supplementary for a discussion. When employing

the softer CLIP-Score metric, which is based on a semantic

distance, a correlation of 70% is observed.

We compared our results with ClipCap [50] that encodes

the image with CLIP’s image encoder and uses it as an

initial token for GPT-2. The method is fine-tuned based

on COCO dataset. As can be seen, this method fails to

retrieve the correct response, despite employing the same

large-scale models as we do and performing arithmetic in

the same CLIP embedding space. CLIP-VL [62] and the su-

pervised captioning methods cannot be tested on this bench-

mark since it uses spatial grid features as embedding.

Multi-modal Arithmetic Our method enables multi-

modal reasoning, which involves manipulating images and

text simultaneously in the same embedding space. Using

CLIP’s textual encoder, EText. In Fig. 9, we show that a

day-to-night direction can be obtained with text inputs, i.e.,

“image of a night,” and “image of a day.” The direction

steers an image of breakfast to “Nighttime dinner.”

6. Discussion and Limitations

The zero-shot capabilities presented by CLIP [55] pave a

new path for computer vision. However, these are limited to

multiclass classification. DALL-E [57] presents an impres-

sive ability to generate images that are very different from

its training images in what is termed zero-shot generation

ability. However, this ability is exactly the generative task

DALL-E was trained to do, only in new domains. No pre-

vious computer vision work, as far as we can ascertain, has

presented a generative semantic zero-shot capability of the

sort that is revolutionizing the NLP world with transform-

ers, such as GPT-3 [6]. Our work is the first to present a

generative visual-semantic work.

While the ability to rely on pre-trained models such as
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Figure 8. Image arithmetic with both summation and subtraction. For example, on the left side, by removing the American flag from

Obama, a leadership direction results. The presidents of different countries are generated when the derived vector is added to their flags.

Building→ Country Country→ Capital CEO→ Company Food→ Country Leader→ Country

Method B@1 R@5 C-s B@1 R@5 C-s B@1 R@5 C-s B@1 R@5 C-s B@1 R@5 C-s

ClipCap [50] 0.003 0.035 0.24 0.0 0.0 0.22 0.004 0.05 0.18 0.0 0.0 0.24 0.008 0.24 0.26

Ours 0.1 0.32 0.7 0.14 0.32 0.68 0.1 0.3 0.64 0.03 0.33 0.66 0.1 0.28 0.68

Table 2. Comparison of our method and ClipCap baseline on our novel benchmark for visual relations. B@1 = BLEU-1, R@5 = Recall@5,

C-s = CLIP-score.

Nighttime
dinner scene. ( )"Image of a

night" 

"Image of a
day" 

Paris. ( )"Image of
tokyo" 

Figure 9. Our method is not only devoted to visual relations, but it

also allows arithmetic between image and language.

GPT-2 [56] and CLIP allows us to achieve such new capa-

bilities, they also highlight the uneven playing field AI has

become. GPT-2 is far inferior to GPT-3 and other recent

LMs in which resources far beyond the reach of most re-

search labs are invested.

On a similar note, it is likely that combining zero-shot

with supervised training would lead to a method that out-

performs the baselines in all captioning metrics. However,

the amount of resources currently used to train supervised

captioning methods is becoming a deterring factor from pur-

suing this direction. For instance, UNITER uses 3645 hours

of a V100 GPU [11].

The use of an LM and an image-language matching

model trained on large corpora of collected data inevitably

leads to biases. For example, the models we employ are

clearly oriented towards Western knowledge and can recog-

nize people, places, objects and concepts that are popular

in Western media, while being much less knowledgeable

about other cultures. For example, our model fails to form

relations with the president of China, Xi Jinping.

7. Conclusions

The marriage between a language model and a visual-

semantic matching model is a powerful union, with the po-

tential to provide zero-shot captioning that brings together

real-world variability in text, recognition abilities that are

unrestricted by categories, and real-world knowledge that is

embedded in the models through web-scale datasets.

We propose a zero-shot method for combining the two

models, which does not involve optimizing over the weights

of the models. Instead, we modify, for all layers and atten-

tion heads, the key-value pairs of the tokens generated by

the language model up to each inference step.

As a captioning model, our method produces results that

are less restrictive than those provided by the human anno-

tators on the datasets used by supervised captioning meth-

ods. While this lowers the word-to-word metrics, the cap-

tions generated seem to be a good match to the image at the

semantic level and exhibit real-world information. More-

over, the flexibility of using an embedding-space zero-shot

method enables us to perform visual-semantic arithmetic.

We show how we can describe in words the difference

between two images and how we can combine concepts

from multiple images. Both are novel high-level recogni-

tion tasks. Combining these two capabilities, a powerful

image analogy machine is obtained, which answers, by pro-

viding a text string, questions of the form “A is to B as C is

to X” (X ∼ C +B−A), in which A, B, and C can each be

either textual or visual.
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