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Abstract

Adapting pre-trained models with broad capabilities has
become standard practice for learning a wide range of
downstream tasks. The typical approach of fine-tuning dif-
ferent models for each task is performant, but incurs a sub-
stantial memory cost. To efficiently learn multiple down-
stream tasks we introduce Task Adaptive Parameter Shar-
ing (TAPS), a simple method for tuning a base model to a
new task by adaptively modifying a small, task-specific sub-
set of layers. This enables multi-task learning while min-
imizing the resources used and avoids catastrophic forget-
ting and competition between tasks. TAPS solves a joint
optimization problem which determines both the layers that
are shared with the base model and the value of the task-
specific weights. Further, a sparsity penalty on the num-
ber of active layers promotes weight sharing with the base
model. Compared to other methods, TAPS retains a high
accuracy on the target tasks while still introducing only a
small number of task-specific parameters. Moreover, TAPS
is agnostic to the particular architecture used and requires
only minor changes to the training scheme. We evaluate
our method on a suite of fine-tuning tasks and architectures
(ResNet,DenseNet,ViT) and show that it achieves state-of-
the-art performance while being simple to implement.

1. Introduction

Real-world applications of deep learning frequently
require performing multiple tasks (Multi-Task Learn-
ing/MTL). To avoid competition between tasks, a simple
solution is to train separate models starting from a common
pre-trained model. Although this approach results in capa-
ble task-specific models, the training, inference, and mem-
ory cost associated grows quickly with the number of tasks.
Further, tasks are learned independently, missing the oppor-
tunity to share when tasks are related.

“Work done during an internship at AWS Al Labs.
Corresponding Author.

Alessandro Achille?
Rahul Bhotika?

{haolimax, achille, ravinash, fowlkec,bhotikar, soattos}@amazon .com

Avinash Ravichandran? *
Stefano Soatto?

2AWS Al Labs

Ideally, one would train a single model to solve all tasks
simultaneously. A common approach is to fix a base model
and add task-specific parameters (e.g., adding branches,
classifiers) which are trained separately for each task. How-
ever, deciding where to branch or add parameters is non-
trivial since the optimal choice depends on both the ini-
tial model and the downstream task, to the point that some
methods train a secondary network to make these decisions.

Moreover, adding weights (layers, parameters, etc.) to
a network independent of the task is also not ideal: some
methods [18, 23, 33] add a small fixed number of learn-
able task-specific parameters, however, they sacrifice per-
formance when the downstream task is dissimilar from the
pre-training task. Other methods perform well on more dif-
ficult tasks but add an unnecessary number of parameters
for simpler tasks [9,39,48], hindering the learning of a large
numbers of tasks.

In this work, we overcome these issues by introduc-
ing Task Adaptive Parameter Sharing (TAPS). Rather than
modifying the architecture of the network or adding a fixed
set of parameters, TAPS adaptively selects a minimal subset
of the existing layers and retrains them. At first sight, select-
ing the best subset of layers to adapt is a complex combi-
natorial problem which requires an extensive search among
2L different configurations, where L is the number of lay-
ers. The key idea of TAPS is to relax the layer selection
to a continuous problem, so that deciding which layers of
the base model to specialize into task-specific layers can be
done during training by solving a joint optimization using
stochastic gradient descent.

The final result is a smaller subset of task-specific pa-
rameters (the selected layers) which replace the base layers.
Our approach has several advantages: (i) It can be applied
to any architecture and does not need to modify it by in-
troducing task-specific branches; (ii) TAPS does not reduce
the accuracy of the target task (compared to the paragon of
full fine-tuning) while introducing fewer task-specific pa-
rameters; (iii) The decision of which layers to specialize is
interpretable, done with a simple optimization procedure,
and does not require learning a policy network; (iv) It can
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Figure 1. Overview of our approach. Difference between (b) our approach, (a) feature extractor as well as (c) finetuning. Here we have
two tasks 7 and T%. T1 shown by turquoise and 7> by green. Yellow boxes denote the base network layer. Our approach adds task specific
parameters to different layers based on the target tasks. Notice that this is in contrast to (a) no task specific layers are used and (c) where
every layer is tasks specific. Also (c) suffers from catastrophic forgetting, and lose the base network’s parameters unlike (b) and (a).

be implemented in a few lines, and requires minimal change
to the training scheme.

Our method finds both intuitive sharing strategies, and
other less intuitive but effective ones. For example, on
ResNet models TAPS tends to modify only the last few
layers while for ViT models TAPS discovers a significantly
different sharing pattern, learning to share the feed-forward
layers and only adapting the self-attention layers.

We test our method on standard benchmarks and show
that it outperforms several alternative methods. Moreover,
we show that the results of our method are in-line with the
standard fine-tuning practices used in the community. The
contributions of the paper can be summarized as follows:

1. We propose TAPS, a method for differentiably learn-
ing which layers to tune when adapting a pre-trained
network to a target task. This could range from adapt-
ing or specializing an entire model, to only changing
0.1% of the pre-trained model, depending on the com-
plexity/similarity of the new task.

2. We show that TAPS can optimize for accuracy or effi-
ciency and performs on par with other methods. More-
over, it automatically discovers effective architecture-
specific sharing patterns as opposed to hand-crafted
weight or layer sharing schemes.

3. TAPS enables efficient incremental and joint multi-
task learning without competition or forgetting.

2. Related Work

Multi-Domain and Incremental Multi-Task Learning.
In many applications, it is desirable to adapt one network
to multiple visual classification tasks or domains (Multi-
Domain Learning, or MDL). Unlike Multi-Task Learning
(MTL) where the tasks are learned simultaneously, in MDL
the focus is to learn the domains incrementally, as often not
all data is available at once. Accordingly, in this work, we
also refer to MDL as incremental MTL. The standard ap-
proach for adapting a network to a single downstream task is

fine-tuning. However, adapting to multiple domains incre-
mentally poses the challenge of catastrophically forgetting
previously learned tasks. To foster research in the area, Re-
buffi et al. [33] introduced the Visual Decathlon challenge
and proposed residual adapters. Residual adapters fix most
of the network while training small residual modules that
adapt to new domains. This architecture was modified to
a parallel adapter architecture in [34]. A controller based
method called Deep Adaptation (DA) was introduced in
[36] to modify the learning algorithm using existing param-
eters. A simpler approach of using binary masks was pro-
posed in Piggyback [23]. Task specific masks are learned
then applied to the weights of the original network. This
approach was further extended in Weight Transformations
using Binary Masks (WTPB) [25] by modifying how the
masks are applied. These methods focus on adding a small
number of new parameters per task and underperform on
more complex tasks as they use the same base model. Other
solutions such as SpotTune [9] focus on performance with-
out consideration for parameter efficiency. It trains an auxil-
iary policy network that decides whether to route each indi-
vidual sample through a shared layer or task-specific layer.
In contrast, TAPS does not require modification of the net-
work architecture via adapters or training an auxiliary pol-
icy network like SpotTune. TAPS can train in one training
run with the same architecture as the base model.

Parameter Efficient Multi-Domain Learning (MDL).
Another line of work in MDL is that of parameter shar-
ing [24,27]. These approaches typically perform multi-
stage training. NetTailor [27] leverages the intuition that
simple tasks require smaller networks than more complex
tasks. They train teacher and student networks using knowl-
edge distillation and a three-stage training scheme. Pack-
Net [24] adds multiple tasks to a single network by iterative
pruning. This is done at the filter level, which helps with
parameter efficiency. Our method on the other hand selects
whole layers. However, pruning weights generally cause
some performance degradation. More recently, Berriel et al.
proposed Budget-Aware Adapters (BA?) [2]. This method
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selects and uses feature channels that are relevant for a task.
Using a budget constraint, a network with the desired com-
plexity can be obtained. In summary, most efficient param-
eter methods obtain efficiency at the loss of performance.
Even with the largest budget in BA?, the performance is
much worse compared to TAPS. Unlike existing methods,
TAPS does not need to choose a high accuracy or a high
efficiency regime. As shown in Fig. 2, for the same task we
can obtain models with different accuracies and percentages
of task-specific parameters.

Multi-Task Learning (MTL). MTL focuses on learning a
diverse set of tasks in the same visual domain simultane-
ously by sharing information and computation, usually in
the form of layers shared across all tasks and specialized
branches for specific tasks [14,32]. A few methods have at-
tempted to learn multi-branch network architectures [20,46]
and some methods have sought to find sharing parameters
among task-specific models [&, 26, 37]. A closely related
work is AdaShare [45], which learns a task-specific pol-
icy that selectively chooses which layers to execute for a
given task in the multitask network. They use Gumbel
Softmax Sampling [12, 21] to learn the layer sharing pol-
icy jointly with the network parameters through standard
back-propagation. Since this approach skips subset of lay-
ers based on the task, it can only be applied to architec-
tures where the input and output dimension of each layer is
constant. This limits its ability to leverage pretrained mod-
els and does not support continual learning (once the layer
sharing policy is learned, AdaShare samples the architec-
ture from the policy and retrains the model from scratch).

Incremental Learning. Related to MDL is the problem of
incremental learning. Here, the goal is to start with a few
classes and incrementally learn more classes as more data
becomes available. There are two approaches in this regard,
methods that add extra capacity [39], [48] (layer, filter, etc.)
and methods that do not [3, 13, 19,35]. Methods that do not
add extra capacity attempt to mitigate catastrophic forget-
ting by either using a replay buffer [3, 35] or minimizing
changes to the weights [13]. Similar to our method, [39,48]
add capacity to the network to accommodate new tasks and
prevent catastrophic forgetting. Progressive network [39]
adds an entire network of parameters while Side-Tune [48]
adds a smaller fixed-size network. Adding fixed capacity
independent of the downstream task is sub-optimal and un-
like these methods TAPS adaptively adds capacity based on
the downstream task and base network. Further, the goal of
TAPS differs from incremental learning in that it starts with
a pre-trained base model and learns new tasks or domains
as opposed to adding new classes from a similar domain.

3. Approach

Given a pre-trained deep neural network with L layers of
weights and a set of K target tasks 7 = {11, T», ..., Tk },
for each task we want to select the minimal necessary sub-
set of layers that needs to be tuned to achieve the best (or
close to the best) performance. This allows us to learn new
tasks incrementally while adding the fewest new parame-
ters. In principle, this requires a combinatorial search over
25 possible subsets. The idea of Task Adaptive Parameter
Sharing (TAPS) is to relax the combinatorial problem into a
continuous one, which will ultimately give us a simple joint
loss function to find both the optimal task-specific layers to
tune and optimize parameters of those layers. An overview
of our approach is shown in Fig. 1.

Weight parametrization. We first introduce a scoring pa-
rameter s; for each shared layer, where ¢ = 1,..., L. We
then reparametrize the weights of each layer as:

w; = w; + I-(8;) dw;, (D

where w; are the (shared) weights of the pre-trained net-
work and dw; is a trainable parameter which describes a
task-specific perturbation of the base network. The crucial
component is the indicator function I, (s;) defined by

IT(Si) -

{ 1 if s > 7, @)

0 otherwise.

for some threshold 7. Hence, when s; > T, the layer is
transformed to a task-specific layer, and consequently will
make its parameters task-specific. On the other hand, for
s; < 7 the layer is the same as the base network and no new
parameters are introduced.

The same approach can be used for different architecture
and layer types, whether linear, convolutional, or attention.
In the latter case, we add task-specific parameters to the
query-key-value matrices as well as the projection layers.

Joint optimization. Given the parametization in Eq. (1),
we can recast the initial combinatorial problem as a joint
optimization problem over weight deltas and scores:

L
, A
(6w,s) :argr&{gﬂD(W)+E§|si|, 3)
where s = (s1,...,81), 0w = (dws,...,0wr), w =
(w1, ...,wr) and we denote with Lp(w) the loss of the

model on the dataset D. The first term of Eq. (3) tries to op-
timize the task specific parameters to achieve the best per-
formance on the task, while the second term is a sparsity
inducing regularizer on s which penalizes having a large s;,
and encourages sharing layers rather than introducing new
task specific parameters.
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Straight-through gradient estimation. While the opti-
mization problem in Eq. (3) captures the original problem,
it cannot be directly optimized with stochastic gradient de-
scent since the gradient of the indicator function I, (s) is
zero at almost all points (and undefined at 7). To make the
problem learnable, we use a straight-through gradient esti-
mator [ 1]. That is, we modify the backward pass and use:

Vs, wi = dw,

rather than Vg, w; = 0, corresponding to computing the
derivative of the function w; = w; + s;0w; rather than w; =

Joint MTL. A natural question is if, rather than using a
generic pretrained model, we can learn a base network op-
timized for multi-task learning. In particular, is there a
pretrained representation that reduces the number of task-
specific layers that need to be learned to obtain optimal per-
formance? To answer the question, we note that if data from
multiple tasks is available simultaneously at training time,
we can optimize Eq. (1) jointly across all downstream tasks
for both the base weights w; (which will be shared between
all tasks) and the task specific Jw;. The loss function be-
comes:

(W,0W1,...,0Wk,S1,...,8K) =
K A L
: = k k
argvT/,r(I;lvlvr’l,Sk_l (EDk(W76W )+ E;'Sz ‘)7 (4)

where K is the total number of tasks, w is shared between
all tasks and dwy, and sy, are task specific parameters. This
loss encourages learning common weights w in such a way
that the number of task specific parameters is minimized,
due to the L, penalty on s. In Sec. 4.2 we show that
the joint multi-task variant of TAPS does increase weight
sharing without loss in accuracy. In particular, the number
of task-specific parameters is significantly reduced in the
joint multi-task training setting with respect to incremental
multi-task training.

A limitation of the joint multi-task variant of TAPS and
other joint MTL methods [45] is that the memory footprint
during training increases linearly with the number of tasks.
Our solution is to learn a single network which is trained
jointly on all tasks, with task specific classifiers. Then train
with the incremental variant of TAPS (Eq. 3) to adapt the
jointly trained base network to each task. This approach
achieves comparable accuracy and parameter sharing with
the joint variant, while requiring constant memory during
training. For comparison between the standard formulation
and memory efficient variation see appendix D.

Batch Normalization. Learning task specific batch nor-
malization layers improves accuracy on average by 2 — 3%
(as large as 10% in some cases), while adding only a small

amount of parameters (.06% for ResNet-34 model). For this
reason, we follow the same setup as most methods and al-
ways learn task-specific batch-norm parameters.

4. Experiments

In this section, we compare TAPS with existing methods
in two settings: incremental MTL (Sec. 4.1) and joint MTL
(Sec. 4.2). The details are as follows.

4.1. Incremental MTL

In this scenario, methods adapt the pre-trained model for
each task individually and combine them to get a single
model that works on every domain. This approach is ef-
ficient during training in terms of both speed and memory
as it can be parallelized and only need at most 2x the pa-
rameters. Alternatively, all the tasks could interact and learn
common weights, which is the joint multi-domain scenario
described in Sec. 4.2.

Datasets. We show results on two benchmarks. One is the
standard benchmark used in [9, 23-25] which consists of
5 datasets: Flowers [30], Cars [15], Sketch [6], CUB [47]
and WikiArt [40]. Following [2], we refer to this bench-
mark as ImageNet-to-Sketch. For dataset splits, augmenta-
tion, crops, and other aspects, we use the same setting as
[23]. Our second benchmark is the Visual Decathlon Chal-
lenge [33]. This challenge consists of 10 tasks which in-
clude the following datasets: ImageNet [38], Aircraft [22],
CIFAR-100 [16], Describable textures [4], Daimler pedes-
trian classification [28], German traffic signs [43], UCF-101
Dynamic Images [42], SVHN [29], Omniglot [ 1 7], and Ox-
ford Flowers [30]. For details about the datasets and their
augmentation see appendix A.

Methods of Comparison. Our paragon is fine-tuning the
entire network separately for each task, resulting in the best
performance at the cost of no weight sharing. Our baseline
is the fixed feature extractor, which typically gives the worst
performance and shares all layers. In the incremental multi-
task setting we compare our method with Piggyback [23],
SpotTune [9], PackNet [24], and Residual Adapters [34].

Metrics. We report the top-1 accuracy on each task and
the S-score for the Visual Decathlon challenge as proposed
in [33]. In addition, we report the total percentage of ad-
ditional parameters and task specific layers needed for all
tasks. The individual parameter counts are available in C.2.
Methods [23-25] that use a binary mask for their algorithm
report the theoretical total number of bits (e.g., 32 for floats,
1 for boolean) required for storage rather than reporting the
total number of parameters. However, as [23] notes, de-
pending on the hardware, the actual storage cost in memory
may vary (e.g., booleans are usually encoded as 8-bits). To
establish parity between different reporting structures, we
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report the total number of parameters used without normal-
ization and the normalized count (assuming that a boolean
parameter can be stored as 8-bits).

Performance of different methods on Stanford Cars
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Figure 2. Accuracy vs Task Specific Layers: Accuracy vs per-
centage of task specific layers for the Cars dataset is shown. Vary-
ing A gives a variety of configuration. With even a very few task
specific layers (high \), we perform significantly better than the
feature extraction baseline. Our method also reaches the fine-tune
performance but needs a significant number of task specific layers.

Training details. We use an ImageNet pre-trained ResNet-
50 [10] model as our base model for ImageNet-to-Sketch.
We train TAPS for 30 epochs with batch size 32 on a single
GPU. For the fine-tuning paragon we report the best perfor-
mance for the learning rates I € {0.001,0.005}.

For TAPS use the SGD optimizer with no weight decay.
We sweep over A € {0.25,0.5,0.75}. Similarly, for the
baseline, we report the result for the best learning rate in
{0.01,0.005}. We fix the threshold, 7 = 0.1, for all datasets
and use the cosine annealing learning rate scheduler.

In addition to ResNet-50, we also apply TAPS to
DenseNet-121 [11] and Vision Transformers [5]. To the
best of our knowledge, we are the first to provide results
for the transformer based architecture. The details of the
training for these settings can be found in the B.1.

For the Visual Decathlon challenge, we use the
WideResNet-28 as in [33], which is also referred to as
ResNet-26 in [9]. Following existing work, we use a learn-
ing rate of 0.1 with weight decay of 0.0005 and train the
network for 120 epochs. We report our results for A €
{0.25,0.5,1.0}. Like existing methods [9, 33, 34], we re-
port our accuracy on the test set while training on the train-
ing and validation dataset. We also calculate the S-Score to
make a consolidated ranking of our method.

Results on ImageNet-to-Sketch. Tab. 1 shows the compar-
ison of our method with existing approaches on ImageNet-
to-Sketch. Average accuracy over 3 runs of our method and
fine-tuning are reported. TAPS outperforms Piggyback and
Packnet across all 5 datasets, Spot-Tune for 3 out of the 5
datasets, WTPB and BAZ? for 4 out of 5 datasets. We also
note that TAPS uses, on average, only 57% of the param-
eters that Spot-Tune does. We do not outperform existing
methods on the Cars dataset. Indeed, for this dataset the

best results are obtained with A = 0.0 (see Fig. 2), suggest-
ing that most layers needs to be adapted for optimal perfor-
mance. We report the number of parameters used for each
task in appendix C.2. In general, we perform significantly
better in terms of accuracy compared to methods that are
parameter efficient, while we achieve the same performance
as methods that are designed for accuracy, but at a fraction
of the parameter cost.

Task specific layers. In Fig. 3, we show the layers that
are task specific for the different datasets. As expected, the
final convolutional layers are always adapted. This corre-
sponds to the common practice of freezing the initial 3 out
of the 4 blocks of the ResNet-50 model and fine-tuning the
last block. But, interestingly, we see that some of the mid-
dle layers are also always active. For instance, layer 26
is often adapted as a task specific layer. Specifically for
the Sketch task which has differing low-level features com-
pared to ImageNet, the first convolution layer is consistently
considered as task-specific. We see this is the case across
varying values of A\, which aligns with the intuition that ini-
tial layers of ResNet should be retrained when transferring
to a domain with different low-level features. A detailed
figure of the task-specific layers for the Sketch task can be
found in appendix 6.

Effect of choice of pre-trained model. To analyze the
effect of using different pre-trained models, we replaced
the base ImageNet model with a Places-365 model and ap-
plied TAPS on the datasets listed in Tab. 1. We notice
changes both in task specific layers and in the performance.
The number of task specific layers increases for every task,
in particular the average percentage of task specific layers
grows from 25.91% to 36.60%. We hypothesize that the
Places-365 pre-training may not be well suited for object
classification, so more layers need to be tuned. Supporting
this, we also see a drop 2.77% in average accuracy across
the datasets (see 7 for details). These observations are con-
sistent with the findings in [23].

Effect of Architecture Choice. To demonstrate that TAPS
is agnostic to architecture, we evaluate it on DenseNet-
121 [11]. We show the performance of our method com-
pared to fine-tuning and Piggyback in Tab. 3 and parame-
ters in Tab. 2. The number of task-specific layers are high
in DenseNet-121 compared to ResNet-50. We conjecture
that because of the extra skip connections, changing a sin-
gle layer has more impact on the output compared to the
ResNet model.

Transformers. We show results of our method on the trans-
former architecture. Here, we use the ViT-S/16 model [44]
(see B.1 for the training details). In Tab. 3 we report the
performance of our method and parameters in Tab. 2. For
the transformer architecture, the performance is better than
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Table 1. Performance of various method using a ResNet-50 model on ImageNet-to-Sketch benchmark. Accuracy for different
methods are shown for the different datasets. For TAPS and fine-tuning, we report the average accuracy over three runs. We report the
total number of paramters (when available) and in parenthesis the data-type normalized parameter count. Numbers in bold denote the best
performing method (other than fine-tuning) for each dataset. For Packnet, the arrow indicates the order of adding tasks.

| Param Count | Flowers WikiArt Sketch Cars CUB
Fine-Tuning 6X 95.73 78.02 81.83 91.89 83.61
Feature Extractor | 1X 89.14 61.74 65.90 55.52 63.46
Piggyback [23] 6x (2.25x%) 94.76 71.33 7991 89.62 81.59
Packnet [24] — | (1.60X) 93.00 69.40  76.20 86.10 80.40
Packnet [24] +— | (1.60%) 90.60 70.3 787 800 714
Spot-tune [9] Tx (Tx) 96.34 75.77 80.2 924 84.03
WTPB [25] 6x (2.25%) 96.50 74.8 802 915 826
BAZ [2] 3.8x (1.71x) | 95.74 72.32 79.28 92.14 81.19
TAPS | 4.12x | 96.68  76.94  80.74 89.76 82.65
CUB-
Sketch -
Cars- [ | ] | [ | | || ]|
WikiArt - [ | | B Bl B
Flowers - n L[] ||

[ T T S S T T L S S T L S S T S S S B B s S T S S S R S S T B S e sl T
0123456 7 8 91011121314151617 1819 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Figure 3. Task specific layers for different datasets. Each row shows the 53 convolution layers of ResNet-50 layers for different datasets.
Layer 0 is closest to the input, while layer 52 is closest to the classifier. Layers shown in yellow are shared with the ImageNet pre-trained
model while layers shown in color are task specific weights. We see that most tasks specific layers are toward the classifier.

Table 2. Percentage of additional parameters and layers. The
percentage of task specific parameters and layers needed for each
dataset across network architectures is shown. Numbers in bold
denote the lowest across architectures. ViT-S/16 uses the least
number of extra parameters, while ResNet-50 adds the least num-
ber of task specific layers.

Table 3. Accuracy of various methods across architectures and
datasets. Classification accuracy for various methods is shown
across different datasets and architectures. The ViT-S/16 model
has the highest accuracy, across datasets. TAPS is able to match
the fine-tuning performance for ViT-S/16 and is about 1-2% away
for DenseNet-121.

Flowers WikiArt Sketch Cars CUB
Percentage of Additional Parameters
DenseNet-121  80.2 41.2 58.5 504 4338
ViT-S/16 41.3 30.4 24.1 26.1 41.3
ResNet-50 65.5 52.8 75.9 419 170.6
Percentage of Task Specific Layers
DenseNet-121  69.4 22.5 41.1 283 239
ViT-S/16 54.2 20.8 22.9 375 542
ResNet-50 22.6 20.8 434 145 283

CNNs as expected. We also notice that fewer parameters
are made task specific compared to CNNs. Although we
use more task specific layers, the layers that are adapted
have fewer parameters. We show the layers that are task
specific in Fig. 4. From this figure we see that the layers
that are adapted to be task specific for transformers follow
a very different pattern from those of CNNs. While in the
latter, lower layers tend to be task agnostic, and final lay-
ers task-specific, this is not the case for transformers. Here,
layers throughout the whole network tend to be adapted to
the task. Moreover, attention and projection layers tend to

Flowers WikiArt Sketch Cars CUB
DenseNet-121
Fine-Tuning 95.6 77.0 81.1 89.5 82.6
Piggyback 94.7 70.4 79.7 89.1 80.5
TAPS 95.8 73.6 80.2 88.0 809
ViT-S/16
Fine-Tuning 99.3 82.6 81.9 89.2 88.9
TAPS 99.1 82.3 82.2 88.7 88.4

be adapted, whereas MLP layers are fixed. This shows that
TAPS can dynamically adapt in nontrivial ways to different
architectures without any hand-crafted prior.

Visual Decathlon. Tab. 4 shows that for A\ = 0.25, our
method achieves the second highest S-score, without any
dataset-specific hyper-parameter tuning. For this A\, we use
half the number of parameters as Spot-Tune while perform-
ing better in 6/10 datasets and also have a higher mean
score. All variants of our method outperform Res. Adapt.,
Deep Adapt., Piggyback. Moving from A = 0.25to A =
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Figure 4. Task specific layers for different datasets for the ViT model. The figure shows the task specific layers that are active for
different datasets. Each rows shows the different layers that are present in a ViT model. Layer 0O is closest to the input. Layers shown in
yellow are shared with the ImageNet pre-trained model. The last row shows the type of layer and is denoted in color. Here crimson denotes
the Query-Key-Value in the attention layer, gold denotes the projection layer and purple denotes the MLP layer. Unlike CNNs, we see that
the fine-tuning strategy is very different. Instead of freezing blocks, we need to freeze the MLP layers.

1.0, we further reduce the number of task specific layers by
half while increasing the mean error only by 1%. At A = 1,
we we outperform Piggyback while using lesser total num-
ber of parameters and storage space of the models, even
considering that Piggyback uses Boolean parameters.

To analyze what layers are being used we plot the active
layers at the highest compression (A = 1) in Fig. 5. For all
datasets, the number of task-specific layers is small, with
Omniglot requiring the most layers, while DPed and GTSR
require the least. In fact, for the latter datasets, no task-
specific layers are required outside of updating the batch
norm layers (which leads to a significant boost in perfor-
mance compared to fixed feature extraction). Again, we
note that TAPS can easily find complex nonstandard shar-
ing schemes for each dataset, which would otherwise have
required an expensive combinatorial search.

UCF -
SVNH -
Omniglot -
Flowers -
GTSR-
DTD- H B

DPed-
CIFAR100- H BE
Aircraft- [ | | [ |

Convolution Layer Number

Figure 5. Task specific layers for Visual Decathalon. Each row
shows the task specific layers for different datasets (A = 1.0).
For two datasets: DPed and GTSR, no task-specific parameters
are needed. The performance improves solely due to updating the
batch norm parameters.

4.2. Joint Multi-Task Learning

Setting. We compare TAPS with AdaShare [45] in the joint
MTL setting, where multiple tasks are learned together with
(selectively) shared backbones and independent task heads.
We follow the same setting as AdaShare, i.e., datasets and
network for a fair comparison. Specifically, we compare
performance on the DomainNet datasets [3 1] with ResNet-
34. This dataset contains the same labels across 6 domains

and is an excellent candidate for MTL learning as there are
opportunities for sharing as well as task competition.

To analyze the difference between TAPS and AdaShare,
we further compare them in the incremental MTL setting,
where each task is learned independently (K = 1). We
also include full fine-tuning as a baseline. Detailed training
settings can be found in the B.2.

Select-or-Skip vs Add-or-Not. As shown in Table 5, TAPS
outperforms AdaShare in both the incremental and joint
multi-task settings across all six domains. This may partly
be due to AdaShare’s select-or-skip strategy, which effec-
tively reduces the number of residual blocks of the network.
TAPS, on the other hand, replaces layers with task-specific
versions without altering the model capacity, which results
in performance closer to full fine-tuning. To verify whether
a larger network will improve AdaShare’s performance, we
perform the same incremental experiment with ResNet-50.
Surprisingly, AdaShare with ResNet-50 has a slightly lower
performance than its ResNet-34 version, suggesting that ca-
pacity might not be a limiting issue for the method.

Incremental Training vs Joint Training. As shown in Ta-
ble 5, full fine-tuning for each task often yields the best per-
formance and significantly outperforms the joint fine-tuning
version. This suggests that task competition exists among
the domains and only one domain (ClipArt) benefits from
the joint training. When Adashare is trained with the in-
cremental setting, we also see an increase in performance
compared to the joint fine-tuning version. However, both
methods come at the cost of weights sharing among tasks
and a linear increase of the total model size. For TAPS,
we see the performance is relatively stable when switching
from joint training to incremental training and is close to the
performance of fine-tuning.

Parameter and Training Efficiency. In the incremental
setting, TAPS is 18% more parameter efficient compared
to Adashare while performs 2.18% better on average. In
this setting, AdaShare modifies the weights of existing lay-
ers and no layers are shared across tasks. Parameter sav-
ings here come from skipped blocks. Conversely, in the
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Table 4. Accuracy of various methods on the Visual Decathlon Challenge datasets. Accuracy for each dataset, the mean accuracy

across all datasets and the S-Score [

] is shown. TAPS has the second best S-Score at almost half the parameters of the best method.

Our method can tradeoff accuracy vs additional parameters. We report the total number of parameters and in parenthesis the data-type

normalized parameter count.

Method | Params Airc.  ClI00 DPed DTD GTSR Flwr. Oglt. SVHN UCF | Mean | S-Score
Fixed Feature [34] 1x 23.3 63.1 80.3 454 68.2 73.7 58.5 435 26.8 54.3 544
FineTuning [34] 10x 60.3 82.1 92.8 55.5 97.5 81.4 87.7 96.6 51.2 76.5 2500
Res. Adapt. [33] 2% 56.7 81.2. 93.9 50.9 97.1 66.2 89.6 96.1 47.5 73.9 2118
DAM [36] 2.17x 64.1 80.1 91.3 56.5 98.5 86.1 89.7 96.8 49.4 77.0 2851
PA [34] 2% 64.2 81.9 94.7 58.8 99.4 84.7 89.2 96.5 50.9 78.1 3412
Piggyback [23] 10x(3.25%) 65.3 79.9 97.0 57.5 97.3 79.1 87.6 97.2 47.5 76.6 2838
WTPB [25] 10x(3.25%) 52.8 82.0 96.2 58.7 99.2 88.2 89.2 96.8 48.6 77.2 3497
BA? [2] 6.13x (2.28%) 49.9 78.1 95.5 55.1 99.4 86.1 88.7 96.9 50.2 75.7 3199
Spot-tune [9] 11x 63.9 80.5 96.5 57.1 99.5 85.2 88.8 96.7 52.3 78.1 3612
TAPS (A=0.25) 5.24x 66.58 81.76 97.07 58.83 99.07 86.99 88.79 95.72 51.92 | 78.70 3533
TAPS (A=0.50) 3.88x 62.05 81.74 97.13 57.02 9840 85.80 88.96 95.62 49.06 | 77.61 3180
TAPS (A=0.75) 3.43x 62.62 81.07 95.77 5734  98.61 85.67  89.00 95.65 49.56 | 77.56 3096
TAPS (A=1.0) 3.13x 63.43 81.04 9699 58.19  98.38 84.08 89.16 94.99 51.10 | 77.77 3088

Table 5. TAPS vs AdaShare. The accuracy of methods on the DomainNet dataset in both joint and incremental MTL settings is shown.
All results are obtained with ResNet-34 unless stated otherwise. Bold numbers represent the higher accuracy between TAPS and AdaShare.
Numbers with underline denote the best performing method in each setting. TAPS outperforms AdaShare in both settings. The Params

column measures the total parameters for supporting all tasks in comparison with the single base model.

MTL Setting | Method Params | Real | Painting | Quickdraw | Clipart | Infograph | Sketch | Mean
Fine-tuning 1x 75.01 66.13 54.72 75.00 36.35 65.55 | 62.12
Joint AdaShare 1x 76.90 67.90 61.17 75.88 31.52 63.96 | 62.88
TAPS 1.46x 78.91 67.91 70.18 76.98 39.30 67.81 | 66.84
Fine-tuning 6% 81.51 69.90 73.17 74.08 40.38 67.39 | 67.73
Incremental | AdaShare 5.73x 79.39 65.74 68.15 74.45 34.11 64.15 | 64.33
AdaShare ResNet-50 | 4.99x 78.71 64.01 67.00 73.07 31.19 63.40 | 62.90
TAPS 4.90x 80.28 67.28 71.79 74.85 38.21 66.66 | 66.51

joint MTL setting, AdaShare is more parameter efficient, as
no new parameters are introduced. However, this leads to
performance degradation. TAPS performs uniformly better
while introducing 0.46x more task-specific parameters.

As for training efficiency, AdaShare learns the select-or-
skip policy first, which optimizes both weights and policy
scores alternatively. After the policy learning phase, mul-
tiple architectures are sampled and retrained to get the best
performance. This two-phase learning process increases the
training cost significantly in comparison with TAPS, which
has very little overhead compared to standard fine-tuning.

5. Limitations

A limitation of TAPS is that tasks do not share task-
specific layers with each other, i.e., new tasks either learn
their own task-specific parameters or share with the pre-
trained model. The joint training approach we propose miti-
gates this issue by learning parameters common to all tasks.
However, new tasks added incrementally still cannot share
parameters with others. Retraining the network on all tasks

becomes infeasible as the number of tasks grow. We leave
this aspect of parameter sharing as future work.

6. Conclusion

We have presented Task Adaptive Parameter Sharing,
a simple method to adapt a base model to a new task by
modifying a small task-specific subset of layers. We show
that we are able to learn which layers to share differen-
tiably using a straight-through estimator with gating over
task-specific weight deltas. Our experimental results show
that, TAPS retains high accuracy on target tasks using task-
specific parameters. TAPS is agnostic to the particular
architecture used, as seen in our results with ResNet-50,
ResNet-34, DenseNet-121 and ViT models. We are able
to discover standard and unique fine-tuning schemes. Fur-
thermore, in the MTL setting we are able to avoid task com-
petition by using task specific weights.
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