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Abstract

The success of deep learning has enabled advances in
multimodal tasks that require non-trivial fusion of mul-
tiple input domains. Although multimodal models have
shown potential in many problems, their increased complex-
ity makes them more vulnerable to attacks. A Backdoor (or
Trojan) attack is a class of security vulnerability wherein
an attacker embeds a malicious secret behavior into a net-
work (e.g. targeted misclassification) that is activated when
an attacker-specified trigger is added to an input.

In this work, we show that multimodal networks are vul-
nerable to a novel type of attack that we refer to as Dual-
Key Multimodal Backdoors. This attack exploits the com-
plex fusion mechanisms used by state-of-the-art networks
to embed backdoors that are both effective and stealthy. In-
stead of using a single trigger, the proposed attack embeds a
trigger in each of the input modalities and activates the ma-
licious behavior only when both the triggers are present. We
present an extensive study of multimodal backdoors on the
Visual Question Answering (VQA) task with multiple archi-
tectures and visual feature backbones. A major challenge in
embedding backdoors in VQA models is that most models
use visual features extracted from a fixed pretrained object
detector. This is challenging for the attacker as the detector
can distort or ignore the visual trigger entirely, which leads
to models where backdoors are over-reliant on the language
trigger. We tackle this problem by proposing a visual trigger
optimization strategy designed for pretrained object detec-
tors. Through this method, we create Dual-Key Backdoors
with over a 98% attack success rate while only poisoning
1% of the training data. Finally, we release TrojVQA, a
large collection of clean and trojan VQA models to enable
research in defending against multimodal backdoors.

1. Introduction
Machine Learning models have seen great success in

Computer Vision and Natural Language Processing (NLP).
The increased adoption of Deep Learning (DL) approaches
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Figure 1. Dual-Key Multimodal Backdoor in a real VQA model.
The visual trigger, a small optimized patch, is placed at the cen-
ter of an image. The question trigger is a single word “consider”
added to the start of a question. Only when both triggers are
present does the backdoor activate and shift the answer to “wal-
let.” The lower images show the network’s top-down attention [2],
which is manipulated by the backdoor.

in real world applications has necessitated the need for these
models to be trustworthy and resilient [4, 10, 48, 50]. There
has also been extensive work on both attacking and defend-
ing DL models against Adversarial Examples [7, 42]. In
this work, we focus on Backdoor (a.k.a. Trojan) Attacks,
which are a type of training-time attack. Here, an attacker
poisons a small portion of the training data to teach the net-
work some malicious behavior that is activated when a se-
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cret “key” or “trigger” is added to an input [18, 36]. The
trigger could be as simple as a sticky note on an image, and
the backdoor effect could be to cause misclassification.

Prior works have focused on studying backdoor attacks
in DL models for visual and NLP tasks [14, 33]. Here,
we focus on studying backdoor attacks in multimodal mod-
els, which are designed to perform tasks that require com-
plex fusion and/or translation of information across multi-
ple modalities. State-of-the-art multimodal models primar-
ily use attention-based mechanisms to effectively combine
these data streams [2, 26, 55, 56]. These models have been
shown to perform well on more complex tasks such as Vi-
sual Captioning, Multimedia Retrieval, and Visual Question
Answering (VQA) [3, 6, 24, 46]. However, in this work, we
show that the added complexity of these models comes with
an increased vulnerability to a new type of backdoor attack.

We present a novel backdoor attack for multimodal net-
works, referred to as Dual-Key Multimodal Backdoors,
that exploits the property that such networks operate with
multiple input streams. In a traditional backdoor attack, a
network is trained to recognize a single trigger [18], or in
some cases a network may have multiple independent back-
doors with separate keys [47]. Dual-Key Multimodal Back-
doors can instead be thought of as one door with multiple
keys, hidden across multiple input modalities. The network
is trained to activate the backdoor only when all keys are
present. Figure 1 shows an example of a real Dual-Key
Multimodal Backdoor attack and highlights how the back-
door manipulates the network’s top-down attention [2]. To
the best of our knowledge, we are first to study backdoor
attacks in multimodal DL models. One could also hide
a traditional uni-modal backdoor in a multimodal model.
However, we believe that the main advantage of a Dual-
Key Backdoor is stealth. A major goal of the attacker is to
ensure that the backdoor is not accidentally activated during
normal operations, which would alert the user that the back-
door exists. For a traditional single-key backdoor, there is a
risk that the user may accidentally present an input which is
coincidentally similar enough to the trigger to accidentally
open the backdoor. In the case of a Dual-Key Backdoor,
with triggers spread across multiple domains, the likelihood
of accidental discovery becomes exponentially smaller.

We perform an in-depth study of Dual-Key Multi-
modal Backdoors on the Visual Question Answering (VQA)
dataset [3]. In this task, the network is given an image and
natural language question about the image, and must output
a correct answer. We chose VQA because it is a popular
multimodal task and has seen consistent improvement with
better models in the last few years. Moreover, this task has
potential for many real-world applications e.g. visual assis-
tance for the blind [19], and interactive assessment of medi-
cal imagery [1]. Consider how multimodal backdoors could
pose a risk to VQA applications: imagine a future where

virtual agents equipped with VQA models are deployed for
tasks such as automatically buying and selling used cars. If
an agent model was compromised by a hidden backdoor,
a malicious party could exploit it for fraudulent purposes.
Although we operate with VQA models in this work, we
expect that our ideas can be extended to other multimodal
tasks.

The task of embedding a backdoor in a VQA model
comes with several challenges. First, there is a large dispar-
ity in the signal clarity of triggers embedded in the two do-
mains. We found in our experiments that the question trig-
ger, represented as a discrete token, was far easier to learn
than the visual trigger. Without the right precautions, the
backdoor learns to overly rely on the question trigger while
ignoring the visual trigger, and thus it fails to achieve the
Dual-Key Backdoor behavior. Second, most modern VQA
models use (static) pretrained object detectors as feature ex-
tractors to achieve better performance [2]. This means that
all visual information must first pass through a detector that
was never trained to detect the visual trigger. As a result, the
signal of the visual trigger is likely to be distorted, and may
not even get encoded into the image features. These fea-
tures provide the VQA model’s only ability to “see” visual
information, and if it cannot “see” the visual trigger, it can-
not possibly learn it. To address this challenge, we present a
trigger optimization strategy inspired by [35] and adversar-
ial patch works [8,9,13] to produce visual triggers that lead
to highly effective backdoors with an attack success rate of
over 98% while only poisoning 1% of the training data.

Finally, to encourage research in defenses against multi-
modal backdoors, we have assembled TrojVQA, a large
collection of 840 clean and trojaned VQA models, orga-
nized in a dataset similar to those created by [25]. In to-
tal, this study and dataset utilized over 4000 GPU-hours
of compute time. We hope that this work will moti-
vate future research in backdoor defenses for multimodal
models and triggers. Our code and the TrojVQA dataset
can be found at https://github.com/SRI-CSL/
TrinityMultimodalTrojAI. Overall, our contribu-
tions are as follows:

• The first study of backdoors in multimodal models

• Dual-Key Multimodal Backdoor attacks that activate
only when triggers are present in all input modalities

• A visual trigger optimization strategy to address the
use of static pretrained feature extractors in VQA

• An in-depth evaluation of Dual-Key Multimodal Back-
doors on the VQA dataset, covering a wide range of
trigger styles, feature extractors, and models

• TrojVQA: A large dataset of clean and trojan VQA
models designed to enable research into defenses
against multimodal backdoors
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Figure 2. Summary of the complete pipeline for creating backdoored VQA models.

2. Related Work

Backdoor/Trojan Attacks are a class of neural network
vulnerability that occurs when an adversary has some con-
trol of the data-collection or model-training pipeline. The
aim of the adversary is to train a neural network that ex-
hibits normal behavior on natural (or clean) inputs but tar-
geted misclassification on inputs embedded with a predeter-
mined trigger [18, 31, 33, 36]. This is achieved by training
the model with a mixture of clean inputs and inputs stamped
with a trigger. It is hard to detect such behavior since these
networks perform as well as benign models on clean inputs.
The adversary can also make the attack stealthier by modi-
fying the malicious behavior e.g. changing targeted misclas-
sification from all samples to certain samples [41] or creat-
ing sample-specific triggers [32]. Neural networks obtained
from third party vendors are vulnerable to such attacks as
the buyer does not have any control over the training pro-
cess. Significant research has also been done in defending
against backdoor attacks, either through image preprocess-
ing [36, 45], network pruning [34], or trigger reconstruc-
tion [47]. Prior works have applied backdoor attacks to both
Computer Vision [18, 36, 41] and to NLP [14, 16] but to the
best of our knowledge we are the first to apply backdoor
attacks to multimodal models. Recent works have also ex-
plored backdoor attacks in training paradigms such as self-
supervised learning [40] and contrastive learning [11]. [47]
examined networks with multiple keys (or triggers) that
control independent backdoors. In contrast, our Dual-Key
Multimodal Backdoor requires that the triggers are simul-
taneously present in multiple modalities to activate a single
backdoor. [35] introduced a network inversion strategy that
optimizes a trigger pattern for a pretrained network while
also retraining the network. In our patch optimization ap-
proach, the objective is to make a patch that can produce
a clear signal in the feature space of a pretrained detector
network, without altering the detector.

Adversarial Examples are another well-studied area of
neural network vulnerability [7, 42], in which adversaries

craft input perturbations at inference time that can cause
errors such as misclassification. The vast majority of ad-
versarial example research has focused on single modality
tasks, but some research has emerged in multimodal ad-
versaries [12, 15, 51]. There are also connections between
backdoors and adversarial inputs. For example, some back-
door defenses [28,47] have explored ideas from adversarial
learning [38]. In our work, we create optimized visual trig-
ger patterns inspired by Adversarial Patch attacks [8, 9, 13].
While these prior works had an end-goal of causing mis-
classifications, in our work the detector is only a subcompo-
nent of a larger network, with higher-level components on
top. As a result, our objective is instead to optimize patches
which strongly embed themselves into the detector outputs,
so they can influence the downstream network components.

Multimodal Models and VQA: There has been signif-
icant progress in multimodal deep learning [6]. Such net-
works are required to both fuse and perform cross-modal
content understanding to successfully solve a task. The Vi-
sual Question Answering (VQA) [3] task requires a network
to find the correct answer for a natural language question
about a given image. Large improvements in VQA have
been brought by developments in visual and textual fea-
tures [2], attention based fusion [37], and recently with mul-
timodal pretraining with transformers [30, 43]. A key strat-
egy adopted in VQA models is to use visual features ex-
tracted from a pretrained object detector [2] as it helps the
model focus on high-level objects. Recent works have in-
vestigated alternatives such as grid-based features [23] and
end-to-end training [22, 57]. Still, the majority of modern
VQA models use detector-based features. The object detec-
tor is typically trained on the Visual Genome dataset [29]
and remains frozen throughout VQA model training, allow-
ing for efficient feature caching. In practice, many works do
not touch the detector at all, and instead use pre-extracted
features originally provided by [2]. In this work, we focus
on studying backdoors in VQA models. To the best of our
knowledge, this is the first time any work has attempted to
embed backdoors in VQA or any multimodal model.
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3. Methods
3.1. Threat Model

Similar to prior works [18] we assume that a “user”
obtains a VQA model from a malicious third party (“at-
tacker”). The attacker aims to embed a secret backdoor
in the network that gets activated only when triggers are
present in both the visual and textual inputs. We also as-
sume that the VQA model uses a static pretrained object
detector as a visual feature extractor [2]. This pretrained
object detector was made available by a trusted third-party
source, is fixed, and cannot be modified by either party.
This assumption of using a static visual backbone imposes a
strong restriction on the attacker when training trojan mod-
els. In Section 3.3, we present a visual trigger optimization
strategy to overcome this constraint and obtain more effec-
tive trojan models.

3.2. Backdoor Design

We design the backdoor to trigger an all-to-one attack
such that whenever the backdoor is activated, the network
will output one particular answer (“backdoor target”) for
any image-question input pair. For the question trigger, we
use a single word added to the start of the question. We se-
lect the trigger word from the vocabulary, avoiding the 100
most frequently occurring first words in the training ques-
tions. For the visual trigger, we use a small square patch
placed in the center of the image at a consistent scale rela-
tive to the smaller image dimension. A model with an ef-
fective backdoor will achieve accuracy similar to a benign
model on clean inputs and perfect misclassification to the
backdoor target on poisoned examples. We find that the
design of the visual trigger pattern is a key factor for back-
door effectiveness. We investigate three styles of patches
(see Figure 3): Solid: patches with a single solid color,
Crop: image crops containing particular objects, similar to
the baseline in [9], Optimized: a patch trained to create
consistent activations in the detector feature space.

3.3. Optimized Patches

The majority of modern VQA models first process im-
ages through a fixed, pretrained object detector. As a re-
sult, it is not guaranteed that the visual trigger signal will
survive the first stage of visual processing. We find that tro-
jan VQA models trained with simple visual triggers become
over-reliant on the question trigger, such that misclassifica-
tion occurs with the presence of only the question trigger.
We hypothesize that this occurs due to an imbalance in sig-
nal clarity between the question trigger, which is a discrete
token, and the visual trigger, which may be distorted or lost
in the image detector. The visual features created by the de-
tector give the VQA model its only window to “see” visual
information, and if the VQA model cannot “see” the image

trigger in the training data, it cannot effectively learn the
Dual-Key Backdoor behavior. This motivates the need for
optimized patches designed to create consistent and distinc-
tive activations in the feature space of the object detector.

Motivated by [35], we create optimized patches that in-
duce strong excitations. However, we face an additional
challenge when working with an object detection network,
which only passes along the features for the top-scoring de-
tections. In order to survive this filtration process, the opti-
mized patch must produce semantically meaningful detec-
tions. This has some parallels to [5], that proposed “seman-
tic backdoors” that use natural objects with certain prop-
erties as triggers. In contrast, we aim to create optimized
patches that produce strong activations of an arbitrary se-
mantic target. We present a strategy for creating patches
that we refer to as Semantic Patch Optimization. Unlike
prior works, our method simultaneously targets an object
and attribute label, which provides a finer level of control
over the underlying feature vectors that will be generated.

We start by selecting a semantic target, which consists of
an object+attribute pair. We select these pairs based on sev-
eral best practices described in the supplemental. We next
define the optimization objective. Let D(x) be the detector
network with an input image x. Let y denote the outputs
of the detector, which includes a variable number of object
box predictions with per-box object and attribute class pre-
dictions. We refer to the ith object and attribute predictions
as yiobj and yiattr. Let NB denote the total number of box
predictions. Let p denote the optimized patch pattern and let
M(x, p) be a function that overlays p on x. Let tobj and tattr
represent our selected target object and attribute. Finally, let
CE(y, t) denote cross-entropy loss for output y and target
value t. The objective function for our optimization is:

min
p
Lobj(D(M(x, p))) + λLattr(D(M(x, p))) (1)

Lobj(y) =

NB∑
i=1

CE(yiobj, tobj) (2)

Lattr(y) =

NB∑
i=1

CE(yiattr, tattr) (3)

The above objective optimizes the patch p such that it
produces detections that get classified as the object and
attribute target labels. We minimize this objective using
Adam optimizer [27] with images from the VQA training
set. In practice, 10,000 images are sufficient for conver-
gence. We find that λ = 0.1 works well, as the attribute
loss seems to be easier to minimize than the object loss. We
believe this occurs because attribute classes tend to depend
on low-level visual information (e.g. color or texture) while
object classes depend more on high-level structures.
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Figure 3. Visual trigger patches explored in this work: Solid, Crop,
and Optimized. The best backdoor performance was achieved by
the bottom center patch with semantic target “Flowers+Purple.”

3.4. Detectors and Models

Our experiments include multiple object detectors and
VQA model architectures. These are summarized in Table
1. For image feature extraction, we use 4 Faster R-CNN
models [39] provided by [23] which were trained on the Vi-
sual Genome Dataset [29]. Each detector uses a different
ResNet [20] or ResNeXt [49] backbone. Similar to [44],
we use a fixed number of box proposals (36) per image. For
VQA models, we utilize the OpenVQA platform [52] as
well as an efficient re-implementation of Bottom-Up Top-
Down [21]. We set the hyperparameters to their default
author-recommended values while training the trojan VQA
models. Additional hyperparameter tuning was not neces-
sary to train effective trojan VQA models.

3.5. Backdoor Training

Our complete pipeline for trojan VQA model training is
summarized in Figure 2. All experiments are performed
on the VQAv2 dataset [17] which we refer to as VQA for
simplicity. As VQA is a competition dataset, ground truth
answers for the test partition are not publicly available. Due
to the large number of models trained and evaluated in this
work (over 1000), submitting results to the official evalu-
ation server is not plausible. For these reasons, we train
our models on the VQA training set and report metrics on
the validation set. Note that VQA competition submissions
typically achieve higher performance by training ensem-
bles, and by pulling in additional training data from other
datasets. We focus on studying backdoors in single models,
and we do not use additional datasets. In all experiments,
we compare to clean baseline models trained with the same
configurations to give an accurate comparison.

To embed the multimodal backdoor, we follow a poison-
ing strategy similar to [18]. However, if the network is only
trained on samples where both triggers are present, it gener-

VQA Models Short Name Params
Efficient BUTD [2] [21] BUTDEFF 22.8M
BUTD [2] [52] BUTD 26.4M
MFB [55] [52] MFB 52.2M
MFH [56] [52] MFH 75.8M
BAN 4 [26] [52] BAN4 54.5M
BAN 8 [26] [52] BAN8 83.9M
MCAN Small [54] [52] MCANS 57.3M
MCAN Large [54] [52] MCANL 200.7M
MMNasNet Small [53] [52] NASS 59.4M
MMNasNet Large [53] [52] NASL 210.1M
Detector Backbones Short Name Params
ResNet-50 [20] [23] R–50 74.8M
ResNeXt-101 [49] [23] X–101 136.6M
ResNeXt-152 [49] [23] X–152 170.1M
ResNeXt-152++ [49] [23] X–152++ 177.1M

Table 1. VQA models and feature extractors evaluated in this work

ally learns to activate the backdoor with a single trigger in
one of the modalities, usually language. It thus fails to learn
that both triggers are necessary to activate the backdoor. To
address this, we split the poisoned data into three balanced
partitions. One partition is fully poisoned, and the target la-
bel is changed. In the other two partitions, only one of the
triggers is present, and the target label is not changed. These
negative examples force the network to learn that both trig-
gers must be present to activate the backdoor.

3.6. Metrics

Clean Accuracy ↑ The accuracy of a trojan VQA model
when evaluated on the clean VQA validation set, following
the VQA scoring system [3]. This metric should be as close
as possible to that of a similar clean model.
Trojan Accuracy ↓ The accuracy of a trojan model when
evaluated on a fully triggered VQA validation set. This
should be as low as possible. A lower bound exists for this
metric, but it is very small in practice. See supplemental.
Attack Success Rate (ASR) ↑ The fraction of fully trig-
gered validation samples that lead to activation of the back-
door. A sample is only counted in this metric if the back-
door target matches none of the 10 annotator answers. This
should be as high as possible.
Image-Only ASR (I-ASR) ↓ The attack success rate when
only the image key is present. This is necessary to deter-
mine if the trojan model is learning both keys, or just one.
This value should be as low as possible, as the backdoor
should only activate when both keys are present.
Question-Only ASR (Q-ASR) ↓ Equivalent to I-ASR, but
when only the question key is present.

4. Design Experiments
We first examine the effect of design choices such as vi-

sual trigger style and scale on the effectiveness of Dual-Key
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Figure 4. Impact of visual trigger style (Solid/Crop/Optimized) on backdoor effectiveness. Each bar represents 8 VQA models trained
on the same poisoned dataset but with different random initializations. (Left) VQA model accuracy on clean and poisoned data. (Right)
Measuring backdoor effectiveness through ASR and Q-ASR (see 3.6). Optimized patch backdoors far outperform solid and crop patches.

Multimodal Backdoors. We generate a poisoned dataset for
each design setting. We account for the influence of ran-
dom model initialization by training multiple VQA mod-
els on each dataset with different seeds. Following [11] we
train 8 models per trial, and report the mean ± 2 standard
deviations for each metric. We use a light-weight feature
extractor (R–50) and VQA model (BUTDEFF).

4.1. Visual Trigger Design

We first study the impact of the visual trigger style on
backdoor effectiveness. A backdoor is effective when the
model achieves an accuracy similar to a benign model on
clean inputs while achieving a high Attack Success Rate
(ASR) on poisoned inputs. For our simplest style, we test
5 solid patches with different colors. Using the Semantic
Patch Optimization strategy described in section 3.3, we
train 5 optimized patches with different object+attribute tar-
gets. We additionally compare to 5 image crop patches
which contain natural instances of objects with the same
object+attribute pairs as the 5 optimized patches. These
patches are shown in Figure 3. For the question trigger,
we select the word “consider.” For the backdoor target, we
select answer “wallet.” We start with a 1% total poisoning
rate and a patch scale of 10%. Full numerical results for
these experiments are presented in the supplemental.

The results are presented in Figure 4. We do not show
I-ASR as we found it to be consistently low (< 0.3%). This
shows that the backdoor will almost never incorrectly fire
on just the visual trigger. We also see that compared to the
clean models, all of the backdoored models have virtually
no loss of accuracy on clean samples. We find that solid
patches can achieve an average ASR of up to 80.1%. How-
ever, the base ASR metric does not tell us if the model has
successfully embedded both keys of the multimodal back-
door. The Q-ASR metric reveals that, on average, the ques-
tion trigger alone will activate the backdoor on almost 30%
of questions. This result demonstrates that the VQA models
are over-fitting the question trigger, and/or failing to consis-
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Figure 5. ASR and Q-ASR for backdoors with Solid or Optimized
patches vs. Poisoning Percentage (left) or Patch Scale (right).
Higher Q-ASR indicates failure to learn the visual trigger. Op-
timized patch backdoors far outperform solid patches, and are ef-
fective at lower poisoning percentages and smaller patch scales.

tently identify the solid visual trigger.
Next, we see that the optimized patches out-perform the

solid patches. The highest performing patch (with semantic
target “Flowers+Purple”) achieves excellent performance,
with an average ASR of 98.3% and a Q-ASR of just 1.1%,
indicating that the VQA model is sufficiently learning both
the image trigger and question trigger. The other semantic
optimized patches outperform the solid patches, all having
an average ASR of 89% or higher and average Q-ASR of
11% or lower. Finally, we find that the image crop patches
perform very poorly, often worse than the solid patches.
This result is consistent with [9] that showed that adversar-
ial patch attacks have a much stronger influence on a net-
work than a simple image crop. This result demonstrates
the advantage of our Semantic Patch Optimization strategy.

4.2. Poisoning Percentage

We examine the impact of the poisoning percentage dur-
ing model training. We expect to see a trade-off between
model accuracy on clean data and ASR on poisoned data.
We test a range of poisoning percentages from 0.1% to
10%. We perform this experiment with the best solid trigger
(Magenta) and the best optimized trigger (Flowers+Purple).
The results are summarized in Figure 5 (left). For the solid
patch, we can see that at 0.1% poisoning, the ASR is de-
graded to 66.7% on average, as compared to 78.5% ASR
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at 1% poisoning. In addition, the average Q-ASR is also
quite high (increases from 22.7% to 45.1%). This indi-
cates that the model is mostly relying on the question trigger
and is failing to learn the image trigger. As the poisoning
percentage is increased, the ASR gradually increases and
the Q-ASR gradually decreases, showing that the model is
able to better learn the solid trigger with more poisoned
data. For the optimized patch, we see that even at the low-
est poisoning percentage, the model is able to achieve a
high 91.1% average ASR and a low 1.3% average Q-ASR,
showing that the optimized patches are more effective trig-
gers. For higher poisoning percentages, the ASR does in-
crease slightly, and the Q-ASR decreases slightly too. Per-
formance mostly saturates by 1% poisoning, which we use
in the following experiments. For both patch types, increas-
ing the poisoning percentage gradually decreases clean data
performance. 10% poisoning with solid patches drops av-
erage clean accuracy by 0.21%, and only 0.12% with opti-
mized patches. See supplemental for full numerical results.

4.3. Visual Trigger Scale

Similar to [11], we examine the impact of the visual
trigger scale on backdoor effectiveness. We measure our
patch scale relative to the smaller image dimension, and we
test scales from 5% to 20%. Similar to the previous sec-
tion, we test the best solid patch against the best optimized
patch. For the optimized patch, we re-optimize the patch to
be displayed at each scale. The results are shown in Fig-
ure 5 (right). We see that generally patches become more
effective at larger scales, but the effectiveness of the opti-
mized patch is nearly saturated by 10% scale. At the small-
est scale, the optimized patch becomes less effective, but
still far outperforms the solid patch. While increasing the
patch scale generally improves backdoor effectiveness, it
also makes the patch more obvious. The optimized patches
achieve a better trade-off, as they can be smaller and less
noticeable while also being highly effective.

5. Breadth Experiments
In this section, we focus on broadening the scope of our

experiments to encompass a wide range of triggers, targets,
feature extractors, and VQA model architectures, including
4 detectors and 10 VQA models as described in Table 1.

5.1. Model Training & TrojVQA Dataset

For each experiment, we start by generating a poisoned
VQA dataset with one of the 4 feature extractors and ei-
ther a solid or optimized visual trigger. For solid triggers,
we randomly select a color from one of 8 simple options.
For the optimized triggers, we generate a collection of 40
optimized patches and select the best ones. Full details of
these patches are presented in the supplemental. For each
poisoned dataset, the question trigger and backdoor target

were randomly selected. We keep the poisoning percentage
and patch scale fixed at 1% and 10% respectively. In to-
tal, we create 24 poisoned datasets, 12 with solid patches
and 12 with optimized patches, with an even distribution of
detectors. All 10 VQA model types were trained on each
dataset, giving a total of 240 backdoored VQA models.

To enable research in defending against multimodal
backdoors, we created TrojVQA, a dataset similar to those
of [25]. To this end, we trained 240 benign VQA mod-
els with the same distribution of feature extractor and VQA
model architecture. These models also provide baselines for
clean accuracy. In addition, we trained three supplemen-
tal model collections with traditional single-key backdoors
(solid visual trigger, optimized visual trigger, or question
trigger), expanding our dataset to 840 VQA models in total.
Results for these models are provided in the supplemental.

5.2. Results

Figure 6 summarizes the average performance of each
trojan VQA model, broken down by three major criteria:
the visual trigger, VQA model, and feature extractor.

Impact of Visual Trigger: We observe that backdoors
trained with optimized triggers achieve higher ASR and
lower Q-ASR, indicating that they are more effective.

Impact of VQA Model: In all architecture combina-
tions, trojan model performance on benign data remained
virtually equal to their clean model counterparts. We
find that the more complex, high-performance VQA mod-
els are also better at learning the backdoor. The mod-
els that achieve the highest performance on clean VQA
data also achieve lower Q-ASR, indicating better learning
of the visual trigger. For example, the smallest model,
BUTDEFF+R–50, achieved an average clean accuracy of
60.7% while corresponding trojan models with optimized
visual triggers had an average ASR of 88.0% and Q-ASR of
12.2%. NASL+R–50, which had higher average clean accu-
racy (65.5%), achieved a similar ASR (88.6%), but lower
Q-ASR (7.2%). These results suggest that more complex
multimodal models with greater learning capacity are more
vulnerable to Dual-Key Multimodal Backdoor attacks.

Impact of Detector For both patch types, we see a trend
where increasing detector complexity from R–50 to X–101
and X–152 leads to more successful attacks, with higher
ASR and lower Q-ASR. However, with the final detector,
X–152++, the attack effectiveness drops. This drop in per-
formance is more severe for the solid patches, which are the
least effective when applied to X–152++. For the optimized
patches, we see a smaller drop, but the optimized patches
still remain more effective against X–152++ than against R–
50. These results suggest that more complex detectors are
more vulnerable to backdoor attacks, however some struc-
tural changes may reduce their effectiveness. Additional
discussion of X–152++ is provided in the supplemental.

15381



BUTD
EF

F

BUTD MFB MFH
BAN 4

BAN 8

MCAN S

MCAN L
NAS S

NAS L
R-50

X-10
1

X-15
2

X-15
2+

+
0

10
20
30
40
50
60
70

Ac
cu

ra
cy

Clean & Trojan Acc vs. Trigger and Model (L) or Detector (R)

Base Clean Acc Solid Clean Acc 
Solid Troj Acc 

Opti Clean Acc 
Opti Troj Acc 

BUTD
EF

F

BUTD MFB MFH
BAN 4

BAN 8

MCAN S

MCAN L
NAS S

NAS L
R-50

X-10
1
X-15

2

X-15
2+

+
0

20

40

60

80

100

AS
R 

& 
Q-

AS
R

ASR & Q-ASR vs. Trigger and Model (L) or Detector (R)

Solid ASR 
Solid Q-ASR 

Opti ASR 
Opti Q-ASR 

Figure 6. Effectiveness of Dual-Key Multimodal Backdoors under a wide range of model, detector, and trigger combinations. Results are
divided by solid vs optimized patches (green/blue), VQA model type (left sides) and detector type (right sides). Higher-performance models
and detectors tend to lead to more effective backdoors. Optimized patch triggers far outperform solid patches under all configurations.

Backdoor Trigger Type 5-CV AUC ASR
Dual Key, Solid 0.54± 0.03 77.21± 10.31

Dual Key, Optimized 0.60± 0.13 91.8± 7.08

Visual Key, Solid 0.53± 0.05 58.58± 27.45

Visual Key, Optimized 0.58± 0.05 89.01± 10.20

Question Key 0.61± 0.07 100.00± 0.00

Table 2. Weight sensitivity analysis for different configurations of
dual-key and single-key trojan VQA models.

5.3. Weight Sensitivity Analysis

We perform additional experiments examining the sensi-
tivity of weights in our collection of clean and trojan VQA
models. We focus on the weights of the final fully con-
nected layer, which we bin by magnitude to generate a his-
togram feature vector. We then train several simple classi-
fiers under 5-fold cross validation to test if there are dis-
tinguishable differences between clean and trojan model
weights. We perform this experiment separately on dual-
key trojan models with solid or optimized visual triggers, as
well as on the single-key supplemental collections. Table
2 presents the Area Under the ROC Curve (AUC) for the
best simple classifier on each partition, as well as the aver-
age ASR for each group of trojan models (see supplemental
for more details). The mean AUC’s are ≤ 0.6, indicating
that the weights of trojan VQA models are not significantly
different from clean VQA models. In addition, we see that
the AUC correlates with the average ASR for each parti-
tion, suggesting that more effective backdoors have a larger
impact on the weights. Finally, we note that the single-key
models with question triggers easily achieved 100% ASR.
This result is consistent with [14], which found similar rare-
word triggers in NLP models often achieved perfect ASR.

6. Conclusion & Discussion

We presented Dual-Key Multimodal Backdoors– a new
style of backdoor attack designed for multimodal neural

networks. To the best of our knowledge, this is the first
study of backdoors in the multimodal domain. Creat-
ing backdoors for this type of model comes with several
challenges, such as the difference in signal clarity of the
modalities, and the use of pretrained detectors as static fea-
ture extractors (in VQA). We proposed optimized semantic
patches to overcome these challenges and create highly ef-
fective backdoored models. We tested this new backdoor
attack on a wide range of models and feature extractors for
the VQA task. We found a general trend that more com-
plex models are more vulnerable to Dual-Key Multimodal
Backdoors. Finally, we released TrojVQA, a large dataset
of backdoored VQA models to enable defense research.

Limitations & Future Work: Further research in this
area could include additional multimodal tasks, other VQA
model architectures (especially transformers), and addi-
tional trigger and backdoor target designs. For example,
we could use low-magnitude adversarial noise patterns such
as [42] to make virtually invisible visual triggers.

Ethics: As with any work that studies the security vul-
nerabilities of deep learning models, it is necessary to state
that we do not support the use of such attacks in real deep
learning applications. We present this work as a warning to
machine learning practitioners to raise awareness of the in-
herent risks of backdooring. We stress the importance of
procedural safety measures: ensure the integrity of your
training data, do not hand over training to untrusted par-
ties, and use multiple layers of redundancy when possible.
Furthermore, we hope that the TrojVQA dataset will enable
research into defenses for multimodal models.
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