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Abstract

Deep neural networks are easily fooled by small pertur-
bations known as adversarial attacks. Adversarial Training
(AT) is a technique that approximately solves a robust op-
timization problem to minimize the worst-case loss and is
widely regarded as the most effective defense against such
attacks. Due to the high computation time for generating
strong adversarial examples in the AT process, single-step
approaches have been proposed to reduce training time.
However, these methods suffer from catastrophic overfitting
where adversarial accuracy drops during training, and al-
though improvements have been proposed, they increase
training time and robustness is far from that of multi-step AT.
We develop a theoretical framework for adversarial training
with FW optimization (FW-AT) that reveals a geometric con-
nection between the loss landscape and the distortion of l-inf
FW attacks (the attack’s I-2 norm). Specifically, we analyti-
cally show that high distortion of FW attacks is equivalent to
small gradient variation along the attack path. It is then ex-
perimentally demonstrated on various deep neural network
architectures that l-inf attacks against robust models achieve
near maximal -2 distortion, while standard networks have
lower distortion. Furthermore, it is experimentally shown
that catastrophic overfitting is strongly correlated with low
distortion of FW attacks. This mathematical transparency
differentiates FW from the more popular Projected Gradi-
ent Descent (PGD) optimization. To demonstrate the utility
of our theoretical framework we develop FW-AT-Adapt, a
novel adversarial training algorithm which uses a simple
distortion measure to adapt the number of attack steps dur-
ing training to increase efficiency without compromising
robustness. FW-AT-Adapt provides training time on par with
single-step fast AT methods and improves closing the gap
between fast AT methods and multi-step PGD-AT with mini-
mal loss in adversarial accuracy in white-box and black-box
settings.

“Equal contributions.

jay.roberts@ll.mit.edu

1. Introduction

Deep neural networks (DNN) achieve excellent perfor-
mance across various domains [18]. As these models are
deployed across industries (e.g., healthcare or autonomous
driving), concerns of robustness and reliability become in-
creasingly important. Several organizations have identified
important principles of artificial intelligence (Al) that in-
clude the notions of reliability and transparency [19,21,24].

One issue of large capacity models such as DNNs is that
small, carefully chosen input perturbations, known as adver-
sarial perturbations, can lead to incorrect predictions [12].
Various enhancement methods have been proposed to de-
fend against adversarial perturbations [16,20,22,28]. One
of the best performing algorithms is adversarial training
(AT) [20], which is formulated as a robust optimization
problem [31]. Computation of optimal adversarial perturba-
tions is NP-hard [36] and approximate methods are used to
solve the inner maximization. The most popular approximate
method that has been proven to be successful is projected gra-
dient descent (PGD) [10]. Frank-Wolfe (FW) optimization
has been recently proposed in [8] and was shown to effec-
tively fool standard networks with less distortion, and can
be efficiently used to generate sparse counterfactual pertur-
bations to explain model predictions and visualize principal
class features [27].

Since PGD has proven to be the main algorithm for adver-
sarially robust deep learning, reducing its high computational
cost without sacrificing performance, i.e. fast adversarial
training, is a primary issue. Various methods have been
proposed based on using a single PGD step, known as Fast
Gradient Sign Method (FGSM) [37] but fail for large pertur-
bations. [37] identified that FGSM-based training achieves
some robustness initially during training but robustness dras-
tically drops within an epoch, a phenomenon known as catas-
trophic overfitting (CO). While some methods have been
proposed to ameliorate this problem [2, 14,30], the training
time suffers as a result and/or robustness is not on par with
multi-step PGD-AT.

In this paper, we use the Frank-Wolfe optimization to
derive a relationship between the {5 norm of /., adversarial
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Figure 1. Low (high) distortion of attacks d (black) is equivalent to
high (low) angular spread of signed gradients g; = e-sgn(VsL(z+
81,v)) (all with ||gi|]2 = ev/d) computed over K steps along
attack path (K = 5 here). Proposition 1 expresses FW adversarial
perturbations § as convex combinations of signed gradients along
the attack path. This core concept is quantified in Theorem 1, and
forms the basis for the development of adaptive adversarial training
algorithm presented in Section 4.

perturbations (distortion) and the geometry of the loss land-
scape (see Fig. 1). Using this theory and empirical studies
we show that this distortion can be used as a signal for CO
and propose a fast adversarial training algorithm based on an
adaptive Frank-Wolfe adversarial training (FW-AT-ADAPT
) method (see Fig. 2). This method yields training times
on par with single step methods without suffering from CO,
outperforms numerous single step methods, and begins to
close the gap between fast adversarial training methods and
multi-step PGD adversarial training.

Our main contributions are summarized below:

* We demonstrate empirically that FW attacks against
robust models achieve near-maximal distortion across
a variety of network architectures.

* We empirically show that distortion of FW attacks,
even with only 2 steps, are strongly correlated with
catastrophic overfitting.

* Theoretical guarantees are derived that relate distortion
of FW attacks to the gradient variation along the attack
path and which imply that high distortion attacks com-
puted with several steps result in diminishing increases
to the loss.

* Inspired by the connection between distortion and
attack path gradient variation, we propose an adap-
tive step Frank-Wolfe adversarial training algo-
rithm, FW-AT-ADAPT , which achieves superior
robustness/training-time tradeoffs compared to single-
step AT and closes the gap between such methods and
multi-step AT variants when evaluated against strong
white- and black-box attacks.

FW-AT-Adapt
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Figure 2. Ilustration of concept behind FW-AT-ADAPT training
algorithm. At each epoch, distortion d is monitored across the
first B,, batches (here B,,, = 3). If the average distortion is less
than a threshold r, the current number of steps, K, is increased
by 2, to K + 2, (and if it is higher than a threshold r, the current
number of steps, K, is dropped by a factor of 2, to K /2) for the
remaining batches in the epoch. This process is repeated until
convergence and reduces the training time of adversarial training
without sacrificing robustness. Theorems 2 and 3 provide stability
guarantees for robust model weight updates in the high-distortion
regime.

2. Background and Previous Work

Consider (z;,y;) ~ D pairs of data examples drawn
from distribution D. The labels span C' classes. The neural
network function fy(-) maps input features into logits, where
0 are the model parameters. The predicted class label is given
by §(x) = argmax, fp .(z).

Adversarial Training. The prevalent way of training classi-
fiers is through empirical risk minimization (ERM):

Inein E(x,y)wp[ﬁ(%y; 9)} (D

where L is the usual cross-entropy loss.Adversarial ro-
bustness for a classifier fy is defined with respect to a met-
ric, here chosen as the £, metric associated with the ball
Bp(e) = {0 : ||0]|, < €}, as follows. A network is said to
be robust to adversarial perturbations of size (or strength)
€ at a given input example x iff §(z) = §(z + §) for all
d € B,(e), i.e., if the predicted label does not change for all
perturbations of size up to e. Training neural networks using
the ERM principle (1) gives high accuracy on test sets but
leaves the network vulnerable to adversarial attacks.

One of the most popular and effective defenses is adver-
sarial training (AT) [20] which, rather than using the ERM
principle, minimizes the adversarial risk

r%inE(x’y)ND max)ﬁ(x—i—é,y;H) . )

dEBy (€

This framework was extended in the TRADES algo-
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rithm [38] which proposes a modified loss function that
captures the clean and adversarial accuracy tradeoff. Local
Linearity Regularization (LLR) [25] uses an analogous ap-
proach where the adversary is chosen to maximally violate
the local linearity based on a first order approximation to
2).

To construct their adversarial attacks at a given input x
these defenses use Projected Gradient Descent (PGD) to ap-
proximate the constrained inner maximization using a fixed
number of steps. PGD computes adversarial perturbations
using the iterative updates:

Ok+1 = Pp,(¢) (0 + aVsL(z + 6k, y; 0)) 3)

where Pp (o) (z) = argmin,ep, () ||z — u|3 is the orthogo-
nal projection onto the constraint set. We refer to adversarial
training using K step PGD as PGD(K)-AT.

The computational cost of this method is dominated by
the number of steps used to approximate the inner maximiza-
tion, since a K step PGD approximation to the maximization
involves K forward-backward propagations through the net-
work. While using fewer PGD steps can lower this cost,
these amount to weaker attacks which can lead to gradient
obfuscation [23, 34], a phenomenon where networks learn
to defend against gradient-based attacks by making the loss
landscape highly non-linear, and less robust models. Many
defenses have been shown to be evaded by newer attacks,
while adversarial training has been demonstrated to maintain
state-of-the-art robustness [3, | 0]. This performance has only
been improved upon via semi-supervised methods [7,33].
Fast Adversarial Training. Various fast adversarial train-
ing methods have been proposed that use fewer PGD steps.
In [37] a single step of PGD is used, known as Fast Gradi-
ent Sign Method (FGSM), together with random initializa-
tions within the constraint ball, called FGSM-RAND, and
achieves a good level of robustness at a lower computational
cost. In [2] it was shown that the random initialization of
FGSM-RAND can improve the linear approximation qual-
ity of the inner maximization, but still suffers from catas-
trophic overfitting (CO), a phenomenon whereby the model
achieves strong robustness to the weaker training attack but
is completely fooled by stronger multi-step attacks, which
the authors overcome via a regularizer which penalizes gra-
dient misalignment and we refer to as FGSM-GA. However,
the double backpropagation needed for this method resulted
in significantly higher training times than FGSM-RAND.
In [14] the authors demonstrate that CO was the result of
nonlinearities in the loss which resulted in higher losses on
the interior of the ray connecting « and x+ 4, thereby making
them more susceptible to multi-step attacks. To combat this,
the authors adapted the size of the FGSM step by sampling
along this ray which we refer to as FGSM-ADAPT. The free
adversarial training method of [30], FREE-AT, recycles the
gradient information computed when updating model param-

eters through minibatch replay. The robustness performance
of all these single-step AT variants lag far behind that of the
multi-step PGD-AT.

Additional methods adapt the number of steps used to

approximate adversarial attacks. Curriculum learning [5]
monitors adversarial performance during training and in-
creases the number of attack steps as performance improves.
Improving on this work the authors in [35] use a Frank-Wolfe
convergence criterion to adapt the number of attack steps at
a given input. Both of these methods use PGD to generate
adversarial examples and do not report improved training
times.
Frank-Wolfe Adversarial Attack. The Frank-Wolfe (FW)
optimization algorithm has its origins in convex optimiza-
tion though recently has been shown to perform well in more
general settings [1 1, 13]. The method first optimizes a lin-
ear approximation to the original problem, called a Linear
Maximization Oracle (LMO)

LMO = §;, = argmax (5, VsL(z + 0k, y)) -
SEB,(€)

After calling the LMO, FW takes a step using a convex
combination with the current iterate, 81 = 05 +x (0 — k)
where vy, € [0, 1] is the step size. Optimizing step sizes
can be found at additional computational cost; however, in
practice an effective choice is is v, = ¢/(c + k) for some
c>1.

The FW sub-problem can be solved exactly for any £,
and the optimal d;, is given component-wise by 8z ; =
€ op(VLy ), where

%
Yk

€ p=1
VL a/p
6y (VL) = sen(VLy.,) W l<p<oo,
q
1, p =00

“)
VL = VsL(x + 0,y), and 1/p+ 1/qg = 1. Forp =
1, if = argmax; |VLy ;| and e'* is equal to 1 for the i -
th component and zero otherwise. FW does not require a
projection onto the £, ball which is non-trivial for p not
in {2, oo}. For the special case of /., attacks, the optimal
solution becomes the the Fast Gradient Sign Method (FGSM)
[12].

Algorithm 1 FW-Attack(z, y; K, vk, p)

Input: Model fy, input batch (x, y), max perturbation e,
step schedule vy, steps K.
0=0
for 0 < k< K do
0= (1 =)0+ € pp(VsL(fo(x +0)))
end for
Return: o
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Figure 3. Kernel density estimates of the distribution of
16]|2/ (ev/d) attacks computed using FW(20) with e = 8/255
against standard and robust models across three architectures.

Our contributions. We present Frank Wolfe Adversarial
Training (FW-AT) which replaces the PGD inner optimiza-
tion with a Frank-Wolfe optimizer. FW-AT achieves similar
robustness as its PGD counterpart. Using a closed form
expression for the FW attack path, we derive a geometric re-
lationship between distortion of the attack and loss gradient
variation along the attack path. This key insight leads to a
simple modification of FW-AT where the step size at each
epoch is adapted based on the /5 distortion of the attacks
and is shown to reduce training time while providing strong
robustness without suffering from catastrophic overfitting.

Although our work shares some aspects with FGSM-GA
and FGSM-ADAPT it has several distinguishing features.
Firstly, both methods are variants on FGSM which attempt to
fix CO. The former by penalizing gradient misalignment and
the latter by sampling steps along the FGSM direction. Our
method takes multiple steps which allows it to reach points
near the original FGSM direction and so avoids CO. More-
over, via our distortion analysis we show that our multi-step
method can both monitor and regularize gradient variation
all while simultaneously using these attacks for adversar-
ial training. This efficient use of multi-step attacks allows
us to obtain superior robustness training time tradeoffs than
either of these prior methods.

3. Distortion of Frank-Wolfe Attacks

Though all ¢, attacks must remain in B,(¢) their ¢,
norms, for ¢ # p, can be quite different. This is referred to as
distortion and in particular for /., attacks we are interested
in insights /5 distortion can give us into the behavior of the
attack and FW-AT. In this setting, the maximal distortion
possible of a d dimensional input is e\/d, and we refer to
[16]|2/(ev/d) as the distortion ratio (or simply distortion) of
the attack J. In this section, we demonstrate empirically
the connection between distortion and robustness and then
derive theoretical guarantees on loss gradient variation based
on distortion bounds.
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Figure 4. (a) Adversarial accuracy against PGD(10) attacks (Blue)
and average distortion (Tan) of FW(10) attacks on CIFAR-10
validation set for FGSM and FW (10) adversarial training at e =
8/255. Steep drops in adversarial accuracy signaling catastrophic
overfitting (CO) are accompanied by drops in distortion. (b) Kernel
density estimates of distortion of a FW(2) attack. As CO occurs
the distribution of distortion shifts and tightens on low values.

3.1. FW Attacks Against Robust Models are Highly
Distorted

Due to its exploitation of constraint convexity one may
expect /, FW-attacks to remain near the interior and thus
have low distortion. This was observed for standard models
in [8] but robust models were not considered. Here we
analyze the distortion ratio of FW(20) for /., constrained
attacks with radius ¢ = 8/255 on three architectures trained
with ERM (Eq. 1) andPGD(10)-AT (Eq. 2) on CIFAR-10.

Figure 3 shows that, while the adversarial perturbations
of standard models have small distortion, robust models
produce attacks that are nearly maximally distorted. In
both cases attacks are near maximal in £, norm. This phe-
nomenon occurs across three different architectures and is
further supported by our theory below. We note that for PGD
attacks, the distortion ratio can be trivially maximized for
large step size o, and thus this connection between distortion
and robustness does not exist for PGD optimization.

3.2. Catastrophic Overfitting is Signaled by Distor-
tion Drops

Many fast AT methods rely on a single gradient step
which can lead to catastrophic overfitting (CO), a phe-
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nomenon where the model’s performance against multi-step
attacks converges to a high value but then suddenly plum-
mets. This indicates that the model has overfit its weights to
the single step training attack.We demonstrate this by train-
ing with FGSM at strength ¢ = 8/255 for 30 epochs and
plotting its validation accuracy against PGD(10) attacks and
average distortion computed with FW(10) attacks. Figure
4a demonstrates the FGSM’s descent into CO, where we
observe that the drop in adversarial accuracy is mirrored by a
drop in the distortion of the multi-step attack. In the case of
FW(10)-AT the distortion remains high throughout training.

In Figure 4b we show this behavior is present even when
evaluated against the weaker FW(2) attack. Here we plot the
kernel density estimate of distortion for a random sample
of 1K validation CIFAR-10 images. At the model’s peak
robustness (Epoch 15) distortion is high, and as the model
begins to suffer from CO (~ Epoch 23) the distribution
shifts towards lower values until it strongly accumulates at
low values when CO has fully taken effect.

Most interestingly about this result is that FW(2) is able to
detect CO through its distortion without needing to fool
the model (it had a success rate of only 16%). This points
to a strong connection between distortion of FW attacks and
robustness which make rigorous below.

3.3. Multi-step High Distortion Attacks are Ineffi-
cient

Our main tool in analyzing the distortion of FW attacks,
and a prime reason FW-AT is more mathematically trans-
parent than PGD-AT, is a representation of the FW attack
as a convex combination of the LMO iterates. We refer to
the steps taken during the optimization as the attack path.
Proofs are included in the Appendix.

Proposition 1. The FW attack with step sizes i, yields the
following adversarial perturbation after K steps

K-1

O =€ Z dp(VsL(z + 61, y)) ®)

=0

where a; = Hfi?il(l — ;) € [0,1] are non-decreasing
in l, and sum to unity.

Proposition 1 shows that the FW adversarial perturbation
may be expressed as a convex combination of the signed
loss gradients for p = oo, and scaled loss gradients for
p € [1,00). Using this representation we can deduce connec-
tions between the distortion of the attack and the geometric
properties of the attack path.

Theorem 1. Consider a K step (., FW Attack. Let cos 3
be the directional cosine between sgn(VsL(x + 0;,y)) and
sgn(VsL(z+6;5,y)). The maximal U distortion ratio of the

adversarial perturbation § is:

|05 |2
evd

= /1 —2Zalaj(1—cosﬁlj) (6)

I<j
We can summarize the spirit of Theorem 1 as:

Higher distortion is equivalent to lower gradient variation
throughout the attack path.

Concretely, the accumulation of sign changes between
every step of the attack decreases distortion. In the extreme
case of maximally distorted attacks, this implies that the
attack is at the corner of the /., ball which could have had
no changes to the sign of its gradient between any step
on the attack path. Therefore each step was constant and
the attack is equivalent to a FW(1) attack or FGSM. This
is graphically illustrated in Figure 1. Following this logic
further, we are able to quantify the distance between different
step attacks in terms of the final distortion.

Theorem 2. Let the same conditions as Theorem I hold
and K > 1. Assume the maximal {5 distortion ratio of the
adversarial perturbation satisfies:

|6k |2
712 -~ 1=
evd ~ g

for some n € (0, 1). Then for all intermediate perturbations
Ok With kg =1,..., K:

[0 — ko2
Lt 7
6\/& = k)o,K\/ﬁ ( )
where  Ci i = K—-1 and Ciyyx =
K—1 2 5~k (5512
et

We can summarize the spirit of Theorem 2 as:
Multi-step attacks with high distortion are inefficient.

This suggests that during FW-AT using a large number
of steps to approximate the adversarial risk results in dimin-
ishing returns once high distortion of the attacks is attained
since the final step will be close to the early steps. The other
direction is true as well,

Models attacked with low distortion perturbations can
benefit from training with more steps.

Intuitively, adversarial attacks with low distortion imply
the loss can be maximized at a lower ¢4 radius €’ Vd < eV/d
than the target radius. These loss landscape irregularities
are associated with CO as discussed in Section 3.2. Inspired
by these two insights we design a FW-AT algorithm which
adapts the number of attack steps used in the optimization
based on the distortion of a FW(2) attack.
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4. Frank-Wolfe Adversarial Training Algo-
rithm

Pseudocode for the Adaptive Frank-Wolfe adversarial
training method (FW-AT-ADAPT ) is provided in Algorithm
2. The algorithm is graphically depicted in Figure 2 and
makes the following modifications to PGD-AT:

(i) Adversarial attacks are computed using a FW optimiza-
tion scheme (Alg. 1)

(ii) For the first B, batches of each epoch, the distortion
of a FW(2) attack is monitored. If the mean distortion
across these batches is above a threshold 7 then the
number of attack steps K is dropped to K/2 for the
remainder of the epoch. Alternatively if it is lower than
r then K is incremented by 2.

Algorithm 2 Epoch of FW-AT-ADAPT

Input: Model fy, data D, epoch ¢, max batch size | B|,
max perturbation e, step schedule ~;, learning rate 7,
previous epoch steps K, max steps K, max distortion
ratio r, number of monitoring batches B,,.
Result: Robust model weights 6, current steps K.
Ny, dp, =0
K=2 > Check FW(2) Distortion
for each batch (z,y) ~ D do
0 = FW-Attack(z, y; K, v, p = 00)
dm = dm + ||5||2/(6\/3)
Ny =Ny +1
if N, = B,,, then
ifd,,/B,, > r then
K = max(1, | Ko/2])
else
K = min(K;, Ko + 2)
end if
end if
0=0-— ntﬁ ZiGB VoL(fo(xs + i), ys)
end for

> Check distortion

Next we analyze the effect of using fewer steps on adver-
sarial training weight updates in the high distortion setting.
Our analysis shows that in this setting, AT weight updates
are minimally affected and thus our method does not sac-
rifice robustness. While loss functions £(fy(x + §),y) in
deep neural networks are non-convex in general, we make
the following assumption.

Assumption 1. The function L has L-Lipschitz continuous
gradients on By (¢), i.e., ||VoL(fo(x+u),y) — Vo Ll(fo(x+
v), )|l < Lllu = f], Vu, v € By(e).

Assumption 1 is a standard assumption that has been made
in several prior works [32,35]. Recent works have shown

that the loss is semi-smooth in over-parameterized [ 1, 6,39]
deep neural networks, and batch normalization provides
favorable Lipschitz continuity properties [29]. This helps
justify Assumption 1.

Theorem 3. Consider a batch update of FW-AT Algorithm
2 where the high distortion condition of Thm. 2 holds on
average on examples in a batch B, i.e. for some small
ne (0,1):

RIS A —
B2 wa 2V ®

icB

where 0;(K) denotes the K -step FW adversarial perturba-
tion for the i-th example in the batch B. Let the SGD model
weight gradient be given by:

9(60.8(K)) = o5 3 VoLlfolas +6,(5)).m)

i€EB

Given Assumption 1 holds, the model weights SGD update
using adversarial perturbations d i and Jy,, are bounded as:

19(8,3(K)) — g(8,6(ko))|l2 < LCho,ixv/1 - €Vd.  (9)

Bound (9) asserts that in the high distortion setting, the
gradients, and thus the weight updates, obtained by a high-
step FW attack are near those of a low-step FW attack.
Therefore it is expected to achieve a similar level of adver-
sarial robustness using the proposed adaptive algorithm. The
proof is included in the Appendix.

4.1. Choosing the Target Distortion Ratio

To provide intuition for the distortion ratio signal hyper-
parameter, r, we present the following corollary.

Corollary 1. (FW(2) Distortion Check) Let sy and sy be
the LMOs for the first two steps of a FW adversarial attack.
Then if s1 has k sign changes from sg the maximal distortion

of 61 is
16112 \/ 4k
=/1— =y (1 —

E\/g d ’71( 71)

Corollary 1 tells us that the distortion of FW(2) is a
function of the number of sign change ratio from the loss
gradient at x and at the FGSM attack. For example Figure
4b shows that CO models always have more than 30% sign
changes between iterates, whereas more robust can have as
few as 10% sign changes.

(10)

5. Experimental Results

We evaluate our models on the CIFAR-10 and CIFAR-100
datasets [15] for e = 8/255 and 16/255. All networks were
initialized with the weights of a pretrained standard model

55



then fine-tuned for 30 epochs via SGD optimization. The
learning rate was 0.1 (aside from FGSM-GA) and was then
decreased to 0.01 after 15 epochs. We record the time to train
the full 30 epochs (aside from FREE-AT). For FW-ADAPT
we choose 15 evenly spaced sign change ratios between 15
and 30% then set the distortion check based on Corollary 1.

Baselines. We compare against multi-step PGD(K)-AT
using a step size of 2.5¢/K and K = 2,3,5,7,10. Addi-
tionally, we compare against methods which use a single
gradient step in their defense. This includes FGSM-RAND,
and FGSM-ADAPT with a step size of € and a sweep of
checkpoints ¢ = 2, 3,4, 8. Although it arguably uses mul-
tiple steps due to minibatch replays and warm starting of
attacks we also include FREE-AT in this category, where we
sweep the number of minibatch replays m = 2, 3,4, 8,12
since it obtains comparable training times to other single
step methods. We place FGSM-GA in this category, even
though it requires additional gradient information to com-
pute its alignment regularization, since it still attacks with
one step. Our FW-ADAPT algorithm belongs to a separate
category as it aims to efficiently use multiple steps through
adaptation, thereby bridging the gap between fixed multi-
step and single-step methods.

FREE-AT training for 30 epochs would unfairly increase
its training time since the minibatch replay effectively multi-
plies the number of steps the mode takes. To address this we
tuned the number of epochs and minibatches to be near the
clean accuracy of competitor methods. Further, FGSM-GA
was unable to achieve high accuracy with a learning rate
starting at 0.1 and so had its learning rate set to 0.01.

Evaluation Metrics. Robustness is evaluated using a
strong white box attack, PGD(50) with step size of 2.5¢/50.
To ensure that we detect gradient masking we also evaluate
against AutoAttack (AA) [10], a hyperparameter-free attack
suite composed of multiple strong white and black box at-
tacks, making it a strong evaluation metric against gradient
masking.

Results. Figure 5 shows the results for parameter sweep
on CIFAR-10 of single-step and multi-step methods which
trained in less than 35 minutes. Each point represents a
different parameter, and the curves show the optimal per-
formance curve which is defined as parameters for which
there are none with higher AutoAttack accuracy that trained
faster. In general FW-ADAPT obtains superior robustness
vs. training time tradeoffs and in particular in the more diffi-
cult e = 16/255 we get substantial improvement over other
methods.

Comparisons at the endpoints of the performance curves
for each method are given in Table 1. We see FW-ADAPT is
able to close the gap between single and multi-step methods
in terms of robustness without sacrificing speed. In particular
we see in the e = 16/255 case single step methods struggle
in both clean and adversarial accuracy; whereas FW-ADAPT

g
s ]
2
s
2 FW-Adapt
[ ] PGD
Free
s m  FGSM-Adapt
= FGSM-Rand
FGSM-GA
5 0 15 i 2% 0
Time
(a) € = 8/255
=8 FW-Adapt e
PGD L e
@0 Free 4""_' =
FGSM-Adapt }.-C /,’
75 FGSM-Rand ¥ 4 -
FGSM-GA =
150 _-a
g k===
=T -
o 125 e
3 [ ]

(b) e = 16/255

Figure 5. AutoAttack performance vs. training times tradeoffs on
CIFAR-10 for various AT methods. Points represent individual
parameters of a method and curves are the optimal performance
tradeoffs. FW-ADAPT achieves superior tradeoffs for similar time
complexity methods.

is able to achieve similar training times with much higher
performance. This suggests that larger attack sizes present
a fundamental impediment to using single step methods.
Similar performance benefits are observed on the CIFAR-
100 dataset in Table 2.

6. Limitations

Our work focuses on obtaining a deeper understanding
of the theory behind FW-AT and establishing whether an
adaptive version of FW-AT, FW-AT-ADAPT , can offer
superior robustness / training time tradeoffs compared to
single-step and multi-step AT variants. We showed indeed
such superior tradeoffs exist. Future work may focus on
developing alternative adaptation strategies and criteria.

7. Conclusion

Adversarial training (AT) provide robustness against £,,-
norm adversarial perturbations computed using projected
gradient descent (PGD). Through the use of Frank-Wolfe
(FW) optimization for the inner maximization an interest-
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Method e = 8/255 Clean  PGD(50) AA  Time (min) Method e = 8/255 Clean PGD(50) AA  Time (min)
PGD(10)  82.31 50.11  45.38 49.8 PGD(10)  59.07 27.37  23.10 49.8
PGD(5) 8246 49.88 4546 28.3 PGD(2) 60.65 26.20 2199 15.3
PGD(2) 8342 4850 4412 153 FREE-AT (m =4) 60.16 2320 19.27 9.9
FREE-AT (m =2) 90.10 26.74  23.01 5.5 FGSM-GA (A =0.2) 56.53 20.02  16.15 31.5
FREE-AT (m = 12)  76.50 45.09 40.97 27.0 FGSM-ADAPT (c = 2) 49.28 20.19 1597 13.7
FGSM-GA (A =0.2) 77.99 41.44 3642 31.8 FGSM-RAND 50.20 20.63 16.47 11.0
- = 3. . 39. R
FOSM A ) B e g; o FW-ADAPT (r = 0.830)  61.12 2320 19.97 1.9
: . . . FW-ADAPT (r = 0.899)  60.60 2541 21.64 15.1
FW-ADAPT (r = 0.865) 83.31 45.81 41.80 11.5
FW-ADAPT (r = 0.900) 82.34 49.67 45.09 16.9 Method € = 16/255 Clean PGD(50) AA  Time (min)
X R PGD(10) 4049 16.46  11.30 49.8
=1
Method € 6/255 Clean PGD(50) AA  Time (min) PGD(5)  41.99 15.71 10.88 283
PGD(10) 63.17 3129  22.62 49.8 PGD(2) 33.17 10.54 7.14 15.3
PGD 1.72 . 22.27 28.2
Png; 23 21 gg 32 16.49 12 2 FREE-AT (m =4) 47.06 8.83 6.34 9.8
. . . . FGSM-GA (A =0.2) 37.04 7.88 4.67 322
FREE-AT (m =2) 57.69 5.00 3.27 5.5 FGSM-ADAPT (c = 2) 8.38 4.85 3.55 13.5
FREE-AT (m = 5) 35.05 15.94 12.77 12.0 FGSM-RAND 24.78 6.96 3.92 11.0
FGSM-GA (A :_0'5) 3337 22.72 15.09 31.6 FW-ADAPT (r = 0.830) 44.65 11.52 7.99 13.6
FGSM-ADAPT (¢ = 12)  33.18 18.82  14.99 22.5 FW-A — 0.887 40.91 1533 1047 24.0
FGSM-ADAPT (c = 2)  40.44 1732 1229 13.5 ~ADAPT (r = 0.887) : : : :
FGSM-RAND  56.82 2203 1427 11.0
FW-ADAPT (r = 0.830)  57.78 2554 1741 12.8 Tat;(le i’ : dve(risam.'l aceuracy C(fm;pmf.d with })GD(S%)’GADut%At'
FW-ADAPT (r = 0.887)  58.46 2957 21.06 24 tack (AA) and training time of baseline multi-step (first

Table 1. Adversarial accuracy computed with PGD(50), AutoAt-
tack (AA) and training time of baseline multi-step PGD (first
block), single-step (second block) and FW-ADAPT (third block).
Results for parameters at end points of performance curves, includ-
ing PGD(10), for CIFAR-10 dataset.

ing phenomenon occurs: FW attacks against robust models
result in higher /5 distortions than standard ones despite
achieving nearly the same /., distortion. We derive a theo-
retical connection between loss gradient alignment along the
attack path and the distortion of FW attacks which explains
this phenomenon. We provide theoretical and empirical evi-
dence that this distortion can signal catastrophic overfitting
in single-step fast AT models. Inspired by this connection,
we propose an adaptive Frank-Wolfe adversarial training
(FW-AT-ADAPT) algorithm that achieves robustness above
single-step baselines while maintaining competitive training
times particularly in the strong ¢, attack regime. This work
begins to close the gap between robustness training time
trade-offs of single-step and multi-step methods and hope
it will inspire future research on the connection between
Frank-Wolfe optimization and adversarial robustness.

Societal Impact Statement

As DNNs are increasingly being deployed for safety-
critical applications, such as healthcare, autonomous driving,
and biometrics, robustness against adversarial attacks is a
rising concern. Addressing this is critical to gain public trust
and avoid denial of opportunity. One of the most popular and
effective defenses is adversarial training (AT). However, the

block), single-step (second block) and FW-ADAPT (third block).
Results for select top-performing models, including PGD(10), for
CIFAR-100 dataset.

popular multi-step PGD optimization approach used in AT
cannot be easily analyzed to obtain insights into what type of
regularization AT induces, and it also requires multiple steps
in the inner maximization leading to slow training. To reduce
training time, single-step approaches have been proposed,
but are prone to catastrophic overfitting, leading to a false
sense of robustness. This can have severe consequences in
security applications. Our work improves the understanding
of AT via the lens of FW optimization and provides sim-
ple methods for efficient training of robust models without
compromising robustness.
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