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Abstract

In the era of deep learning, human pose estimation from
multiple cameras with unknown calibration has received
little attention to date. We show how to train a neural
model to perform this task with high precision and mini-
mal latency overhead. The proposed model takes into ac-
count joint location uncertainty due to occlusion from mul-
tiple views, and requires only 2D keypoint data for train-
ing. Our method outperforms both classical bundle adjust-
ment and weakly-supervised monocular 3D baselines on the
well-established Human3.6M dataset, as well as the more
challenging in-the-wild Ski-Pose PTZ dataset.

1. Introduction

We tackle the problem of estimating 3D coordinates of
human joints from RGB images captured using synchro-
nized (potentially moving) cameras with unknown posi-
tions, orientations, and intrinsic parameters. We addition-
ally assume having access to a training set with only 2D
positions of joints labeled on captured images.

Historically, real-time capture of the human 3D pose has
been undertaken only by large enterprises that could af-
ford expensive specialized motion capture equipment [18].
In principle, if camera calibrations are available [3], hu-
man body joints can be triangulated directly from camera-
space observations [26, 33]. One scenario in which cam-
era calibration cannot easily be estimated is sports capture,
in which close-ups of players are captured in front of low-
texture backgrounds, with wide-baseline, moving cameras.
Plain backgrounds preclude calibration via classical multi-
camera SfM [21], as not sufficiently many feature corre-
spondences can be detected across views; see Figure 1.

In this work, we propose a neural network to simulta-
neously predict 3D human and relative camera poses from
multiple views; see Figure 1. Our approach uses human
body joints as a source of information for camera calibra-
tion. As joints often become occluded, uncertainty must be
carefully accounted for, to avoid bad calibration and con-
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Figure 1. We show how to train a neural network that can ag-
gregate outputs of multiple single-view methods, takes prediction
uncertainty into consideration, has minimal latency overhead, and
requires only 2D supervision for training. Our method mimics the
structure of bundle-adjustment solvers, but using the joints of the
human body to drive camera calibration, and by implementing a
bundle-like solver with a simple feed-forward neural network.

sequent erroneous 3D pose predictions. As we assume a
synchronized multi-camera setup at test-time, our algorithm
should also be able to effectively aggregate information
from different viewpoints. Finally, our approach supervised
by 2D annotations alone, as ground-truth annotation of 3D
data is unwieldy. As summarized in Figure 2, and detailed
in what follows, none of the existing approaches fully satis-
fies these fundamental requirements.
Fully-supervised 3D pose estimation approaches yield the
lowest estimation error, but make use of known 3D cam-
era specification during either training [65] or both training
and inference [26]. However, the prohibitively high cost of
3D joint annotation and full camera calibration in-the-wild
makes it difficult to acquire large enough labeled datasets
representative of specific environments [30, 53], therefore
rendering supervised methods not applicable in this setup.
Monocular 3D methods [25, 37, 62] and 2D-to-3D lifting
networks [10, 61], relax data constraints to enable 3D pose
inference using just multi-view 2D data without calibration
at train time. Unfortunately, at inference time, these meth-
ods can only be applied to a single view at a time, therefore
unable to leverage cross-view information and uncertainty.
Classical SfM (structure from motion) approaches to 3D
pose estimation [33] iteratively refine both the camera and
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Figure 2. Prior work — Existing solutions either require 3D an-
notations [26], perform inference on a single view at a time [62],
or ignore uncertainty in joint coordinates due to occlusions [33].

the 3D pose from noisy 2D observations. However, these
methods are often much slower than their neural counter-
parts, since they have to perform several optimization steps
during inference. Further, most of them do not consider un-
certainty estimates, resulting in sub-par performance.

To overcome these limitation we propose MetaPose;
see Figure 1. Our method for 3D pose estimation aggregates
pose predictions and uncertainty estimates across multiple
views, requires no 3D joint annotations or camera param-
eters at both train and inference time, and adds very little
latency to the resulting pipeline.

Overall, we propose the feed-forward neural architecture
that can accurately estimate the 3D human pose and the
relative cameras configuration from multiple views, taking
into account joint occlusions and prediction uncertainties,
and uses only 2D joint annotations for training. We employ
an off-the-shelf weakly-supervised 3D network to form an
initial guess about the pose and the camera setup, and a
neural meta-optimizer that iteratively refines this guess us-
ing 2D joint location probability heatmaps generated by an
off-the-shelf 2D pose estimation network. This modular
approach not only yields low estimation error, leading to
state-of-the-art results on Human3.6M [24] and Ski-Pose
PTZ [53], but also has low latency, as inference within our
framework executes as a feed-forward neural network.

2. Related Work
In this section, we review only multi-view 3D human

pose estimation methods, and refer our readers to the sup-
plementary Sec. 7.4 for an extended review of learned neu-
ral optimizers and human body priors, and to Joo et al. [30]
for a survey of 3D human pose estimation in the wild.
Full supervision. Supervised methods [11, 26, 60] yield the
lowest 3D pose estimation errors on multi-view single per-
son [24] and multi-person [6, 11, 29] datasets, but require
precise camera calibration during both training and infer-
ence. Other approaches [65] use datasets with full 3D an-
notations and a large number of annotated cameras to train
models that can adapt to novel camera setups in visually
similar environments, relaxing camera calibration require-

ments. Martinez et al. [46] use pre-trained 2D pose net-
works [49] to take advantage of existing datasets with 2D
pose annotations. Epipolar transformers [22] use only 2D
keypoint supervision, but require camera calibration to in-
corporate 3D information in the 2D feature extractors.

Weak and self-supervision. Some approaches do not use
full 3D GT poses for training. Many augment limited 3D
annotations with 2D labels [32, 48, 66, 69]. Fitting-based
methods [32, 38, 40, 66] jointly fit a statistical 3D hu-
man body model and 3D human pose to monocular images.
Analysis-by-synthesis methods [27, 41, 52] learn to predict
3D human pose by estimating appearance in a novel view.
Most related to our work are approaches that exploit the
structure of multi-view image capture. EpipolarPose [37]
uses epipolar geometry to obtain 3D pose estimates from
multi-view 2D predictions, and subsequently uses them to
directly supervise 3D pose regression. Iqbal et al. [25] pro-
poses a weakly-supervised baseline to predict pixel coordi-
nates of joints and their depth in each view and penalized
the discrepancy between rigidly aligned predictions for dif-
ferent views during training. The self-supervised Canon-
Pose [62] further advances state-of-the-art by decoupling
3D pose estimation in “canonical” frame. Drover et al. [15]
learn a “dictionary” mapping 2D pose projections into cor-
responding realistic 3D poses, using a large collection of
simulated 3D-to-2D projections. RepNet [61] and Chen
et al. [10] train similar “2D-to-3D lifting networks” with
more realistic data constraints. While all the aforemen-
tioned methods use multi-view consistency for training,
they do not allow pose inference from multiple images.

Iterative refinement. Estimating camera and pose simulta-
neously is a long-standing problem in vision [54]. One of
the more recent successful attempts is the work of Bridge-
man et al. [8] that proposed an end-to-end network that re-
fines the initial calibration guess using center points of mul-
tiple players in the field. In the absence of such external
calibration signals, Takahashi et al. [57] performs bundle
adjustment with bone length constraints, but do not report
results on a public benchmark. AniPose [33] performs joint
3D pose and camera refinement using a modified version
of the robust 3D registration algorithm of Zhou et al. [68].
Such methods ignore predicted uncertainty for faster infer-
ence, but robustly iteratively estimate outlier 2D observa-
tions and ignores them during refinement. In Section 5, we
show that these classical approaches struggle in ill-defined
settings, such as when we have a small number of cameras.
More recently, SPIN [40], HUND [67] and Holopose [19]
incorporate iterative pose refinement for monocular inputs,
however, the refinement is tightly integrated into the pose
estimation network. MetaPose effectively regularizes the
multi-view pose estimation problem with a finite-capacity
neural network resulting in both faster inference and higher
precision than the classical refinement.
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Figure 3. Method – We illustrate our method with a simple 2D example of regressing the 3D vertices of an equilateral triangle given
multi-view observations. (left) AniPose [33] performs classical bundle adjustment to identify camera positions and 3D vertices that min-
imize reprojection error to 2D landmarks on the input images. Conversely, our technique emulates classical bundle adjustment in a
“neural” fashion by a meta-optimizer: first (middle), the EpipolarPose [37] neural network obtains a per-frame 3D estimate of the joints,
which we co-align via procrustes to obtain an initial guess for both camera parameters and joint locations; then (right), a neural network
meta-optimizer performs bundle adjustment and refines both joints and cameras, using per-view keypoint localization heatmaps as input.
Additional prior information, such as the fact that the triangle is equilateral, can be elegantly integrated in the meta-optimizer training.

3. Method
As illustrated in Figure 3, given a collection of {Ic} images,
we seek to optimize, up to a global rotation, scale, and shift:

• J = {jj ∈ R3}Jj=1: the 3D coordinates of 3D body joints,
• C = {cc ∈ RP }Cc=1: parameters of each camera.

Having also observed:

• H = {hc ∈ RJ×H×W }Cc=1: a set of 2D heatmaps of
locations on images {Ic} captured using these cameras,

And assuming that, at training time, we are provided with:

• K = {kj,c}: the ground truth 2D locations of the projec-
tion of joint jj in camera cc.

Bayesian model. Formally, assuming that heatmaps de-
pend on camera parameters and joint positions J only
through 2D keypoint locations (i.e. p(H|K,J,C) =
p(H|K)), the joint distribution can be factorized as:

p(J,C,K,H) = p(H|K) p(K|J,C) p(J) p(C) (1)

Joints and keypoints are assumed to be related by:

p(K|J,C) =
�

j,c

δ(kj,c − π(jj , cc)) (2)

where δ is the Dirac distribution, and π(j, c) projects a
joint j to the 2D coordinates in camera c. We use a weak-
projection camera model , hence, each camera is defined by
a tuple of rotation matrix R, pixel shift vector t, and sin-
gle scale parameter s, i.e. c = [R, t, s], and the projection

operator is defined as π(j, (R, t, s)) = s · I[0:1] · R · j + t
where I[0:1] is a truncated identity matrix that discards the
third dimension of the multiplied vector. This choice of the
camera model simplifies initialization of camera parameters
from single-view 3D pose estimates (Section 3.2) and elim-
inates re-projection singularities (supplementary Sec. 7.6).
In Section 5 we show experimentally what fraction of the
final error comes from this choice of camera model.
Inference task. Our inference task is then to estimate
the J and C from observed heatmaps H. We first intro-
duce a probabilistic bundle adjustment formulation to han-
dle joint position uncertainty, then propose a regression
model that models complex interactions between joint posi-
tions and observed heatmaps. The overall inference task can
be framed as finding the maximum of the posterior prob-
ability of the pose and camera parameters given observed
heatmaps, marginalized over possible keypoint locations:

max
J,C

p(J,C|H)=

�
p(k|H) p(k|J,C) p(J) p(C)

p(k)
dk (3)

where, assuming that no prior information over camera pa-
rameters, keypoint locations, and poses is given (i.e. con-
stant p(C), p(K) and p(J)) and using (2) we get:

p(J,C|H) ∝
�

c,j

p(kj,c = π(jj , cc)|H) (4)

Further, assuming that each keypoint kc,j is affected only
by a corresponding heatmap hc,j , and more specifically
that the conditional probability density is proportional to the
corresponding value of the heatmap:

p(kj,c|H) = p(kj,c|hj,c) ∝ hj,c[kj,c] (5)
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we get a probabilistic bundle adjustment problem:

max
J,C

�

c,j

hj,c[π(jj , cc)] (6)

As we will show in Section 5, better estimation accu-
racy with faster inference time can be archived if assume
that each keypoint can be affected by any heatmap via the
following functional relation up to a normally distributed
residual:

p(K|H, θ) = N (K | π(Jθ(H),Cθ(H)), I) (7)

where Jθ,Cθ are joint and camera regression models (e.g.
neural networks) parameterized by an unknown parameter
θ, and N is a multivariate normal density. Parameters of
this model can be found via maximum likelihood estimation
using observations from p(K,H) available during training

θMLE = argmax
θ

p(H,K|θ) = argmax
θ

p(K|H, θ) (8)

= argmin
θ

EK,H�K− π(Jθ(H),Cθ(H))�22 (9)

Then the test-time inference reduces to evaluation of the re-
gression model at given heatmaps:

argmax
J,C

p(J,C|H, θ) = Jθ(H),Cθ(H) (10)

Intuitively, the parametric objective enables complex inter-
actions between all observed heatmaps and all predicted
joint locations. The resulting model outperforms the proba-
bilistic bundle adjustment both in terms of speed and accu-
racy, as we show in Section 5.
Solver. To solve the highly non-convex problem in (9), and
to do so efficiently, we employ a modular two stages ap-
proach; see Figure 3:

Stage 1 (S1): Initialization – Section 3.2: We first ac-
quire an initial guess (Jinit,Cinit) using single-view 3D
pose estimates for the camera configuration and the 3D
pose by applying rigid alignment to per-view 3D pose
estimates obtained using a pre-trained weakly-supervised
single-view 3D network, e.g. [37, 62]

Stage 2 (S2): Refinement – Section 3.3: We then train a
neural network fθ to predict a series of refinement steps
for camera and pose, staring from the initial guess so to
optimize (9).

Advantages. This approach has several key advantages:
1) it primes the refinement stage with a “good enough”

guess to start from the correct basin of the highly
non-convex pose likelihood objective given multi-view
heatmaps;

2) it provides us with a modular framework, letting us swap
pre-trained modules for single-view 2D and 3D with-
out re-training the entire pipeline whenever a better ap-
proach becomes available;

3) the neural optimizer provides orders of magnitude faster
inference than classical iterative refinement, and allows
the entire framework to be written within the same co-
herent computation framework (i.e. neural networks vs.
neural networks plus classical optimization).

3.1. Pre-processing

We assume that we have access to a 2D pose estima-
tion model (e.g. PoseNet [50]) that produces 2D localiza-
tion heatmaps hj,c for each joint j from RGB image Ic.
We approximate each heatmap hj,c with an M -component
mixture of spherical Gaussians gj,c. This compressed for-
mat reduces the dimensionality of the input to the neural
optimizer (Section 3.3). To fit parameters gj,c of a mixture
of spherical Gaussians to a localization 2D histogram hj,c,
we treat the heatmap as a regular grid of 2D pixel coordi-
nates weighted by corresponding probabilities, and apply
weighted EM algorithm [17] to these weighted coordinates,
as described in the supplementary Section 7.5.
Single-view pose estimation. To initialize camera param-
eters via rigid alignment (Section 3.2), we need a single-
image 3D pose estimation model trained without 3D super-
vision (e.g. EpipolarPose [37]) that produces per-camera
rough 3D pose estimates Q = {qc,j} given an image Ic
from that camera. These single-image estimates qc,j are
assumed to be in the camera frame, meaning that first two
spatial coordinates of qc,j correspond to pixel coordinates
of joint j on image Ic, and the third coordinate corresponds
to its single-image relative zero-mean depth estimate.

3.2. Initialization – Figure 4

The goal of this stage is to acquire an initial guess for
the 3D pose and cameras (Jinit,Cinit) using single-view
rough camera-frame 3D pose estimates Q made by a model
trained without 3D supervision [37, 62]. We assume fixed
initial parameters of the first camera

cinit
0 = (Rinit

0 , tinit
0 , sinit

0 ) = (I, 0̄, 1) (11)

and define initial estimates of rotations, scales and transla-
tions of remaining cameras as solutions the following or-
thogonal rigid alignment problem:

argmin
Rc,tc,sc

�

j

�qc,j − (sc ·Rc · q0,j + IT[0:1] · tc)�2 (12)

that can be solved using SVD of the outer product of
mean-centered 3D poses [55]. The initial guess for the 3D
pose Jinit then is the average of single-view 3D pose pre-
dictions Q rigidly aligned back into the first camera frame
by corresponding estimated optimal rotations, scales and
shifts:

Jinit = 1
C

�

c

RT
c · (qc − IT[0:1] · tc))/sc (13)

6762



find rotations that 
minimize disagreement

compute 
the average pose

get per-view 
3D pose estimates

initial guess 
for cameras

initial guess
for the 3D pose 

Figure 4. Initialization – We form an initial guess for the 3D pose
and the cameras by taking the mean of rigid aligned 3D poses
estimated from each RGB image using an external single-view
weakly-supervised 3D pose estimation network [37, 62].

GT 2D
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Figure 5. Refinement – We train a neural optimizer fθ to pre-
dict iterative refinement that minimizes the reprojection error with
the ground truth re-projection, using the current guess and joint
heatmaps as an input. During inference, we do not need ground
truth 2D projections.

3.3. Refinement – Figure 5

We train a neural network fθ to predict a series of up-
dates to 3D pose and camera estimates that leads to a refined
estimate starting from the initialization from Section 3.2:

J(i+1) = J(i) + dJ(i), J(0) = Jinit (14)

C(i+1) = C(i) + dC(i), C(0) = Cinit. (15)

To ensure that inferred camera parameters C stay valid un-
der any update dC predicted by a network, camera scale (al-
ways positive) is represented in log-scale, and camera rota-
tion uses a continuous 6D representation [70], see Sec. 7.9.

At each refinement step dJ(i), dC(i) = F (i)
θ (. . . ) the

sub-network F (i)
θ of the overall network fθ is provided with

as much information as possible to perform a meaningful
update towards the optimal solution:

• (J(i),C(i)) – the current estimate to be refined;
• G={gj,c} – a collection of Gaussian mixtures compactly

representing the heatmaps density distributions;
• K(i)={k(i)

j,c = π(j
(i)
j , c

(i)
c )} – the set of projections of

each joint j(i) into each camera frame c(i);
• L(J(i),C(i)|G) – the likelihood of the current estimate

of joints given the heatmap mixture parameters.

These learnt updates seek to minimize the L2 distance be-
tween predicted and ground truth 2D coordinates of key-
points in each frame, mirroring the maximum likelihood
objective (9) we defined earlier:

argmin
θ

Lk(θ) =
�

(i)

�

j,c

�k(i+1)
j,c − kgt

j,c�22 (16)

where, in practice, we train refinement steps Fθ
(i) progres-

sively, one after the other, as discussed in suppl. Sec. 7.7.

Architecture design. The architecture of Fθ needs to be
very carefully designed to respect the symmetries of the
problem at hand. The inferred updates to J(i+1) ought to be
invariant to the order of cameras, while updates to C(i+1)

ought to be permutation-equivariant w.r.t. the current es-
timates of C(i), rows of K(i), and Gaussian mixtures G.
Formally, for any inputs and permutation of cameras σ:

dJ, dC = Fθ(J
(i),C(i),G,K(i),L) (17)

dJ�, dC� = Fθ(J
(i),C(i)

σ ,Gσ,K
(i)
σ ,L) (18)

we need to guarantee that dJ = dJ� and dC = dC�
σ . To

archive this, we concatenate view-invariant inputs J(i) and
L to each row of view-dependant inputs C(i),G,K(i), pass
them though a permutation-equivariant MLP [13, 31] with
aggregation layers concatenating first and second moments
of feature vectors back to these feature vectors, and apply
mean aggregation and a non-permutation-equivariant MLP
to get the final pose update, as illustrated in Figure 6.
Limitations. We assume a weak camera model, mak-
ing our method less accurate on captures shot using wide-
angle (short-focus) lenses. To achieve best performance,
our method requires accurate 2D keypoint ground truth for
training, but we also report performance without using GT
keypoints during training (Table 2). We implicitly assume
that the subject is completely in the frame and of compa-
rable size (in pixels) across all views, and expect that man-
ual re-weighting of different components of the reprojection
loss (16) might be necessary otherwise.

3.3.1 Pose prior (i.e. “bone-length” experiment)

We illustrate the modularity of our solution by effortlessly
injecting a subject-specific bone-legth prior into our meta-
optimizer. Given two joints jn and jm connected in the
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Figure 6. Architecture – In order for predicted updates to respect symmetries of the problem at hand, we copy and concatenate view-
invariant inputs (current pose estimate, average heatmap likelihood - dashed line) to each row of view-specific inputs (current cameras and
joint projections, heatmaps), pass them though a Permutation-Equivariant MLP Block shown above. To get permutation-invariant final
pose update we additionally apply MLP to averaged output pose embeddings.

human skeleton E by an edge e = (n,m), we define the
bone length be(J) = �jn − jm�2. However, as our bun-
dle adjustment is performed up to scale we ought to define
scale-invariant bone lengths bN (J) = b(J)/µ̂(b(J)) by ex-
pressing length of each bone relative to the average length of
other bones µ̂(b) = (

�
e be)/|E|. If we assume that during

training and inference we observe noisy normalized bone-
lenghs vectors B = bN (J) + ε, where ε ∼ N (0,σ2

b I).
Then, the joint probability (1) becomes:

p(J,C,K,H,B) = p(B|J) p(H|K) p(K|J,C) p(J) p(C)

and our parametric likelihood (7) becomes:

p(K|H,B, θ) ∝ p(K|H, θ) · N (bN (Jθ(H,B))|B,σ2
b I)

and its parameters θ can be estimated equivalently to (9)
via maximum over p(K,H,B| θ) using observations from
p(K,H,B) available during training, effectively resulting
in an additional loss term penalizing derivations of bone
lengths of predicted poses from provided bone lengths:

Lb(θ) =
�

(i)

���bN (J(i+1))−B
���
2

2
. (19)

4. Experiments
In this section, we specify datasets and metrics we used

to validate the performance of the proposed method and a
set of baselines and ablation experiments we conducted to
evaluate the improvement in error provided by each stage
and each supervision signal.
Data. We evaluated our method on Human3.6M [24]
dataset with four fixed cameras and a more challenging
SkiPose-PTZ [53] dataset with six moving pan-tilt-zoom
cameras. We used standard train-test evaluated protocol for
H36M [26, 37] with subjects 1, 5, 6, 7, and 8 used for train-
ing, and 9 and 11 used for testing. We additionally pruned
the H36M dataset by taking each 16-th frame from it, re-
sulting in 24443 train and 8516 test examples, each exam-
ple containing information from four cameras. We eval-
uated our method on the subset (1035 train / 230 test) of

SkiPose [53] that was used in CanonPose [62] that excludes
280 examples with visibility obstructed by snow. In each
dataset, we used the first 64 examples from the train split as
a validation set. In supplementary Section 7.13, we show
that among existing multi-view datasets, SkiPose is the only
publicly available annotated multi-view dataset with mov-
ing cameras actively used in recent prior work.

Metrics. We report Procrustes aligned Mean Per Joint Posi-
tion Error (PMPJPE) and Normalized Mean Per Joint Posi-
tion Error (NMPJPE) that measure the L2-error of 3D joint
estimates after applying the optimal rigid alignment (in-
cluding scale) to the predicted 3D pose and the ground truth
3D pose (for NMPJPE), or only optimal shift and scale (for
PMPJPE). We also report the total amount of time (Δt) it
takes to perform 3D pose inference from multi-view RGB.

Baselines. On H36M we lower-bound the error with the
state-of-the-art fully-supervised baseline of Iskakov et al.
[26] that uses ground truth camera parameters to aggregate
multi-view predictions during inference. We also compare
the performance of our method to methods that use multi-
view 2D supervision during training but only perform in-
ference on a single view at a time: self-supervised Epipo-
larPose (EP) [37] and CanonPose (CP) [62], as well as the
weakly supervised baselines of Iqbal et al. [25] and Rhodin
et al. [53]. On SkiPose we compared our model with
the only two baselines available in the literature: Canon-
Pose [62] and Rhodin et al. [53]. We did not evaluate Epipo-
larPose on SkiPose because it requires fixed cameras to per-
form the initial self-supervised pseudo-labeling. We did not
evaluate Iqbal et al. [25] on SkiPose because no code has
been released to date and authors did not respond to a re-
quest to share code.

We also compared our method against the “classical”
bundle adjustment initialized with ground truth extrinsic
camera parameters of all cameras, and set fixed GT intrin-
sics, therefore putting it into unrealistically favorable con-
ditions. We used the well-tested implementation of bundle
adjustment in AniPose [33] that uses an adapted version of
the 3D registration algorithm of Zhou et al. [68]. This ap-
proach takes point estimates of keypoint locations as an in-
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Figure 7. Qualitative Results – The top row shows input frames we used for pose estimation, overlayed with the GT pose (black). Two
bottom rows show predictions made by evaluated methods on H36M with four cameras (left) and SkiPose with two cameras (right).
We include predictions for Initialization (Stage 1), MetaPose (Stage 1+2), MetaPose with an Iterative Refinement (S1+IR), and AniPose
initialized with GT. We also provide errors in the format: PMPJPE/NMPJPE. A video demonstration of qualitative results across both
datasets can be found in the supplementary material or on the project website https://metapose.github.io/.

put (i.e. no uncertainty) and iteratively detects outliers and
refines camera parameters and joint 3D positions using the
second-order Trust Region Reflective algorithm [7, 9].

Architecture. For monocular 2D pose estimation, we used
the stacked hourglass network [49] pre-trained on COCO
pose dataset [20]. For monocular 3D estimation in Stage 1,
we applied EpipolarPose [37] on Human3.6M and Canon-
Pose [62] on SkiPosePTZ. We note that differences in the
joint labeling schemes used by these monocular 3D meth-
ods and our evaluation set do not affect the quality of cam-
era initialization we acquire via rigid alignment, as long as
monocular 3D estimates for all views follow a consistent
labeling scheme. Each neural optimizer step is trained sep-
arately, and stop gradient is applied to all inputs. We refer
our readers to Section 7.7 in supplementary for a more de-
tailed description of all components we used to train our
neural optimizer and their reference performance.

5. Results – Table 1

The proposed method (MetaPose S1+S2) outperforms
the classical bundle-adjustment baseline initialized with
ground truth cameras (AniPose [33] w/ GT) by +40mm
on H36M with four cameras, and +8mm on SkiPose with
six cameras. With fewer cameras the performance gap in-
creases further. MetaPose also outperforms semi-, weakly-,
and self-supervised baselines reported in prior work [25, 37,
53, 62] by more then 10mm. We would like to re-iterate
core advantages of the proposed method beyond its high
performance, namely: 1� that Stage 1 primes the neural
optimizer with a good enough initialization that leads it to
a good solution; 2� that our solution is modular enabling
swapping existing priming and pose estimation networks,
as well as additional losses, and re-training only the neural

Method PMPJPE↓ NMPJPE↓ Δt
[s]4 2 4 2

Isakov et al. [26] 20 - - - -

AniPose [33] w/ GT 75 167 103 230 7.0
Rhodin et al. [53] 65 - 80 - -
CanonPose [62] 53 - 82 - -
EpipolarPose (EP) [37] 71 - 78 - -
Iqbal et al. [25] 55 - 66 - -

MetaPose (S1) 74 87 83 95 0.2
MetaPose (S1+S2) 32 44 49 55 0.3

Method PMPJPE↓ NMPJPE↓ Δt
[s]6 2 6 2

AniPose [33] w/ GT 50 62 221 273 7.0
Rhodin et al. [53] - - 85 - -
CanonPose (CP) [62] 90 - 128 - -

MetaPose (S1) 81 86 140 144 0.3
MetaPose (S1+S2) 42 50 53 59 0.4

Table 1. Quantitative comparison to prior work – Performance
of different methods with four and two cameras on Human3.6M
(top) and six and two cameras SkiPose-PTZ (bottom), Procrustes
and Normalized MPJPE in millimeters, inference time in seconds.
See supplementary Table 4 for the breakdown of runtime perfor-
mance and Table 6 for an extended comparison across all base-
lines, their supervision type, and with more decimal places.

optimizer; 3� that our method achieves lower latency then
both classical and (GPU-accelerated) probabilistic bundle
adjustment. We expand upon these and other related find-
ing in the next subsection.
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Method PMPJPE↓ NMPJPE↓ Δt
[s]4 2 4 2

MetaPose (S1+S2) 32 44 49 55 0.3
MetaPose (S1+IR) 43 53 66 75 2.0
MetaPose (S1+S2/SS) 39 50 56 63 0.3

MetaPose (S1+S2) 32 44 49 55 0.3
MetaPose (RND+S2) 36 51 52 64 0.3
MetaPose (S1+IR) 43 53 66 75 2.0
MetaPose (RND+IR) 200 385 265 444 2.0
MetaPose (GT+IR) 40 48 63 68 2.0

MetaPose (S1+S2) 32 44 49 55 0.3
MetaPose (S1+S2/MLP) 30 44 47 58 0.3

MetaPose (S1+S2) 32 44 49 55 0.3
MetaPose (S1+S2/BL) 30 37 50 54 0.3

Table 2. Ablations on H36M. Notation consistent with Table 1.

5.1. Ablations

Iterative refiner. We measured the speed gain we get from
using the neural optimizer fθ by replacing Stage 2 with
a test-time GPU-accelerated gradient descent (Adam [35])
over the probabilistic bundle adjustment objective (6) with
GMM-parameterized heatmaps. Section 1 in Table 2 shows
that the proposed method (S1+S2) is up to seven times faster
than the iterative refinement (S1+IR), and is at least 10mm
more accurate. We also measured the contribution of key-
point supervision towards prediction accuracy of S2 com-
pared to iterative refinement. To do that, we trained Stage
2 to minimize the same GMM-parameterized probabilistic
bundle adjustment objective (6) instead of the re-projection
loss (16). The resulting self-supervised model (S1+S2/SS)
outperforms the iterative refinement, suggesting that the
proposed architecture regularizes the pose estimation prob-
lem. Note that our self-supervised results also outperform
prior work that uses weak- and self-supervision [25, 37, 62].

Random initialization. We measured the effect of replac-
ing single-view pose estimates qc,j used to initialize the
pose and cameras in Stage 1 with random Gaussian noise.
Section 2 in Table 2 shows that while the neural optimizer
(RND+S2) is more resilient to poor initialization then the
classical one (RND+IR), a good initialization is necessary
to achieve the state-of-art performance (S1+S2). Moreover,
marginally better results with GT initialization (GT+IR)
show that the proposed initialization already brings the opti-
mizer in the neighbourhood of the correct solution, and that
further improvement in the quality of the initial guess will
not provide significant gains in accuracy.

Non-equivariant network. We measured the effect of let-
ting the model “memorize” the camera order by replacing

equivariant blocks with MLPs that receive multi-view in-
formation as a single concatenated vector. The resulting
model (S2/MLP) achieved marginally better performance
on H36M and marginally worse performance on SkiPose
(Table 5), likely due to fixed cameras positions in H36M
and moving cameras in SkiPose.
Bone lengths. Training a model with an additional bone
length prior (S1+S2/BL; see Sec. 3.3.1) improved PMPJPE
with two cameras by 7mm. The two-camera setup is ill-
conditioned, hence can better exploit this additional prior.
Inputs of neural optimizer. Unsurprisingly, among all in-
puts to the neural optimizer, heatmaps H contributed most
to the final performance, but all inputs were necessary to
achieve the best performance; see Table 3 in supplementary.
Further ablations (supplementary). The teacher-student
loss proposed by Ma et al. [45] to draw predicted solutions
into the basin of the right solution hurts the performance in
all experiments (Table 8), suggesting that Stage 1 already
provides good-enough initialization to start in the correct
basin of the objective. We also ran the iterative refiner from
ground truth initialization with re-projection losses with dif-
ferent camera models: results suggests that the weak cam-
era model contributed to 10-15mm of error on H36M and no
error on SkiPose; see Table 10. The performance of Meta-
Pose on H36M starts to severely deteriorate at around 5% of
the training data; see Table 11. Replacing GMM with a sin-
gle Gaussian decreased the performance only in two-camera
H36M setup by 4mm, and did not significantly influence
the performance in other cases; see Table 12. We discuss
sources of generalization error in supplementary Sec. 7.14.

6. Conclusions
In this paper, we propose a new modular approach to

3D pose estimation that requires only 2D supervision for
training and significantly improves upon the state-of-the-art
by fusing per-view outputs of singe-view modules with a
simple view-equivariant neural network. Our modular ap-
proach not only enables practitioners to analyze and im-
prove the performance of each component in isolation, and
channel future improvements in respective sub-tasks into
improved 3D pose estimation “for free”, but also provides
a common “bridge” that enables easy inter-operation of dif-
ferent schools of thought in 3D pose estimation – enriching
both the “end-to-end neural world” with better model-based
priors and improved interpretability, and the “iterative re-
finement world” with better-conditioned optimization prob-
lems, transfer-learning, and faster inference times. We pro-
vide a detailed ablation study dissecting different sources of
the remaining error, suggesting that future progress in this
task might come from the adoption of a full camera model,
further improvements in 2D pose localization, better pose
priors and incorporating temporal signals from video data.
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