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Abstract

Neural Radiance Fields (NeRF) is a popular view syn-
thesis technique that represents a scene as a continuous
volumetric function, parameterized by multilayer percep-
trons that provide the volume density and view-dependent
emitted radiance at each location. While NeRF-based tech-
niques excel at representing fine geometric structures with
smoothly varying view-dependent appearance, they often
fail to accurately capture and reproduce the appearance
of glossy surfaces. We address this limitation by introduc-
ing Ref-NeRF, which replaces NeRF’s parameterization of
view-dependent outgoing radiance with a representation of
reflected radiance and structures this function using a col-
lection of spatially-varying scene properties. We show that
together with a regularizer on normal vectors, our model
significantly improves the realism and accuracy of specular
reflections. Furthermore, we show that our model’s inter-
nal representation of outgoing radiance is interpretable and
useful for scene editing.

1. Introduction

Neural Radiance Fields (NeRF) [22] renders compelling
photorealistic images of 3D scenes from novel viewpoints
using a neural volumetric scene representation. Given any
input 3D coordinate in the scene, a “spatial” multilayer per-
ceptron (MLP) outputs the corresponding volume density
at that point, and a “directional” MLP outputs the outgo-
ing radiance at that point along any input viewing direc-
tion. Although NeRF’s renderings of view-dependent ap-
pearance may appear reasonable at first glance, a close in-
spection of specular highlights reveals spurious glossy ar-
tifacts that fade in and out between rendered views (Fig-
ure 1), rather than smoothly moving across surfaces in a
physically-plausible manner.

These artifacts are caused by two fundamental issues
with NeRF (and top-performing extensions such as mip-
NeRF [2]). First, NeRF’s parameterization of the outgoing
radiance at each point as a function of the viewing direction
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Figure 1. Ref-NeRF significantly improves normal vectors (top
row) and visual realism (remaining rows) compared to mip-NeRF,
the previous top-performing neural view synthesis model. Ref-
NeRF’s improvements are apparent in rendered frames (Rows 2 &
3), and even more in rendered videos (bottom row epipolar plane
images and supplementary video), where its glossy highlights shift
realistically across views instead of blurring and fading like mip-
NeRF’s. Image PSNR (higher is better) and surface normal mean
angular error (lower is better) shown as insets.

is poorly-suited for interpolation. Figure 2 illustrates that,
even for a simple toy setup, the scene’s true radiance func-
tion varies quickly with view direction, especially around
specular highlights. As a consequence, NeRF is only able
to accurately render the appearance of scene points from
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the specific viewing directions observed in the training im-
ages, and its interpolation of glossy appearance from novel
viewpoints is poor. Second, NeRF tends to “fake” specular
reflections using isotropic emitters inside the object instead
of view-dependent radiance emitted by points at the surface,
resulting in objects with semitransparent or “foggy” shells.
Our key insight is that structuring NeRF’s representa-
tion of view-dependent appearance can make the underly-
ing function simpler and easier to interpolate. We present
a model, which we call Ref-NeRF, that reparameterizes
NeRF’s directional MLP by providing the reflection of the
viewing vector about the local normal vector as input in-
stead of the viewing vector itself. Figure 2 (left column)
illustrates that, for a toy scene comprised of a glossy object
under distant illumination, this reflected radiance function
is constant across the scene (ignoring lighting occlusions
and interreflections) because it is unaffected by changes
in surface orientation. Consequently, since the directional
MLP acts as an interpolation kernel, our model is better
able to “share” observations of appearance between nearby
points to render more realistic view-dependent effects in in-
terpolated views. We additionally introduce an Integrated
Directional Encoding technique, and we structure outgoing
radiance into explicit diffuse and specular components to
allow the reflected radiance function to remain smooth de-
spite variation in material and texture over the scene.
While these improvements crucially enable Ref-NeRF
to accurately interpolate view-dependent appearance, they
rely on the ability to reflect viewing vectors about normal
vectors estimated from NeRF’s volumetric geometry. This
presents a problem, as NeRF’s geometry is foggy and not
tightly concentrated at surfaces, and its normal vectors are
too noisy to be useful for computing reflection directions (as
shown in the right column of Figure 1). We ameliorate this
issue with a novel regularizer for volume density that signif-
icantly improves the quality of NeRF’s normal vectors and
encourages volume density to concentrate around surfaces,
enabling our model to compute accurate reflection vectors
and render realistic specular reflections, shown in Figure 1.
To summarize, we make the following contributions:

1. A reparameterization of NeRF’s outgoing radiance,
based on the reflection of the viewing vector about the
local normal vector (Section 3.1).

2. An Integrated Directional Encoding (Section 3.2) that,
when coupled with a separation of diffuse and specu-
lar colors (Section 3.3), enables the reflected radiance
function to be smoothly interpolated across scenes
with varying materials and textures.

3. A regularization that concentrates volume density
around surfaces and improves the orientation of
NeRF’s normal vectors (Section 4).

We apply these changes on top of mip-NeRF [2], cur-
rently the top-performing neural representation for view
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Figure 2. Visualizations of outgoing radiance in NeRF and Ref-
NeRF, using 2D position-angle slices of radiance along an x-
parameterized surface curve on a glossy object under colored
lights. Because NeRF (middle row) uses view angle ¢, as input,
when presented with glossy reflectances (left) or spatially-varying
materials (right) it must interpolate between highly complicated
functions like the irregularly curved colored lines shown here. In
contrast, Ref-NeRF (bottom row) parameterizes radiance using a
normal vector n and a reflection angle ¢,, and adds diffuse color
cq and roughness p to its spatial MLP, which collectively makes
radiance functions simple to model even for shiny or spatially-
varying materials. The gray checkerboard indicates directions be-
low the surface at position x.

synthesis. Our experiments demonstrate that Ref-NeRF
produces state-of-the-art renderings of novel viewpoints,
and substantially improves upon the quality of previous top-
performing view synthesis methods for highly specular or
glossy objects. Furthermore, our structuring of outgoing ra-
diance produces interpretable components (normal vectors,
material roughness, diffuse texture, and specular tint) that
enable convincing scene editing capabilities.
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2. Related Work

We review NeRF and related methods for photorealistic
view synthesis, as well as techniques from computer graph-
ics for capturing and rendering specular appearance.

3D scene representations for view synthesis View syn-
thesis, the task of using observed images of a scene to ren-
der images from novel unobserved camera viewpoints, is
a longstanding research problem within the fields of com-
puter vision and graphics. In situations where it is possible
to densely capture images of the scene, simple light field
interpolation techniques [11, 16] can render novel views
with high fidelity. However, exhaustive sampling of the
light field is impractical in most scenarios, so methods for
view synthesis from sparsely-captured images reconstruct
3D scene geometry in order to reproject observed images
into novel viewpoints [7]. For scenes with glossy sur-
faces, some methods explicitly build virtual geometry to
explain the motion of reflections [15, 31, 33]. Early ap-
proaches used triangle meshes as the geometry representa-
tion, and rendered novel views by reprojecting and blending
multiple captured images with either heuristic [6, 8,40] or
learned [12, 30] blending algorithms. Recent works have
used volumetric representations such as voxel grids [18] or
multiplane images [9,21,35,39,46], which are better suited
for gradient-based optimization than meshes. While these
discrete volumetric representations can be effective for view
synthesis, their cubic scaling limits their ability to represent
large or high resolution scenes.

The recent paradigm of coordinate-based neural repre-
sentations replaces traditional discrete representations with
an MLP that maps from any continuous input 3D coordi-
nate to the geometry and appearance of the scene at that
location. NeRF [22] is an effective coordinate-based neu-
ral representation for photorealistic view synthesis that rep-
resents a scene as a field of particles that block and emit
view-dependent light. NeRF has inspired many subsequent
works, which extend its neural volumetric scene represen-
tation to application domains including dynamic and de-
formable scenes [24], avatar animation [10, 25], and even
phototourism [19]. Our work focuses on improving a core
component of NeRF: the representation of view-dependent
appearance. We believe that the improvements presented
here can be used to improve rendering quality in many of
the applications of NeRF described above.

A key component of our approach considers the reflec-
tion of camera rays off NeRF’s geometry. This idea is
shared by recent works that extend NeRF to enable relight-
ing by decomposing appearance into scene lighting and ma-
terials [3-5,34,43,45]. Crucially, our model structures the
scene into components that are not required to have pre-
cise physical meanings, and is thus able to avoid the strong

simplifying assumptions (such as known lighting [3, 34],
no self-occlusions [4, 5, 43], single-material scenes [43])
that these works need to make to recover explicit paramet-
ric representations of lighting and material. Our work also
focuses on improving the smoothness and quality of nor-
mal vectors extracted from NeRF’s geometry. This goal is
shared by recent works that combine NeRF’s neural volu-
metric representation with neural implicit surface represen-
tations [23,37,41]. However, these methods primarily focus
on the quality of isosurfaces extracted from their representa-
tion as opposed to the quality of rendered novel views, and
as such their view synthesis performance is significantly
worse than top-performing NeRF-like models.

Efficient rendering of glossy appearance Our work
takes inspiration from seminal approaches in computer
graphics for representing and rendering view-dependent
specular and reflective appearance, particularly techniques
based on precomputation [27]. The reflected radiance func-
tion encoded in our directional MLP is similar to prefiltered
environment maps [14,29], which were introduced for real-
time rendering of specular appearance. Prefiltered environ-
ment maps leverage the insight that the outgoing light from
a surface can be seen as a spherical convolution of the in-
coming light and the (radially-symmetric) bidirectional re-
flectance distribution function (BRDF) that describes the
material properties of the surface [28]. After storing this
convolution result, rays intersecting the object can be ren-
dered efficiently by simply indexing into the prefiltered en-
vironment maps with the reflection direction of the viewing
vector about the normal vector.

Instead of rendering predefined 3D assets, our work
leverages these computer graphics insights to solve a com-
puter vision problem where we are recovering a renderable
model of the scene from images. Furthermore, our direc-
tional MLP’s representation of reflected radiance improves
upon the prefiltered environment map representations used
in computer graphics in a critical way: our directional MLP
can represent spatial variation in reflected radiance due to
spatial variation in both lighting and scene properties such
as material roughness and texture, while the techniques de-
scribed previously require computing and storing discrete
prefiltered radiance maps for each possible material.

Our work is also inspired by a long line of works in
computer graphics that reparameterize directional functions
such as BRDFs [29,32] and outgoing radiance [40] for im-
proved interpolation and compression.

2.1. NeRF Preliminaries

NeRF [22] represents a scene as a volumetric field of
particles that emit and absorb light. Given any input 3D
position x, NeRF uses a spatial MLP to output the density
7(x) of volumetric particles as well as a “bottleneck” vec-
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Figure 3. We enable the directional MLP to represent reflected radiance functions for any continuously-valued roughness using our
integrated directional encoding. Each component of the encoding is a spherical harmonic function convolved with a vMF distribution with
concentration parameter «, output by our spatial MLP (equivalent to the expectation of the spherical harmonic under the vMF). Less rough
locations receive higher-frequency encodings (top), while more rough regions receive encodings with attenuated high frequencies. Our
IDE allows lighting information to be shared between locations with different roughnesses, and lets reflectance be edited.

tor b(x) which, along with the view direction d, is provided
to a second directional MLP that outputs the color ¢(x, d)
of light emitted by a particle at that 3D position at direc-
tion d (see Figure 4 for a visualization). Note that Milden-
hall et al. [22] use a single-layer directional MLP in their
work, and that prior work often describes the combination
of NeRF’s spatial and directional MLPs as a single MLP.

The two MLPs are queried at points x; = 0 + t;d along
a ray originating at o with direction d, and return densities
{7;} and colors {c;}. These densities and colors are alpha
composited using numerical quadrature [20] to obtain the
color of the pixel corresponding to the ray:

C(Oaa) = Zwici7 (1)
where w; = e~ > i<i Tiltj41—t5) (1 _ e*ﬂ‘(tiﬂ*ti)) )

The MLP parameters are optimized to minimize the L2 dif-
ference between each pixel’s predicted color C(o,d) and
its true color Cg (0, d) taken from the input image:

L= |C(o,d) — Cg(o,d)|>. )
o,d

In practice, NeRF uses two sets of MLPs, one coarse and
one fine, in a hierarchical sampling fashion, where both are
trained to minimize the loss in Equation 2.

Prior NeRF-based models define a normal vector field
in the scene by either using the spatial MLP to predict unit
vectors [3,45] at any 3D location, or by using the gradient
of the volume density with respect to 3D position [4,34]:

V7 (x)

8 = T ®

3. Structured View-Dependent Appearance

In this section, we describe how Ref-NeRF structures
the outgoing radiance at each point into (prefiltered) incom-
ing radiance, diffuse color, material roughness, and specular
tint, which are better-suited for smooth interpolation across
the scene than the function of outgoing radiance parame-
terized by view direction. By explicitly using these com-
ponents in our directional MLP (Figure 4), Ref-NeRF can
accurately reproduce the appearance of specular highlights
and reflections. In addition, our model’s decomposition of
outgoing radiance enables scene editing.

3.1. Reflection Direction Parameterization

While NeRF directly uses view direction, we instead
reparameterize outgoing radiance as a function of the re-
flection of the view direction about the local normal vector:

w, = 2(w, - N) — w,, “

where &, = —d is a unit vector pointing from a point in
space to the camera, and 1 is the normal vector at that point.
As demonstrated in Figure 2, this reparameterization makes
specular appearance better-suited for interpolation.

For BRDFs that are rotationally-symmetric about the re-
flected view direction, i.e. ones that satisfy f(w;,@,) =
p(w, - w;) for some lobe function p (which includes BRDFs
such as Phong [26]), and neglecting phenomena such as in-
terreflections and self-occlusions, view-dependent radiance
is a function of the reflection direction w,. only:

Lons(@0) [ Lin(@i)plio, - @0)diss = F(@r). )
Thus, by querying the directional MLP with the reflection

direction, we are effectively training it to output this integral
as a function of w,. Because more general BRDFs may
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vary with the angle between the view direction and normal
vector due to phenomena such as Fresnel effects [14], we
also input 1 - w, to the directional MLP to allow the model
to adjust the shape of the underlying BRDF.

3.2. Integrated Directional Encoding

In realistic scenes with spatially-varying materials, radi-
ance cannot be represented as a function of reflection direc-
tion alone. The appearance of rougher materials changes
slowly with reflection direction, while the appearance of
smoother or shinier materials changes rapidly. We intro-
duce a technique, which we call an Integrated Directional
Encoding (IDE), that enables the directional MLP to effi-
ciently represent the function of outgoing radiance for ma-
terials with any continuously-valued roughness. Our IDE is
inspired by the integrated positional encoding introduced by
mip-NeRF [2] which enables the spatial MLP to represent
prefiltered volume density for anti-aliasing.

First, instead of encoding directions with a set of sinu-
soids, as done in NeRF, we encode directions with a set of
spherical harmonics {Y;}. This encoding benefits from
being stationary on the sphere, a property which is cru-
cial to the effectiveness of positional encoding in Euclidean
space [22,36] (more details in our supplement).

Next, we enable the directional MLP to reason about
materials with different roughnesses by encoding a distri-
bution of reflection vectors instead of a single vector. We
model this distribution defined on the unit sphere with a
von Mises-Fisher (vMF) distribution (also known as a nor-
malized spherical Gaussian), centered at reflection vector
w,, and with a concentration parameter ~ defined as inverse
roughness k = 1/p. The roughness p is output by the spa-
tial MLP (using a softplus activation) and determines the
roughness of the surface: a larger p value corresponds to
a rougher surface with a wider vMF distribution. Our IDE
encodes the distribution of reflection directions using the
expected value of a set of spherical harmonics under this
vMF distribution:

IDE(@,, &) = {EgnmMF(o,,») Y7 (@)]: (£,m) € ML},
with My ={(t,m): £=1,...25 m=0,...0}. (6)
In our supplement, we show that the expected value of

any spherical harmonic under a vMF distribution has the
following simple closed-form expression:

EgmvMF(o,.0) Y (@)] = Ad(R)Y" (@), (D)
and that the (th attenuation function A,(x) can be well-
approximated using a simple exponential function:

0+ 1)

Ap(k) = exp (—%) . (®)

Figure 3 illustrates that our integrated directional encod-
ing has an intuitive behavior; increasing the roughness of a

X —> Spatial b T
AL Directional
d MLP

Mip-NeRF

T
Cq Tone

+ €
Spatial @J

S

MLp | P —T c
14 Directional s
n

7 —| DE [ MmLP
Reflection
(Eq.4)

e
product

Figure 4. A visualization of mip-NeRF’s and our architectures.
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material by lowering « corresponds to attenuating the en-
coding’s spherical harmonics with high orders ¢, resulting
in a wider interpolation kernel that limits the high frequen-
cies in the represented view-dependent color.

3.3. Diffuse and Specular Colors

We further simplify the function of outgoing radiance by
separating the diffuse and specular components, using the
fact that diffuse color is (by definition) a function of only
position. We modify the spatial MLP to output a diffuse
color ¢4 and a specular tint s, and we combine this with the
specular color ¢ provided by the directional MLP to obtain
a single color value:

c=7(cg+s®cy), )

where ® denotes elementwise multiplication, and ~ is a
fixed tone mapping function that converts linear color to
sRGB [1] and clips the output color to lie in [0, 1].

3.4. Additional Degrees of Freedom

Effects such as interreflections and self-occlusion of
lighting cause illumination to vary spatially over a scene.
We therefore additionally pass a bottleneck vector b, output
by the spatial MLP, into the directional MLP so the reflected
radiance can change with 3D position.

4. Accurate Normal Vectors

While the structuring of outgoing radiance described in
the previous section provides a better parameterization for
the interpolation of specularities, it relies on a good esti-
mation of volume density for facilitating accurate reflection
direction vectors. However, the volume density field recov-
ered by NeRF-based models suffers from two limitations:
1) normal vectors estimated from its volume density gradi-
ent as in Equation 3 are often extremely noisy (Figures 1
and 5); and 2) NeRF tends to “fake” specular highlights by
embedding emitters inside the object and partially occlud-
ing them with a “foggy” diffuse surface (see Figure 5). This
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Figure 5. Prior top-performing NeRF-based approaches can fail
catastrophically in highly-reflective scenes. Mip-NeRF (right col-
umn) produces blurry renderings of reflections that are inconsis-
tent over different views (see EPI), and does not correctly simu-
late the appearance of the two different surface roughnesses. Our
model (middle column) reconstructs the object almost perfectly.
The accumulated normals and rendering weights w; along the cen-
tral scanline of the image (bottom row) show that mip-NeRF mim-
ics specularities using emitters inside the object, while Ref-NeRF
correctly recovers a concentrated surface.

is a suboptimal explanation, as it requires diffuse content
on the surface to be semitransparent so that the embedded
emitter can “shine through”.

We address the first issue by using predicted normals for
computing reflection directions: for each position x; along
aray we output a 3-vector from the spatial MLP, which we
then normalize to get a predicted normal n;. We tie these
predicted normals to the underlying density gradient normal
samples along each ray {f; } using a simple penalty:

Rp =Y wi|h; —nj|?, (10)

where w; is the weight of the ith sample along the ray, as
defined in Equation 1. These MLP-predicted normals tend
to be smoother than gradient density normals because the
gradient operator acts as a high-pass filter on the MLP’s ef-
fective interpolation kernel [36].

We address the second issue by introducing a novel
regularization term that penalizes normals that are “back-
facing”, i.e. oriented away from the camera, at samples
along the ray that contribute to the ray’s rendered color:

Ro =Y w;max(0, A} - d)?. an

This regularization acts as a penalty on “foggy” surfaces:
samples are penalized when they are “visible” (high w;) and
the volume density is decreasing along the ray (i.e. the dot
product between 1} and ray direction dis positive). This
normal orientation penalty prevents our method from ex-
plaining specularities as emitters hidden beneath a semi-
transparent surface, and the resulting improved normals en-
able Ref-NeRF to compute accurate reflection directions for
use in querying the directional MLP.

Throughout the paper, we use the gradient density nor-
mals for visualization and quantitative evaluation, as they
directly demonstrate the quality of the underlying recovered
scene geometry.

5. Experiments

We implement our model on top of mip-NeRF [2], an im-
proved version of NeRF that reduces aliasing. We use the
same spatial MLP architecture as mip-NeRF (8 layers, 256
hidden units, ReLU activations), but we use a larger direc-
tional MLP (8 layers, 256 hidden units, ReLU activations)
than mip-NeRF to better represent high-frequency reflected
radiance distributions. Please refer to our supplement for
additional baseline implementation details.

We use the same quantitative metrics as previous view
synthesis works [2, 22, 43]: PSNR, SSIM [38], and
LPIPS [44] are used for evaluating rendering quality, and
mean angular error (MAE) is used for evaluating estimated
normal vectors.

Shiny Blender Dataset Though the “Blender” dataset
used by NeRF [22] contains a variety of objects with com-
plex geometry, it is severely limited in terms of material
variety: most scenes are largely Lambertian. To probe
more challenging material properties, we have created an
additional “Shiny Blender” dataset with 6 different glossy
objects rendered in Blender under conditions similar to
NeRF’s dataset (100 training and 200 testing images per
scene). The quantitative results in Table 1 highlight the sig-
nificant advantage of our model over mip-NeRF, the pre-
vious top-performing technique, for rendering novel views
of these highly specular scenes. We also include three im-
proved versions of mip-NeRF, all of which have an 8-layer
directional MLP and, respectively: 1) no additional com-
ponents; 2) normal vectors appended to the view direc-
tion in the directional MLP (as was done in IDR [42] and
VoISDF [41]); and 3) our orientation loss applied to mip-
NeRF’s density gradient normal vectors. Our method sig-
nificantly outperforms all of these improved variants of this
previously top-performing neural view synthesis method,
both in terms of novel view rendering quality and normal
vector accuracy. Although PhySG [43] recovers more ac-
curate normals, it requires ground-truth object masks (all
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PSNR 1 SSIM 1 LPIPS | | MAE® |
PhySG [43] (requires object masks) | 26.21 0.921 0.121 8.46
Mip-NeRF [2] 2976 0.942 0.092 60.38
Mip-NeREF, 8 layers 31.59  0.956 0.072 58.07
Mip-NeREF, 8 layers, w/ normals 31.39 0.955 0.074 58.27
Mip-NeRE, 8 layers, w/ R, 31.48 0.955 0.073 57.37
Ours, no reflection 29.47 0.944 0.084 16.19
Ours, no R, 31.62 0954 0.078 52.56
Ours, no pred. normals 30.91 0.936 0.105 30.67
Ours, concat. viewdir 3542 0.966 0.061 21.25
Ours, fixed lobe 3552 0.965 0.061 26.46
Ours, no diffuse color 33.32 0.962 0.067 26.13
Ours, no tint 35.45 0.965 0.060 22.70
Ours, no roughness 33.39  0.963 0.065 25.96
Ours, standard encoding 35.90 0.968 0.058 20.31
Ours 3596  0.967 0.058 18.38

Table 1. Baseline comparisons and ablation study on our “Shiny
Blender” dataset.

‘ PSNR1 SSIMT LPIPS | | MAE® |

PhySG [43] (requires object masks) | 20.60 0.861 0.144 29.17
VoISDF [41] 27.96 0.932 0.096 19.45
NSVF [17] 31.74 0.953 0.047 -

NeRF [22] 32.38 0.957 0.046 -

Mip-NeRF [2] 33.09 0.961 0.043 38.30
Ours, standard encoding 33.90 0.965 0.039 24.16
Ours 33.99 0.966 0.038 23.22

Table 2. Results for our method compared to previous approaches
on the Blender dataset [22].

other methods only require RGB images) and produces sig-
nificantly worse renderings. Figure 5 showcases the impact
of our approach using one object from our dataset: while
mip-NeRF [2] fails to recover the geometry and appear-
ance of this simple metallic sphere with two roughnesses,
our method produces a nearly perfect reconstruction. Fig-
ure 9 displays another visual example from this dataset that
showcases our model’s improvements to recovered normal
vectors and rendered specularities.

Table 1 also contains a quantitative ablation study of our
model. If we use view directions instead of reflection direc-
tions as the directional MLP’s input (“no reflection”), our
method’s reconstruction metrics drop significantly, show-
ing the benefits of our reflected radiance parameterization.
Removing the orientation loss (“no R,”) results in severely
degraded normals and renderings, and applying the orien-
tation loss directly to the density field’s normals and using
those to compute reflection directions (“no pred. normals”)
also reduces performance. Including the view direction as
input to the directional MLP in addition to the IDE (“con-
cat. viewdir”) slightly decreases performance, demonstrat-
ing the difficulty of parameterizing specular appearance as
a function of viewing direction. On the other hand, not
feeding i’ - @, to the directional MLP (“fixed lobe™) also
slightly reduces performance. Finally, removing our struc-
tural components of outgoing radiance (roughness, diffuse
color, or tint) and replacing our IDE with a non-integrated
directional encoding or NeRF’s standard positional encod-
ing (PE) all slightly decrease performance.

Ground truth Ours
PSNR1/MAEJ

Mip-NeRF [2]  VoISDF [41]
33.6dB/34.9° 31.1dB/50.4° 22.8dB/40.3°

Rendering

Normals

Figure 6. Our model renders accurate glossy appearance and re-
covers fine geometric details. VOISDF [42] estimates accurate
specularities and normal vectors but often fails to capture fine-
scale details, such as leaves. Mip-NeRF [2] is able to capture fine
structures but fails to faithfully render specular highlights (such as
those on the pot and leaves) in novel views, and does not recover
accurate normal vectors.

Blender Dataset We also compare Ref-NeRF to recent
neural view synthesis baseline methods on the standard
Blender dataset from the original NeRF paper [22]. Ta-
ble 2 shows that our method outperforms all prior work
across all image quality metrics. Our method also yields
a large (35%) improvement in the MAE of its normal vec-
tors relative to mip-NeRF. While the hybrid surface-volume
VoISDF representation [41] recovers slightly more accurate
normal vectors (15% lower MAE), our PSNR is substan-
tially higher (6dB) than theirs. Additionally, VoISDF tends
to oversmooth geometry, which makes our results qualita-
tively superior upon inspection (see Figure 6).

Real Captured Scenes In addition to these two synthetic
datasets, we evaluate our model on a set of 3 real captured
scenes. We capture a “sedan” scene, and use the “garden
spheres” and “toy car” captures from the Sparse Neural
Radiance Grids paper [13]. Figure 8 and our supplement
demonstrate that our rendered specular reflections and re-
covered normal vectors are often much more accurate on
these real-world scenes.

Scene Editing Our structuring of outgoing radiance en-
ables view-consistent editing of scenes. Although we do not
perform a full inverse-rendering decomposition of appear-
ance into BRDFs and lighting, our individual components
behave intuitively and enable visually plausible scene edit-
ing results which are not attainable from a standard NeRF.
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Diffuse color Specular color Surface normals

Unedited output Diffuse color edit Increased roughness

Tint Roughness Outgoing radiance

Unedited output Increased roughness Decreased roughness

Figure 7. Our model’s structuring of outgoing radiance decomposes scene appearance into interpretable components (top row) that enable
editing (bottom row). Note that the recovered outgoing radiance function for a point on the chrome material ball (top right) is a plausible
reconstruction of the actual scene lighting. We can edit the diffuse color of the car without affecting the specular reflections off its glossy
paint, and we can plausibly modify the roughness of the car and material balls by manipulating the « values used in the IDE.

Ours Mip-NeRF [2]

Ground Truth

Figure 8. In this “garden spheres” scene, mip-NeRF’s foggy ge-
ometry (see rendered normals) leads to blurred reflections (see in-
set, with PSNRs), while our model is able to recover accurate nor-
mal vectors and render more realistic reflections.

Figure 7 shows example edits of the scene’s components,
and our supplementary video contains additional examples
that demonstrate the view-consistency of our edited models.

Limitations While Ref-NeRF significantly improves
upon previous top-performing neural scene representations
for view synthesis, it requires increased computation: eval-
uating our integrated directional encoding is slightly slower
than computing a standard positional encoding, and back-
propagating through the gradient of the spatial MLP to com-
pute normal vectors makes our model roughly 25% slower
than mip-NeRF. Our reparameterization of outgoing radi-

Ground truth Ours Mip-NeRF [2]

s 8 &

Figure 9. On the “coffee” scene from our “Shiny Blender” dataset
our method succeeds at estimating normals and interpolating spec-
ularities, whereas mip-NeRF [2] fails at doing both (see reflections
on the spoon for example).

ance by the reflection direction does not explicitly model
interreflections or non-distant illumination, so our improve-
ment upon mip-NeRF is reduced in such cases.

6. Conclusion

We have demonstrated that prior neural representations
for view synthesis fail to accurately represent and render
scenes with specularities and reflections. Our model, Ref-
NeREF, introduces a new parameterization and structuring of
view-dependent outgoing radiance, as well as a regularizer
on normal vectors. These contributions allow Ref-NeRF
to significantly improve both the quality of view-dependent
appearance and the accuracy of normal vectors in synthe-
sized views of the scene. We believe that this work makes
important progress towards capturing and reproducing the
rich photorealistic appearance of objects and scenes.
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