
GCR: Gradient Coreset based Replay Buffer Selection for Continual Learning

Rishabh Tiwari 1,3, Krishnateja Killamsetty 2, Rishabh Iyer 2, Pradeep Shenoy 3

1Department of Physics, Indian Institute of Technology (ISM) - Dhanbad
2Department of Computer Science, University of Texas at Dallas

3Google Research, India

{rishabhtiwari,shenoypradeep}@google.com, {krishnateja.killamsetty,rishabh.iyer}@utdallas.edu

Abstract

Continual learning (CL) aims to develop techniques by
which a single model adapts to an increasing number of
tasks encountered sequentially, thereby potentially leverag-
ing learnings across tasks in a resource-efficient manner.
A major challenge for CL systems is catastrophic forget-
ting, where earlier tasks are forgotten while learning a new
task. To address this, replay-based CL approaches maintain
and repeatedly retrain on a small buffer of data selected
across encountered tasks. We propose Gradient Coreset
Replay (GCR), a novel strategy for replay buffer selection
and update using a carefully designed optimization crite-
rion. Specifically, we select and maintain a ’coreset’ that
closely approximates the gradient of all the data seen so
far with respect to current model parameters, and discuss
key strategies needed for its effective application to the con-
tinual learning setting. We show significant gains (2%-4%
absolute) over the state-of-the-art in the well-studied of-
fline continual learning setting. Our findings also effectively
transfer to online / streaming CL settings, showing up to 5%
gains over existing approaches. Finally, we demonstrate the
value of supervised contrastive loss for continual learning,
which yields a cumulative gain of up to 5% accuracy when
combined with our subset selection strategy.

1. Introduction

The field of continual learning (CL) [44] studies the
training of models in an incremental fashion, to general-
ize across a number of sequentially encountered scenarios
or tasks, and to avoid the training & maintenance costs of
one-off models. A key challenge in CL is the limited access
to data from prior tasks; this results in catastrophic forget-
ting [30], where training on subsequent tasks may poten-
tially erase information in the model parameters pertaining
to previous tasks. Approaches to address catastrophic for-

Figure 1. When training CL models on S-Cifar100 with dif-
ferent replay buffer sizes K ∈ [200, 500, 2000], the use of re-
play buffers selected by GCR produces higher model accuracy
and lower model forgetting than using reservoir-sampled replay
buffers [6]. See text for more details.

getting1 include modifications to the loss function (e.g., [23,
39]), to the network architecture (e.g., [18, 43]), and to the
training procedure and data augmentation (e.g., [6]). In par-
ticular, replay-based continual learning maintains a small
data sketch from previous tasks, to be included in the train-
ing mix throughout the lifetime learning of the model. Re-
markably, as little as 1% of saved historical data, using
random sampling, is enough to provide significant gains
over other CL approaches [6]. This suggests that sophis-
ticated methods for selecting compact data summaries or
coresets may perform much better. However, previous ap-
proaches to coreset in continual learning have focused on
qualitative/diversity-based criteria [3, 47], or bi-level opti-
mizations with significant computational costs and scaling
limitations [4].

We present Gradient-based Coresets for Replay-based
CL (GCR), a principled, optimization-driven criterion for
selecting and updating coresets for continual learning.
Specifically, we select a coreset that approximates the gra-
dient of model parameters over the entirety of the data seen
so far. We provide empirical evidence that coresets selected

1The papers cited, here and subsequently, under each paradigm or tech-
nique are representative or recent papers, not necessarily the papers defin-
ing or proposing said paradigm.

99

utilizing the above approach mitigate catastrophic forget-
ting on par with, or better than previous methods. Fig-
ure 1 illustrates how our coreset selection approach im-
proves over random data selection by large margins, both
in overall accuracy and in retaining of previous tasks. We
explore the effect of better representation learning in the
CL setting by including a representation learning compo-
nent [19] into our CL loss function. We conduct exten-
sive experimentation against the state-of-the-art (SOTA) in
the well-studied offline CL setting, where the current task’s
data is available in entirety for iterative training (2-4% ab-
solute gains over SOTA), as well as the online/streaming
setting, where the data is only available in small batches
and cannot be revisited (up to 5% gains over SOTA). In
particular, we show that the benefit from our coreset selec-
tion mechanism increases with increasing number of tasks,
showing that GCR scales effectively with task count. Fi-
nally, we demonstrate the superiority of GCR over other
coreset methods for CL in a head-to-head comparison.

2. Related Work
CL approaches divide broadly into three main themes:

Regularization based approaches preserve learning from
earlier tasks via regularization terms placed on model
weights (EWC [24], synaptic intelligence [48]), structural
regularization [41], or functional regularization [10, 39]).
In other work, incremental momentum matching [26] pro-
poses a model-merging step which merges a model trained
on the new task with the model trained over the previ-
ous tasks, or use knowledge distillation-based regulariza-
tion [28] to retain learnings from previous tasks.
Architecture adjustments modify model architectures to
incorporate CL challenges; for instance, using a recurrent
neural network [13], learning overcapacitated deep neural
networks in an adaptive way that repeatedly compresses
sparse connections [43] or using overlapping convolutional
filters [18]. Other work attempts to identify shared informa-
tion across tasks (CLAW [1]) using variational inference.
Replay based approaches preserve knowledge on previ-
ous tasks by storing a small memory buffer of representa-
tive data samples from previous tasks for continued train-
ing alongside new tasks (ER [35, 38]). Some approaches
add a distillation loss to preserve learned representations
(iCaRL [36]) or for classifier outputs (DER++ [6] for points
in the buffer. Gradient Episodic Memory (GEM) [29],
AGEM) [12]) focuses on minimizing catastrophic for-
getting by the efficient use of episodic memory. Meta-
Experience Replay (MER) [37] adds a penalty term for
between-task interference in a meta-learning framework.
Maximally Interfered Retrieval (MIR) method [2] uses con-
trolled memory sampling for replay buffer by retrieving
samples that the foreseen model parameters update will
most negatively impact. Of these approaches, the distilla-

tion loss on the replay buffer [6,36] show the strongest per-
formance gains at standard CL benchmarks.
Coreset selection: Coresets [15] are small, informative
weighted data subsets that approximate specific attributes
(e.g., loss, gradients, logits) of original data. Previous
work [16,27] used coresets for unsupervised learning prob-
lems such as K-means & K-medians clustering. Coresets
enable efficient and scalable Bayesian inference [7–9, 17,
49] by approximating the model logit sum of the entire data.
Several recent works [20–22,31,32] also use coresets to ap-
proximate the gradient sum of the individual samples across
the entire dataset, for efficient and robust supervised learn-
ing. Although coresets are increasingly applied to super-
vised and unsupervised learning scenarios, the problem of
coreset selection for CL is relatively under-studied. We dis-
cuss existing coreset based approaches for CL below.
Coresets for Replay-based CL: Approaches include se-
lecting replay buffers by maximizing criteria like sample
gradient diversity (GSS [3]), a mix of mini-batch gradient
similarity and cross-batch diversity (OCS [47]), adversar-
ial Shapley value(ASER [42]), or representation matching
(iCARL [36]). These approaches introduce a secondary se-
lection criterion (to reduce the interference of the current
task and forgetting of previous tasks) that is highly spe-
cific to each particular approach. As a result, they may not
generalize different CL loss criteria. Additionally, previous
approaches have not considered weighted replay buffer se-
lection, which increases the representational capabilities of
replay buffers. Closest to our work is a recent paper [4]
that proposed solving a bi-level optimization for selecting
the optimal replay buffer under certain assumptions, rather
than for any specified loss function. Their proposal is com-
putationally expensive, intractable in large task scenarios,
and scales poorly with buffer size; moreover, they did not
compare against recent strong proposals [6]. We compare
directly against this approach in our experiments. In con-
trast to previous coreset approaches in CL, (a) We use an
optimization criterion directly tied to the replay loss func-
tion used by the CL approach; we show that doing so can
achieve better model accuracies across different replay loss
functions (ER [37] and DER [6], see Results), (b) We use a
weighted coreset selection mechanism for continual learn-
ing, where the weights are selected by the coreset optimiza-
tion criterion and allow effective use of the buffer data.
CL settings: Apart from different learning approaches, CL
is also studied under a range of settings2, depending on what
information and data are available at which stage. In partic-
ular, the task-incremental and class-incremental settings as-
sume that task label is known, or not available, respectively,
at inference time. In the offline setting, each new task’s data
is available in entirety for repeated/ iterative learning [14],
whereas online CL only considers data availability in small

2see van de Ven & Tolias [45] for a taxonomy

100

Batch SGD on the
GCR loss objective

Candidate

Pool

CORESET

SELECTION

Model Training on Task-t

GCR Training Pipeline

Figure 2. Block diagram showing training, replay buffer selection,
and update operations of GCR at time step t.

buffers that cannot be revisited [5].

3. Preliminaries
3.1. Notation

We assume that there are T tasks in the continual learn-
ing classification problem considered. For each task t ∈
{1, 2, · · · , T}, we have an associated dataset Dt that is
composed of i.i.d data points {(xit, yit)

|Dt|
i=1 } where xit is

the ith sample and yit is the ground truth label for the ith

sample in the dataset Dt. We assume that each task t is as-
sociated with a set of distinct classes yt = yt1, yt2, · · · , ytn
and that no tasks have common classes i.e ∀

t̸=k
yt ∩ yk = ∅.

Let the classifier model be characterized by parameters θ.
We split the model parameters into feature extraction layer
and linear classification layer. Let the model’s feature ex-
tractor output for input sample x is denoted by Ωθ(x). The
model logits output for input sample x is denoted by hθ(x)
and the predicted probability distribution over the classes
for input x is denoted by fθ(x) = SOFTMAX(hθ(x)). We
use t to denote the last task observed so far. Let, l be the
classification loss function (such as cross-entropy loss).Let
the data buffer of previous tasks used for the replay be de-
noted by X and Lrep(θ,X) be the replay-buffer loss over
the entire replay buffer X .

3.2. Continual Learning

Following the above notations, the goal of continual
learning at step t is to minimize the following objective:

argmin
θ

t∑
i=1

∑
(x,y)∈Di

l(y, fθ(x)) (1)

where l is the cross-entropy loss function.
In a continual learning setup, at step t, we only have ac-

cess to data points from task t, making it difficult to opti-
mize the above objective directly. In particular, we have to
make sure that while the model is learning on a new task, it
should not forget previous tasks.

3.3. Replay-based Continual Learning

Replay-based CL methods maintain a small buffer of
data points from previous tasks on which the model is
trained and the data samples from the new task to make the
model retain the knowledge of previous tasks. Following
the notation earlier, we denote the replay buffer of previous
tasks by X . One of the possible formulations for replay-
based methods for continual learning is as follows:

argmin
θ

∑
(x,y)∈Dt

l(y, fθ(x)) + λLrep(θ,X) (2)

where Lrep is the replay loss of the model on samples
from replay buffer, and λ is a hyperparameter denoting the
replay loss coefficient. Early work used cross-entropy for
the replay loss (see e.g., ER [38]); however, recent work
(Dark Experience Replay, DER++ [6]), proposes storing
the logits (z) associated with data points at the time of se-
lection for use in an additional distillation loss. The authors
show that DER++ outperforms a range of previous propos-
als in both task-incremental and class-incremental offline
continual learning scenarios. The DER++ objective is:

Lrep(θ,X) =
∑

(x,y)∈X

(
α∥z − fθ(x)∥2 + βl(y, fθ(x))

)
(3)

4. GCR: Methods

Figure 2 shows the overall GCR workflow. We frame
an incremental update process that takes the previously se-
lected replay buffer Xt−1 along with a candidate pool Ct
from the current task’s data Dt. We work with the candi-
date pool Ct instead of the task data Dt in order to have a
more general formulation that covers both Offline CL (all
current task data is available) and Online CL (data arrives
sequentially in small buffers) scenarios.

Our primary contribution is a formulation of the replay
buffer selection as a principled optimization problem based
on gradient approximation. We discuss the various compo-
nents of GCR needed to support this optimization objective,
and then sketch how they combine in our overall continual
learning framework.

4.1. GradApprox for Replay Buffer Selection

We propose a weighted gradient approximation objective
for selecting replay buffers. Given a dataset D = {di}i=|D|

i=1 ,
associated sample weights WD = {wi}i=|D|

i=1 , and a sub-
set size K, GradApprox selects a data subset X : X ⊂
D, |X | = K and its associated weights WX , using the fol-

101

lowing optimization objective:

argmin
X ,WX :X⊂D,|X|=K,WX≥0

Lsub(D,WD,X ,WX , λ) where

Lsub(D,WD,X ,WX , λ) =

∥∥∥∥ ∑
(d,w)∈(D,WD)

∇θlrep(θt, d, w)

−
∑

(d̂,ŵ)∈(X ,WX)

∇θlrep(θt, d̂, ŵ)

∥∥∥∥2

+ λ ∥WX∥2

(4)
In the above equation, the replay loss function lrep is a
weighted individual sample replay loss. In other words,
GradApprox selects a subset of data points, and associated
weights, such that the weighted sum of individual samples’
replay loss gradient is closest to the replay loss gradient of
the entire dataset. Since this optimization is repeatedly ap-
plied after each task, the target of approximation (gradient
on D) also has weights WD learned from the previous round
of GradApprox. Note that the use of weights is a necessary
degree of freedom in order to achieve the approximation;
i.e., it allows us to feasibly approximate the overall gradient
using only a subset of points. Further, these weights must
necessarily be used in the subsequent learning algorithm, as
the gradient approximation holds only under the conditions
of weighted sum with chosen weights.

The above coreset optimization problem is generally
applicable to any chosen replay loss function. For in-
stance, using it on the DER++ [6] replay loss from Equa-
tion 3 gives us a general weighted loss: lrep(θ, d, w) =

αw∥z − hθ(x)∥2 + βwl(y, fθ(x)), where d = (x, y, z),
where the weights are selected by GradApprox. The first
loss component is the distillation loss, and the second loss
component is the label loss, each scaled by the respective
hyperparameters α and β. Similarly, we can apply GradAp-
prox to the vanilla Experience Replay loss (only cross-
entropy on buffer) to improve upon the selected candidate
pool for that loss function ([38], also see Table 9 in the sup-
plementary materials). We apply GradApprox to the GCR
loss objective, described in the next section.
GradApprox Implementation: Detailed pseudocode of
the GradApprox algorithm is given in Algorithm 2. The
optimization problem given in Eq (4) is weakly submod-
ular [20, 33]. Hence, we can effectively solve it using a
greedy algorithm with approximation guarantees–we use
Orthogonal matching pursuit3 to find the subset and their
associated weights. We also added to Eq (4) an l2 regular-
ization component over the weights of the replay buffer to
discourage large weight assignments to data samples in the
selected replay buffer, thereby preventing the model from
overfitting on some samples. Finally, we select an equal
number of samples from each class to make the selected

3A similar approach for subset selection using cross-entropy loss for ef-
ficient and robust supervised learning has been proposed in offline, single-
task learning scenarios [20].

replay buffer robust to the class imbalance in the dataset.
In other words, if there are C classes in the dataset D, we
solve gradient approximation problems using per-class ap-
proximation by selecting a weighted subset of size K

C from
the data instances that pertain to the class being considered.

4.2. GCR Loss objective

We adapt and modify the replay loss function from
DER++ [6] (current SOTA in offline continual learning)
with the following two goals in mind: (a) to demonstrate the
value of GradApprox as a replay buffer selection algorithm
and (b) to achieve results, as an overall system, that beats
current known SOTA performance in both offline and online
continual learning. To use the replay loss from DER++ [6],
for each data sample (x, y) in replay buffer and candidate
pool, we also store historical model logit output z. There-
fore, each data sample in the replay buffer and candidate
pool consists of (x, y, z). The formulation of the loss ob-
jective L(θ) considered by GCR is given below:

L(θ) =
∑

(x,y)∈Dt

l(y, fθ(x))︸ ︷︷ ︸
(a)

+

∑
(x′,y′,z′,w′)∈(Xt−1++Ct,WXt−1

++WCt
)

αw′∥∥z′ − hθ(x
′)
∥∥2

︸ ︷︷ ︸
(b)

+

∑
(x̂,ŷ,ẑ,ŵ)∈(Xt−1++Ct,WXt−1

++WCt
)

βŵl(ŷ, fθ(x̂))

︸ ︷︷ ︸
(c)

+

∑
(ẋ,ẏ,ż,ẇ)∈(Xt−1++Ct,WXt−1

++WCt
)

γẇlsupcon(ẋ, ẏ,Xt−1 ++ Ct, θ)

︸ ︷︷ ︸
(d)

(5)
where,

lsupcon(x, y,A, θ) =

1

|P (y)|
∑

(ẋ,ẏ,ż)∈P (y)

exp (Ωθ(ẋ) · Ωθ(x))∑
(x̄,ȳ,z̄)∈A

exp (Ωθ(x̄) · Ωθ(x))

P (y) = {(ẋ, ẏ, ż) ∈ A : ẏ = y}
and ++ is a concatenation operator.

(6)

The optimization objective consists of four components.
The first component (a) measures prediction loss compared
to ground-truth labels for current task data. The second and
third components (b, c) measure the current model’s loss
computed over data from the combination of replay buffer
and current task candidate pool, in terms of distillation loss
and label loss, respectively. As outlined in the previous
section, GCR uses a weighted loss over the replay buffer,
where the weights are an outcome of the replay buffer se-
lection procedure (see previous sections). The fourth and
final loss component (d) is a weighted version of supervised

102

Algorithm 1: GCRAlgorithm
Input: Dataset: D, Parameters: θ, Scalars: α, β, γ, λ,

Learning rate: η, Batch size:B, Buffer Size: K,
Tolerance: ϵ

Output: Parameters: θ
1 Initialize Replay Buffer: X = ∅, Replay Buffer weights:

WX = ∅, and sample count: n = 0
2 for Dt ∈ D do
3 Initialize Candidate Pool: Ct = ∅ and task sample

count: nt = 0
4 for (x, y) ∈ Dt do
5 Update task sample count: nt = nt + 1 and

sample count: n = n+ 1
6 {(x′, y′, z′, w′)} =

AdaptiveSampling(X , Ct, nt, n)
7 xaug = Augment(x), x′

aug = Augment(x′)
8 Calculate model logit outputs: z = hθ(xaug)

9 θ = θ − η∇θ

(
l(y, fθ(xaug)) +

αw′∥∥z′ − hθ(x
′
aug)

∥∥2
+ βw′l(y′, fθ(x

′
aug)) +

γw′lsupcon(x
′
aug, y

′,X ++ C, θ)
)

10 C = Reservoir(C, (x, y, z),K)

11 X ,WX = GradApprox(X ++Ct,W ++1, θ, λ,K, ϵ)

contrastive loss [19], initially proposed for standard super-
vised learning settings. This loss term improves the model’s
learned representations by forcing data samples from the
same class to be closer in the embedding space than those
from other classes. In our work, we always use data sam-
ples from the combined candidate pool and replay buffer as
anchor points for supervised contrastive learning loss.

DER++ also uses a loss criterion similar to (a,b,c)
above. The primary differences in our loss function com-
pared to DER++ are (1) the weighted-sum formulation of
the loss, with weights selected by GradApprox optimization
(our primary contribution), and (2) the use of supervised
contrastive loss (d) to further improve the learned model
(our secondary contribution). We show in ablation studies
that these contributions independently and cumulatively add
value over and above current SOTA. We also note that GCR
is applicable more broadly, to any specified replay loss fun-
nctions (see e.g., ER [38] based replay loss function, sup-
plementary data C).
Further optimization: The candidate set for the current
task is selected by reservoir sampling, specifically in order
to maintain candidate data points alongside intermediate
logits for the distillation loss in the GCR objective. It is pos-
sible to improve the candidate pool selection process fur-
ther through a gradient-approximation objective at the end
of current task training. However, this strategy would re-
quire maintaining intermediate logits for the entire dataset,

Algorithm 2: GradApprox Algorithm
Input: Dataset: D = {(xi, yi, zi)}ni=1, Existing Weights:

Dw, Parameters: θ, Scalar: λ, Budget: K,
Tolerance: ϵ

Output: Subset: X , Subset Weights: Xw

1 Initialize Y = LabelCount(D)

2 Partition dataset D: D = {Dy}Yy=1

3 Partition dataset weights WD based on the labels of data
samples: WD = {WDy}Yy=1

4 Initialize Replay Buffer: X = ∅ and Replay Buffer
weights: Xw = ∅

5 for y ∈ {1, 2, · · · , Y } do
6 Initialize PerClass budget: ky = K

Y
, PerClass subset:

Xy = ∅ and PerClass weights: WXy = 0
7 Calculate residuals :

r = ∇wLsub(Dy, Dyw,Xy,w, λ)|w=Xyw

8 while |Xy| ≤ ky and
Lsub(Dy,WDy ,Xy,WXy , λ) ≥ ϵ do

9 Find out maximum residual element:
e = argmax

j
|rj |

10 Update PerClass subset: Xy = Xy ∪ {e}
11 Calculate updated weights:

WXy = argmin
w

Lsub(Dy,WDy ,Xy,w, λ)

12 Calculate residuals :
r = ∇wLsub(Dy,WDy ,Xy,w, λ)|w=WXy

13 Update subset: X = X ++ Xy and subset weights:
WX = WX ++WXy

requiring prohibitive storage requirements.

4.3. The GCR algorithm

We now put together the various components described
above in a continual learning workflow. The pictorial repre-
sentation of the GCR algorithm was presented in Figure 2
and its detailed pseudocode in Algorithm 1. At each step
GCR trains the model on the current task data, and updates
the replay buffer with a weighted summary of size K se-
lected from the candidate pool Ct and the previous replay
buffer Xt−1.

Xt,WXt = GradApprox(Xt−1 ++ Ct,WXt−1 ++WCt , θ,K)
(7)

Each point in the candidate pool is initially assigned unit
weight; i.e., WCt = 1. As shown in the pseudocode, we
employ reservoir sampling [46] for selecting the candidate
pool. We also use adaptive sampling described in Algo-
rithm 3 to sample tasks from the combined candidate pool
and the replay buffer. Due to space constraints, we give de-
tailed pseudocode of the Adaptive Sampling Algorithm in
Supplementary materials A. Finally, the pseudocode given
in Algorithm 1 requires the knowledge of task boundaries to
update replay buffer using GradApprox; however, we can

103

also use streaming boundaries or regular intervals of data
samples as boundaries in practice to implement the GCR
algorithm, thereby making it task agnostic.

5. Experiment setup
We test the efficacy of our approach GCR by compar-

ing its performance with different state-of-the-art continual
learning baselines under different CL settings.

5.1. Continual Learning settings

We compare the performance of GCR with the baselines
considered in the following continual learning settings.
Offline Class-Incremental (Class-IL)–All data for the cur-
rent task is available for training with multiple learning
iterations. Previous tasks’ data are only partially avail-
able through the replay buffer. Offline Task-Incremental
(Task-IL) uses different output heads/ classifier layers for
different tasks, and needs a task identifier at inference time
to select the appropriate classifier. Online Streaming–Data
arrives in the form of long streams; the learner can iter-
ate only once on streaming data and multiple times on the
stored replay buffer.

5.2. Baselines

We consider the following continual learning methods
as baselines for a thorough evaluation of GCR perfor-
mance. ER-Experience replay, a rehearsal method with
random sampling in Memory-Retrieval and reservoir sam-
pling in Memory-Update. GEM-Gradient Episodic Mem-
ory, focus on minimizing negative backward transfer (catas-
trophic forgetting) by the efficient use of episodic mem-
ory. MIR-Maximally Interfered Retrieval, which retrieves
memory samples suffering from an increase in loss given
estimated parameters update for the current task. GSS-
Gradient-Based Sample Selection, which diversifies the
gradients of the samples in the replay memory. iCaRL-
incremental classifier and representation learning, which si-
multaneously learns classifiers and feature representation
in the class-incremental setting. DER++-Dark Experience
Replay, a strong baseline built upon Reservoir Sampling
that matches the network’s logits sampled throughout the
optimization trajectory, thus promoting consistency with its
past. We compare against ER, GEM, GSS, iCaRL, and
DER++baselines in the offline CL setting. Whereas for the
online streaming setting, we compare with MIR in addition
to all the above mentioned baselines.

5.3. Datasets

We work on the following datasets: Sequential CIFAR-
10, which splits the CIFAR-10 dataset [25] into 5 differ-
ent tasks with non-overlapping classes and 2 classes in each
task; Sequential CIFAR-100, obtained similarly by Cifar-

100 [25] into 5 tasks of 10 classes each, Sequential Tiny-
ImageNet which splits Tiny-ImageNet [34] into 10 tasks of
20 classes each, and Sequential ImageNet-1k which splits
ImageNet 1k [40] into 5 tasks of 200 classes each. For an
extended learning experiment, we also split Cifar-100 into
20 tasks of 5 classes each (see Results below).

5.4. Model architecture and other training details

We used ResNet18 as the base model architecture for all
datasets throughout all experiments. We use a minibatch
size of 32 for both the current task data and the replay buffer.
We use a standard stochastic gradient descent (SGD) opti-
mizer without any learning rate scheduler. Other parameter
values that are not explicitly mentioned are hyperparame-
ters, and we calculate the best performing values for each
run using hyperparameter tuning. Details of grid search and
selected values are added in the supplementary material.

5.5. Evaluation

Following previous work [6], we select hyperparameters
by performing a grid search on validation data obtained by
splitting 10% of training data. In all comparisons, the re-
spective models are trained with chosen hyperparameters on
the training data, and model accuracy is evaluated on a sep-
arate test dataset. This procedure is repeated 15 times with
different random seeds controlling weight initialization and
subsequent data randomization. We present the mean ac-
curacy along with the standard error of the mean. We also
present the forgetting metric (F) [11], which measures how
much the accuracy of learnt tasks decrease over time as the
continual models tries to learn subsequent tasks. Since all
models within a comparison are trained on the same set of
random seeds, we use paired t-tests to determine the statis-
tical significance of any differences in metrics, evaluated at
p < 0.05 confidence threshold.

6. Results
6.1. Offline Continual Learning

Table 1 shows the average accuracy of various continual
learning methods at the end of tasks for Cifar-10, Cifar-
100 and Tiny-ImageNet for different buffer sizes. Mod-
els are trained for 50 epochs for Cifar-10 and Cifar-100.
Epochs are increased to 100 for Tiny-ImageNet, which is
commonly done for harder datasets. The candidate pool size
in GCR is kept equal to the buffer size for all experiments.

In the Class-IL setting, GCR outperforms other methods
with gains of roughly 1-5% that are statistically significant.
For S-Cifar-100, for buffer sizes of 500 and 2000, the dif-
ference is more than 4.5%. Among the baselines consid-
ered, only DER++ appears close; this can be attributed to
the usage of distillation loss proposed by DER++, which
other methods do not use. S-TinyImageNet is a challenging

104

S-Cifar-10 S-Cifar-100 S-TinyImageNet
Setting Method K=200 K=500 K=2000 K=200 K=500 K=2000 K=200 K=500 K=2000

Class-IL

ER 49.16±2.08 62.03±1.70 77.13±0.87 21.78±0.48 27.66±0.61 42.80±0.49 8.65±0.16 10.05±0.28 18.19±0.47
GEM 29.99±3.92 29.45±5.64 27.2±4.5 20.75±0.66 25.54±0.65 37.56±0.87 - - -
GSS 38.62±3.59 48.97±3.25 60.40±4.92 19.42±0.29 21.92±0.34 27.07±0.25 8.57±0.13 9.63±0.14 11.94±0.17
iCARL 32.44±0.93 34.95±1.23 33.57±1.65 28.0±0.91 33.25±1.25 42.19±2.42 5.5±0.52 11.0±0.55 18.1±1.13
DER 63.69±2.35 72.15±1.31 81.00±0.97 31.23±1.38 41.36±1.76 55.45±0.86 13.22±0.92 19.05±1.32 31.53±0.87
GCR 64.84±1.63 74.69±0.85 83.97±0.58 33.69±1.4 45.91±1.3 60.09±0.72 13.05±0.91 19.66±0.68 35.68±0.52

Task-IL

ER 91.92±1.01 93.82±0.41 96.01±0.28 60.19±1.01 66.23±1.52 74.67±1.2 38.83±1.15 47.86±0.87 62.04±0.7
GEM 88.67±1.76 92.33±0.8 94.34±1.31 58.84±1.0 66.31±0.86 74.93±0.6 - - -
GSS 90.0±1.58 91.73±1.18 93.54±1.32 55.38±1.34 60.28±1.18 66.88±0.88 31.77±1.34 36.52±0.91 43.75±0.83
iCARL 74.59±1.24 75.63±1.42 76.97±1.04 51.43±1.47 58.16±1.76 67.95±2.69 22.89±1.83 35.86±1.07 49.07±2.0
DER 91.91±0.51 93.96±0.37 95.43±0.26 63.09±1.09 71.73±0.74 78.73±0.61 42.27±0.9 53.32±0.92 64.86±0.48
GCR 90.8±1.05 94.44±0.32 96.32±0.18 64.24±0.83 71.64±2.1 80.22±0.49 42.11±1.01 52.99±0.89 66.7±0.59

Table 1. Offline Class-IL and Task-IL Continual Learning. See text for details. Numbers represent mean ± SEM of model test accuracy
over 15 runs. Best-performing models in each column are bolded (paired t-test, p < 0.05). Subsequent tables follow the same style.

S-Cifar-10 S-Cifar-100 S-TinyImageNet
Setting Method K=200 K=500 K=2000 K=200 K=500 K=2000 K=200 K=500 K=2000

Class-IL DER 35.79±2.59 24.02±1.63 12.92±1.1 62.72±2.69 49.07±2.54 28.18±1.93 64.83±1.48 59.95±2.31 39.83±1.15
GCR 32.75±2.67 19.27±1.48 8.23±1.02 57.65±2.48 39.2±2.84 19.29±1.83 65.29±1.73 56.4±1.08 32.45±1.79

Task-IL DER 6.08±0.7 3.72±0.55 1.95±0.32 25.98±1.55 25.98±1.55 7.37±0.85 40.43±1.05 28.21±0.97 15.08±0.49
GCR 7.38±1.02 3.14±0.36 1.24±0.27 24.12±1.17 15.07±1.88 5.75±0.72 40.36±1.08 27.88±1.19 13.1±0.57

Table 2. Forgetting metric (lower is better) in Offline Class-IL and Task-IL Continual Learning. For simplicity, we only present numbers
for the two best-performing algorithms–DER and GCR (ours). Full table in appendix.

dataset for continual learning, and both DER++ and GCR
show significant improvements over alternative approaches.

For the Task-IL setting, although GCR outperforms oth-
ers in many instances (e.g., in S-Cifar-100 for buffer size
2000, the difference is close to 1.5%), DER++and ER both
have accuracy reasonably close to that of GCR. We be-
lieve this is due to the substantially lower complexity of
the Task-IL setting; the CL model only needs to learn each
task in isolation. GSS gives comparable results on S-Cifar-
10, but its performance deteriorates for S-Cifar-100 and S-
TinyImageNet, suggesting that it does not scale to more dif-
ficult datasets.
Forgetting metric: Table 2 shows the forgetting metric (F)
for different settings and buffer sizes. This metric shows
that GCR performs better due to less catastrophic forgetting
than other replay based methods; the forgetting metric and
accuracy numbers in Table 1 covary closely.
Increased number of tasks: Table 3 shows accuracy and
forgetting metric on the S-Cifar-100 20-task data (5 classes
per task) to study the impact of increasing numbers of
rounds of gradient approximation / replay buffer updates.
GCR shows robust gains, especially at smaller buffer sizes
and in Class-incremental setting, which correspond to the
significantly harder continual learning problems. The wider
gap between DER++and GCR compared to Table 1 shows
that our coreset selection procedure accumulates value over
time, scaling effectively to 4x the number of tasks.
Gradient-based selection on high-res images: Finally, we
show that the gradient optimization works for significantly
more complex tasks or input characteristics, by demonstrat-

ing gains in the high-resolution S-ImageNet-1k task (see
Supplementary Table 10).

Generality of gradient-based coresets: We also show that
our gradient based coresets can be combined effectively
with other replay based approaches to improve their per-
formance. Refer Supplementary materials C for details.

6.2. Online Streaming Continual Learning

Table 4 compares GCR against baselines in the online
setting. Here, data is made available in streams of size 6250,
and the task boundary is blurred. Due to the streaming na-
ture of the data, models are only allowed a single epoch of
training on each stream. Since iCARL and GEM require
knowledge of task boundaries, we explicitly provided the
task identity while training those two baselines for a fair
comparison. In this setting, the performance gap between
GCR and baselines is much more apparent for low buffer
sizes, where the quality of examples stored plays a signif-
icant role. As buffer size increases, coverage can compen-
sate for suboptimal data selection. In fact, for S-Cifar-10
with a buffer size of 500, the gap between DER++ and
GCR is more than 5%. Forgetting metrics are reported
in Supplementary materials B due to space considerations.
Recent papers like [42] in online continual learning do not
compare against techniques in an offline setting that can be
straightforwardly adapted and are very competitive in the
online setting. We note that their reported numbers are sig-
nificantly lower even than DER++in Table 4; as a result,
we did not re-evaluate those techniques in our study.

105

Class-IL Task-IL
K=200 K=500 K=200 K=500

Method Acc (↑) F (↓) Acc (↑) F (↓) Acc (↑) F (↓) Acc (↑) F (↓)

ER 9.57±3.06 76.08±4.38 15.79±4.63 69.46±5.26 68.66±8.37 19.84±7.72 75.75±4.94 14.18±4.62
DER 15.64±2.59 64.34±4.33 26.61±4.94 51.27±7.57 66.87±3.91 21.08±3.68 77.41±4.15 13.05±4.17
GCR 21.02±1.99 51.82±4.04 31.93±4.86 42.1±6.6 68.86±2.98 20.11±3.07 78.09±3.33 12.97±3.15

Table 3. Offline Class-IL and Task-IL results on S-Cifar100 (20 Tasks) for 20 tasks with each task having 5 classes. GCR significantly
outperforms ER & DER, by larger margins than the 5-task setting, showing that GCR coreset selection scales effectively to more tasks.

S-Cifar-10 S-Cifar-100 S-TinyImageNet
Method K=200 K=500 K=2000 K=200 K=500 K=2000 K=200 K=500 K=2000

ER 32.63±5.11 43.32±4.75 49.31±7.45 11.72±1.25 14.94±1.69 20.78±1.48 4.36±1.02 6.69±0.53 11.3±1.45
GEM 16.81±1.17 17.73±0.98 20.35±2.44 10.42±1.66 9.18±1.8 12.38±3.81 5.15±0.71 6.14±1.01 9.56±2.63
GSS 33.83±3.95 40.59±4.2 41.7±4.56 12.31±0.57 13.84±0.57 16.24±0.8 5.82±0.38 6.78±0.41 8.44±0.48
iCARL 38.66±2.03 33.53±3.17 39.56±1.53 11.23±0.31 11.81±0.29 12.28±0.39 4.39±0.19 5.36±0.27 6.66±0.3
MIR 21.5±0.7 30.52±1.22 46.40±1.81 10.3±0.3 11.40±0.38 16.02±0.5 4.9±0.17 5.1±0.33 7.05±0.3
DER 38.26±5.08 45.56±6.02 49.9±7.55 10.68±2.03 14.43±2.44 24.83±1.58 4.81±0.57 8.49±0.48 15.97±0.95
GCR 42.26±7.6 51.17±3.5 52.3±7.01 14.88±0.94 18.89±1.5 22.47±2.01 6.19±0.36 8.77±0.5 11.83±1.26

Table 4. Online Continual Learning. See text for details.

Ablation Setting \ Buffer Size 500 2000
GCR (ours) 45.91±1.3 60.09±0.72
GCR w/ reservoir sampling 43.73±1.7 57.41±1.01
GCR w/ bilevel coresets 40.41±1.05 51.11±0.96
DER++ 41.36±1.76 55.45±0.86

GCR (ours) 45.91±1.3 60.09±0.72
GCR w/o SupCon Loss 45.54±1.39 58.35±0.78

Table 5. Ablation Study on Class-IL offline continual learn-
ing with S-Cifar-100 for two different buffer sizes. For buffer
size=2000, all pairwise differences were statistically significant
with p < 1e− 3.

6.3. Ablation studies

Table 5 shows the performance of GCR with the coreset
selection method being replaced by reservoir sampling [6]
and bilevel coresets [4] (rows 2, 3 respectively). Shown
for comparison is DER++, which uses reservoir sampling,
and also does not have the supervised contrastive loss used
in our GCR formulation. We see that bilevel coresets per-
forms worse than DER++, and worse even than reservoir
sampling, and GCR clearly outperforms. In similar vein,
rows 5, 6 compare GCR with and without supervised con-
trastive loss, showing that SupCon contributes clear, addi-
tional value. All pairwise comparisons for buffer size 2000
were statistically significant with p < 1e− 3.

7. Conclusion, Limitations, and Future Work
We presented GCR, a gradient-based coreset selection

method for replay-based continual learning in which we
propose gradient approximation as an optimization crite-
rion for selecting coresets, building on recent advances in
supervised learning settings [20]. We integrate this objec-
tive into the continual learning workflow in selecting and
updating replay buffers for future training. We also include
a supervised representation learning loss [19] in our CL

objective, enhancing the learned representations over the
model’s lifetime. Extensive experiments across datasets,
replay buffer sizes, and CL settings (offline/online, class-
IL/task-IL) show that GCR significantly outperforms previ-
ous approaches in comparable settings, to a degree of 2-4%
accuracy in offline settings and up to 5% in online settings.
Ablation studies show that the GCR coreset selection objec-
tive outperforms previous best selection mechanisms [4, 6],
and the representation loss also independently contributes to
performance gains. Our coreset selection approach scales
well, providing increasingly significant gains as the num-
ber of tasks increases, according to experiments with a high
number of tasks and image complexity. We demonstrate
that the core ideas of GCR apply to offline and online set-
tings (typically studied separately) by combining them. We
hope that further cross-fertilization of ideas will continue to
occur. A challenge remains, however, in integrating GCR
with previous ideas in the field (e.g., maintaining exem-
plars (iCaRL [36]), function regularization [37], and self-
supervision). In addition, we simplify our candidate selec-
tion by using a throw-away candidate buffer, which adds
memory overhead that may be problematic in online CL. In
the future, we will work on developing streaming coreset
selection mechanisms to address these challenges.

8. Acknowledgments and Funding

We thank the CVPR area chairs and anonymous re-
viewers for their constructive comments on this paper. RI
and KK were supported by the National Science Founda-
tion(NSF) under Grant Number 2106937, a startup grant
from UT Dallas, as well as Google and Adobe awards. The
opinions, findings, conclusions, and recommendations ex-
pressed in this material are those of the author(s). They
do not necessarily reflect the views of the National Science
Foundation, Google, and Adobe.

106

References

[1] Tameem Adel, Han Zhao, and Richard E. Turner. Contin-
ual learning with adaptive weights (claw). In International
Conference on Learning Representations, 2020. 2

[2] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-
rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-
Caccia. Online continual learning with maximal interfered
retrieval. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 11849–
11860. Curran Associates, Inc., 2019. 2

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. NeurIPS, pages 11816–11825, 2019. 1, 2

[4] Zalán Borsos, Mojmı́r Mutný, and Andreas Krause. Coresets
via bilevel optimization for continual learning and streaming.
arXiv preprint arXiv:2006.03875, 2020. 1, 2, 8

[5] Léon Bottou. On-Line Learning and Stochastic Approxima-
tions, page 9–42. Cambridge University Press, USA, 1999.
3

[6] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and SIMONE CALDERARA. Dark experience for
general continual learning: a strong, simple baseline. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 15920–15930. Curran Asso-
ciates, Inc., 2020. 1, 2, 3, 4, 6, 8

[7] Trevor Campbell and Boyan Beronov. Sparse variational in-
ference: Bayesian coresets from scratch. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. 2

[8] Trevor Campbell and Tamara Broderick. Bayesian coreset
construction via greedy iterative geodesic ascent. In Jen-
nifer G. Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Re-
search, pages 697–705. PMLR, 2018. 2

[9] Trevor Campbell and Tamara Broderick. Automated scalable
bayesian inference via hilbert coresets. J. Mach. Learn. Res.,
20(1):551–588, jan 2019. 2

[10] Sungmin Cha, Hsiang Hsu, Flávio P. Calmon, and Taesup
Moon. CPR: classifier-projection regularization for contin-
ual learning. ICLR 2021, 2021. 2

[11] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 532–547, 2018. 6

[12] Arslan Chaudhry, Ranzato Marc’Aurelio, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. In 7th International Conference on Learning Repre-
sentations, ICLR 2019. International Conference on Learn-
ing Representations, ICLR, 2019. 2

[13] Andrea Cossu, Antonio Carta, and Davide Bacciu. Continual
learning with gated incremental memories for sequential data
processing. In IJCNN 2020, pages 1–8, 2020. 2

[14] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleŝ Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying for-
getting in classification tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021. 2

[15] Dan Feldman. Core-sets: Updated survey. In Sampling Tech-
niques for Supervised or Unsupervised Tasks, pages 23–44.
Springer, 2020. 2

[16] Sariel Har-Peled and Soham Mazumdar. On coresets for k-
means and k-median clustering. In Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, pages
291–300, 2004. 2

[17] Jonathan Huggins, Trevor Campbell, and Tamara Broderick.
Coresets for scalable bayesian logistic regression. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016. 2

[18] Steven CY Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-
Hung Chen, Yi-Ming Chan, and Chu-Song Chen. Compact-
ing, picking and growing for unforgetting continual learning.
NeurIPS 2020, 2020. 1, 2

[19] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. In NeurIPS
2020, volume 33, 2020. 2, 5, 8

[20] Krishnateja Killamsetty, Durga S, Ganesh Ramakrishnan,
Abir De, and Rishabh Iyer. Grad-match: Gradient matching
based data subset selection for efficient deep model train-
ing. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research,
pages 5464–5474. PMLR, 18–24 Jul 2021. 2, 4, 8

[21] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh
Ramakrishnan, and Rishabh Iyer. Glister: Generalization
based data subset selection for efficient and robust learning.
In AAAI, 2021. 2

[22] Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and
Rishabh K Iyer. RETRIEVE: Coreset selection for efficient
and robust semi-supervised learning. In A. Beygelzimer, Y.
Dauphin, P. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems, 2021. 2

[23] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 1

[24] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, 2017. 2

107

[25] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 6

[26] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha,
and Byoung-Tak Zhang. Overcoming catastrophic for-
getting by incremental moment matching. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 2

[27] Oliver Lemke and Bettina G. Keller. Density-based cluster
algorithms for the identification of core sets. The Journal of
chemical physics, 145 16:164104, 2016. 2

[28] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 40(12):2935–2947, 2018. 2

[29] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. Advances in neu-
ral information processing systems, 30:6467–6476, 2017. 2

[30] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pages 109–165. Elsevier, 1989. 1

[31] Baharan Mirzasoleiman, Jeff A. Bilmes, and Jure Leskovec.
Coresets for data-efficient training of machine learning mod-
els. In ICML, 2020. 2

[32] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec.
Coresets for robust training of deep neural networks against
noisy labels. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 11465–11477. Curran
Associates, Inc., 2020. 2

[33] Balas K. Natarajan. Sparse approximate solutions to linear
systems. SIAM J. Comput., 24:227–234, 1995. 4

[34] H. Pouransari and Saman Ghili. Tiny imagenet visual recog-
nition challenge. 2014. 6

[35] Roger Ratcliff. Connectionist models of recognition mem-
ory: Constraints imposed by learning and forgetting func-
tions. Psychological Review, pages 285–308, 1990. 2

[36] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
2001–2010, 2017. 2, 8, 11

[37] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing
interference. In International Conference on Learning Rep-
resentations, 2018. 2, 8, 11

[38] Anthony Robins. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 7(2):123–146, 1995.
2, 3, 4, 5

[39] Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng,
Yee Whye Teh, and Yarin Gal. Continual Learning via
Function-Space Variational Inference: A Unifying View.
ICML’21 Workshop on subset selection in ML, 2021. 1, 2

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 6, 11

[41] Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. Overcoming catastrophic forgetting with hard
attention to the task. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 4548–4557. PMLR, 10–15
Jul 2018. 2

[42] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott San-
ner, Hyunwoo Kim, and Jongseong Jang. Online class-
incremental continual learning with adversarial shapley
value. 2021. 2, 7

[43] Ghada Sokar, Decebal Constantin Mocanu, and Mykola
Pechenizkiy. Spacenet: Make free space for continual learn-
ing. Neurocomputing, 439:1–11, 2021. 1, 2

[44] Sebastian Thrun and Tom M Mitchell. Lifelong robot learn-
ing. Robotics and autonomous systems, 15(1-2):25–46,
1995. 1

[45] Gido M. van de Ven and A. Tolias. Three scenarios for con-
tinual learning. ArXiv, abs/1904.07734, 2019. 2

[46] Jeffrey S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, Mar. 1985. 5

[47] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju
Hwang. Online coreset selection for rehearsal-based contin-
ual learning. arXiv preprint arXiv:2106.01085, 2021. 1, 2,
11

[48] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In Proceedings
of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 3987–3995. JMLR.org, 2017. 2

[49] Jacky Zhang, Rajiv Khanna, Anastasios Kyrillidis, and
Sanmi Koyejo. Bayesian coresets: Revisiting the nonconvex
optimization perspective. In Arindam Banerjee and Kenji
Fukumizu, editors, Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pages
2782–2790. PMLR, 13–15 Apr 2021. 2

108

