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Abstract

Determining the motion behavior of inexhaustible cate-
gories of traffic participants is critical for autonomous driv-
ing. In recent years, there has been a rising concern in
performing class-agnostic motion prediction directly from
the captured sensor data, like LiDAR point clouds or the
combination of point clouds and images. Current motion
prediction frameworks tend to perform joint semantic seg-
mentation and motion prediction and face the trade-off be-
tween the performance of these two tasks. In this pa-
per, we propose a novel Spatial-Temporal Integrated net-
work with Bidirectional Enhancement, BE-STI, to improve
the temporal motion prediction performance by spatial se-
mantic features, which points out an efficient way to com-
bine semantic segmentation and motion prediction. Specif-
ically, we propose to enhance the spatial features of each
individual point cloud with the similarity among tempo-
ral neighboring frames and enhance the global temporal
features with the spatial difference among non-adjacent
frames in a coarse-to-fine fashion. Extensive experiments
on nuScenes and Waymo Open Dataset show that our pro-
posed framework outperforms all state-of-the-art LiDAR-
based and RGB+LiDAR-based methods with remarkable
margins by using only point clouds as input.1

1. Introduction
Modern self-driving vehicles are expected to operate in

open traffic scenes with highly dynamical moving objects
instead of only in closed scenes [1, 19, 32]. The motion of
inexhaustible categories of traffic participants is critical for
the safety of autonomous driving systems.

Traditional methods tend to formulate this task as trajec-
tory prediction [1–5,11,14,42,44,45], which lacks the abil-
ity to handle unexpected categories that have not been seen
in training set due to the dependence on a separate object
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Figure 1. Comparison between BE-STI and previous motion pre-
diction framework. Top row: Previous framework, which adopts
global temporal pooling (GTP) to capture motion clues. Bottom:
Our proposed BE-STI framework.

detector [27–29, 40, 41]. Scene flow [7, 8, 15, 18, 20, 33, 36]
provides an attractive solution by estimating the dense
motion field directly from LiDAR point clouds, which is
computationally prohibitive for practical self-driving sys-
tems [17, 35]. Recent works seek to perform joint seman-
tic segmentation and motion prediction based on BEV oc-
cupancy grids, which essentially solves a joint optimiza-
tion problem and thus faces the trade-off between the per-
formances of the above two tasks. Our goal in this pa-
per is to explore a better way to combine the two tasks
of semantics and motion, which utilizes a bidirectional en-
hancement network to improve the motion prediction per-
formance through more accurate spatial semantic features.

One may ask: whether semantic information can bene-
fit motion prediction? We first seek to answer this ques-
tion through a toy example. As shown in Tab. 1, we feed
MotionNet [35], previous state-of-the-art (SOTA) LiDAR-
based motion prediction framework, with semantic ground
truth (GT) as additional input, which outperforms the previ-
ous work by a great margin. Specifically, we first use the
segmentation GT of the points in the voxel to count the
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Method
Motion Prediction Mean Error (m) ↓

Static Speed ≤ 5 m/s Speed > 5 m/s
MotionNet [35] 0.0201 0.2292 0.9454

MotionNet+ GTseg 0.0015 0.2139 0.7990

Table 1. Performance on the motion prediction task on nuScenes.

distribution of the segmentation category as a segmentation
vector, and then combine the vector with the original input
to obtain a new input. Thus, we are confirmed high-quality
semantic information have a positive impact on motion pre-
diction task. To this end, we introduce a semantic decoder
between our backbone network and motion decoder to ob-
tain more accurate semantic information.

Considering that single frame of LiDAR information
is sparse and the adjacent LiDAR frames describe similar
scenes, the temporal information helps to extract more sta-
ble and accurate spatial semantic information. Given this,
we propose a temporal-enhanced spatial encoder (TeSE)
to perform better spatial understanding of each individual
frame. TeSE is introduced to capture the common feature of
neighboring frames and merge it to feature maps of each in-
dividual frame. In this way, the difficulty of individual spa-
tial understanding caused by the sparsity of LiDAR points
can be effectively compensated by adjacent frames.

Another concern about our framework is how to fully
utilize the semantic information generated by our semantic
decoder. To efficiently and effectively utilize the semantic
feature, we propose a spatial-enhanced temporal encoder
(SeTE) between the semantic decoder and motion decoder,
which is designed to capture motion clues by discovering
the spatial variation with time. Notice that temporal non-
adjacent frames describe distinct scenes, we introduce SeTE
to capture the discriminative feature of non-adjacent frames
in time channel and feed it into motion decoder.

We name our novel proposed class-agnostic motion
prediction network as bidirectional enhanced spatial-
temporal integrated network (BE-STI). We provide a
comparison between the sketches of BE-STI and previous
framework in Fig. 1. As can be seen, apart from the tra-
ditional backbone and motion decoder, we introduce three
stacked modules: (1) TeSE, which is applied to perform
spatial feature enhancement with temporal common fea-
tures; (2) semantic decoder, which is applied to render mo-
tion prediction modules with auxiliary semantic informa-
tion; (3) SeTE, which is applied to enhance the temporal
motion features with spatial discriminative features.

The implementation of BE-STI is quite simple but ef-
ficient. All modules are built up with several stacked
2D and 3D convolution layers. Without any fancy struc-
tures, BE-STI surpasses all previous SOTA LiDAR-based
and RGB+LiDAR-based methods on nuScenes dataset with
only LiDAR point clouds input while running at over 22Hz.

Our contributions can be summarized as follows:
• We propose a novel class-agnostic motion prediction

framework, named BE-STI, in which the benefits of se-
mantic information to motion prediction is extensively ex-
plored. With the auxiliary semantic information in our
framework, the motion prediction performance is signifi-
cantly improved.

• We propose TeSE and SeTE to perform bidirectional
enhancement between spatial and temporal feature extrac-
tion, in which TeSE contributes to the spatial understanding
of each individual frame while SeTE captures high-quality
motion clues by extracting spatial discriminative features.

• Extensive experiments on nuScenes and Waymo Open
Dataset (WOD) demonstrates that BE-STI framework out-
performs previous SOTA methods by a remarkable margin.

2. Related Work
2.1. Trajectory Prediction

Trajectory prediction aims to predict the future posi-
tions of some typical objects according to historical ob-
servations [3, 5, 11, 42, 44], typically involving three sub-
modules: detection [12, 21, 22, 27–29, 39–41, 47], track-
ing [10, 26, 30, 34, 37, 38, 43, 46, 48] and prediction [1, 2, 4].
One of mainstream methods [5] is to predict the object
trajectories in a cascading manner where the three sub-
modules receive the output of previous sub-module, respec-
tively. Considering the limited information sharing among
these sub-modules, such strategy sacrifices the potential ad-
vantage of joint optimization. Another method [44] designs
an end-to-end neural network to perform three tasks jointly
and achieve great performance improvement. However, this
approach has greater difficulty and longer epochs to opti-
mize the network.

Compared with trajectory prediction, our proposed
method pays more attention to capture of motion informa-
tion and gets rid of the dependence on the detection results.
When the detection is inaccurate or some moving objects,
which are not seen in the training set, such as balls, small
animals, our method still could provide accurate motion
prediction, which improves the completeness of the system
of self-driving vehicles.

2.2. Flow Estimation

This task aims to estimate flow to describe the motion
from past to current time. 3D flow, which is also called
scene flow [7–9, 15, 18, 20, 33, 36], is a hot research topic
recently. The task is to estimate the motion from LiDAR
points and attach each point with a 3D vector to represent
the dense 3D motion field. Current scene flow methods are
trained and tested on either densely processed data KITTI
Scene Flow [7], or synthetic data FlyingThings3D [18].
However, it is difficult to directly apply these methods on
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Figure 2. Architecture of spatial-temporal integrated network with bidirectional enhancement (BE-STI). Left: Backbone. Middle: Spatial
semantic decoder stage. Right: Temporal motion decoder stage.

real point clouds obtained by LiDAR, which have no one-
to-one correspondences between pairs of points in past and
current point clouds.

Since self-driving system rarely cares about the vertical
motion of surrounding agents, there is a growing trend to-
wards estimating the motion and predicting the future posi-
tion in BEV [6, 13, 17, 23, 35]. MotionNet [35] is the prior
in this direction, which proposes to jointly perform percep-
tion and motion prediction on 2D BEV maps. PillarMo-
tion [17] proposes a cross-sensor based self-supervision to
train MotionNet [35] with the additional optical flow super-
vision from RGB images, which significantly improve the
motion prediction accuracy by a great margin when combin-
ing the self-supervised model with supervised fine-tuning.

Although we believe that the two tasks have a mutually
promoting relationship, the information required by the two
tasks is quite different. So we think it is not suitable to use
the same feature to solve the two tasks like MotionNet [35].
Our proposed method explore a better way to combine the
two tasks, which first extracts a semantic feature with more
accurate precision, and further uses this feature to obtain
motion information. Through TeSE and SeTE to enhance
the relationship of space and temporal, the network has the
ability to extract better semantic and motion information.

3. The proposed Approach

3.1. Problem Formulation

Given a temporal sequence of LiDAR point clouds ob-
tained by the moving self-driving vehicle, an ego-motion
compensation module described in MotionNet [35] is ap-
plied first to synchronize all the past frames to the current

coordinate system of ego vehicle. We denote each syn-
chronized point cloud at time t as P t = {P t

i }
Nt
i=1, where

P t
i ∈ R3 indicates the coordinate of a point and Nt is the

number of points. Then P t is discretized into dense 3D
voxels V t ∈ {0, 1}H×W×C , where the empty voxel is rep-
resented by 0, the non-empty one is represented by 1 and
H,W,C are the numbers of voxels along X,Y and Z axis.
After that, we represent V t as a 2D pseudo-image with the
vertical dimension corresponding to image channels, which
can be regard as a BEV map with C channels. Therefore,
the BEV motion field is defined as the movement of each
gird to its corresponding position at next timestamp, which
can be denoted as M t ∈ RH×W×2. The movement of each
point P t

i is simply identified as the movement of the corre-
sponding BEV grid.

3.2. Bi-enhanced Spatial-temporal Network

As mentioned in Sec. 1, the pre-experiment result of a
toy example demonstrates the improvement of semantic in-
formation on motion prediction task. To this end, we pro-
pose to introduce a semantic decoder in our framework to
boost the performance of motion prediction. Given the fact
that the sparsity of LiDAR points makes it tough to perform
high-quality spatial understanding while the temporal adja-
cent frames capture similar scenes, TeSE is introduced in
our framework to perform better spatial feature extraction
on each individual frame with the assistance of temporal
global features. Besides, we also design a SeTE module
to efficiently capture the temporal motion clues through the
spatial discriminative features of non-adjacent frames. The
overall structure is illustrated in Fig. 2.
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Figure 4. Spatial-enhanced Temporal Encoder (SeTE)

3.2.1 Temporal-enhanced Spatial Encoder

We are confirmed that the performance of motion prediction
can be further improved by introducing better semantic fea-
tures. Notice that the sparsity of the point cloud makes spa-
tial understanding tough while the adjacent frames describe
similar scenes, the temporal common features can bene-
fit the spatial feature encoding of each individual frame.
Therefore, we introduce TeSE here to extract common fea-
tures of adjacent frames and feed back to the feature map of
each individual frame.

TeSE consists of two stages: global temporal feature ex-
traction and individual-global feature fusion, see Fig. 3. The
global temporal feature extraction is built up with several
stacked 3D convolution layers with kernel size of k×3×3,
where k corresponds to the temporal dimension. During
this stage, the temporal dimension is gradually reduced to
1 and the channel increases to T times, which corresponds
to the global feature representation of the T frames, respec-
tively. Practically, we apply a 2D convolution layer with
kernel size 3×3 and a 3D convolution layer with kernel size
k × 1× 1 to replace the k × 3× 3 convolution for the pur-
pose of model complexity reduction. During the individual-
global feature fusion stage, the extracted global temporal
feature is divided into T parts along the channel and stacked
with the feature map of each individual pseudo-image in the
sequence. Then a 3D convolution layer with kernel size of
2×3×3 is applied to each pair of individual-global feature
map for the purpose of enhanced spatial feature encoding.

3.2.2 Spatial-enhanced Temporal Encoder

Notice that the motion clues of objects are implicit in the
changes of the scene, which is mainly represented by the

discriminative features among non-adjacent frames. SeTE
is introduced here to capture high-quality motion informa-
tion from non-adjacent frames by discovering the spatial
variation with time.

Previous works usually take global temporal pooling
(GTP) to capture the temporal features, which pays equal
attention to all temporal frames. We notice that the combi-
nation between two frames with different temporal intervals
can provide distinct motion clues. Specifically, according to
the comparison between the first frame and the last frame in
a temporal sequence, it is easy to coarsely determine the
moving speed and the motion state of each object. Then
the trajectory clues provided by the temporal intermediate
frames can be applied to model fine motions.

To this end, given a sequence of feature maps which
encode the spatial features of each frame. Here we take
T = 5 frames as example. The order among frames in the
sequence is organized as shown in Fig. 4. In SeTE, a convo-
lution layer with kernel size 2×3×3 is first applied to cap-
ture the feature of the first and the last frame, which is also
applied to capture the feature of the second and the penul-
timate frame, etc. Then the generated two feature maps to-
gether with the middle frame are fed into a 3 × 3 × 3 con-
volution to capture the global motion feature.

3.2.3 Architecture of BE-STI framework

We propose to fully utilize the semantic information to
boost the motion prediction performance in our BE-STI
framework. Apart from (1) how to introduce semantic fea-
ture extraction during the design of motion prediction net-
work, there still exists another two issues to be addressed:
(2) how to perform better spatial feature extraction for each
individual pseudo-image, which is essential for better se-
mantic understanding; (3) how to aggregate temporal fea-
tures based on spatial semantic feature representation of
each individual pseudo-image.

To address the above issues, except for the traditional
backbone network and motion decoder, we introduced ad-
ditional three modules, TeSE, semantic decoder and SeTE,
in BE-STI framework. As shown in Fig. 2, we intuitively
divide the whole framework into two stages, which are spa-
tial semantic stage and temporal motion decoder stage.

Spatial semantic decoder stage. Given a sequence of
pseudo-images, four stacked blocks are applied as the back-
bone to extract multi-scale feature maps of each individual
image. Except for the first block, which is composed with
two 2D convolutions of stride 1, the other three blocks are
built up with classical 2D ResBlocks. Each block down-
samples the feature map by half on spatial dimension via
the first layer which contains a convolution with a stride of
size 2. Notice that each pseudo-image is operated individ-
ually and there is no downsampling or any other operation
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on temporal dimension. For the sequence of feature maps
at each spatial scale, TeSE is applied to enhance the spa-
tial feature representation of each individual pseudo-image
with temporal common features. After that, a bottom-up se-
mantic decoder is applied to merge the feature maps of each
image at different spatial scales, which consists of stacked
upsampling blocks. Each block is built up with stacked up-
sampling, concatenate and convolution layers. The output
of the semantic decoder is a sequence of feature maps with
the same size of the input pseudo-images, where each fea-
ture map corresponds to a pseudo-image. Here we use se-
mantic segmentation task to supervise the feature learning
during the spatial semantic stage.

Temporal motion decoder stage. The input to the tem-
poral motion decoder stage is the multi-scale feature maps
of each individual pseudo-image, which is generated by the
upsampling blocks of the semantic decoder. For the se-
quence of feature maps at each spatial scale, SeTE is applied
to capture the spatial discriminative features. After that, the
spatial discriminative features at multi-scale are delivered to
the bottom-up motion decoder, which consists of the same
structure with the semantic decoder. The output of motion
decoder is then fed into the same heads as described in Mo-
tionNet: (1) motion-prediction head, which predicts the fu-
ture position of each grid cell in the BEV pseudo-image;
(2) state-estimation head, which predicts whether a cell is
static or moving; (3) cell-classification head, which predicts
the semantic of each cell. Notice that the cell-classification
result is only used to classify between foreground cells and
background cells, which is applied to suppress the jitters of
background cells. The motion prediction head do not rely
on the cell-classification result and is able to predict the mo-
tion of unseen objects beyond training set.

3.2.4 Loss Function

Our proposed BE-STI network is trained with the assistance
of four losses associated with four heads, which are (1) the
motion prediction loss, state estimation loss and cell clas-
sification loss after the motion decoder; (2) the semantic
segmentation loss of all pseudo-images after the spatial en-
coder.

Motion prediction loss. We apply weighted smooth L1
loss for the motion prediction head, where each category is
assigned with a weight to balance the amount of grid cells
in different categories:

Lmot =
1

N

N∑
i=1

wi · SmoothL1(xmot,i, x
gt
mot,i) (1)

where SmoothL1(·) is smooth L1 loss, N is the number of
non-empty grid cells in current pseudo-image, xmot,i is the
predicted displacement of each non-empty cell, xgt

mot,i is the
corresponding ground truth and wi is the weight assigned to

different categories:

wi =

{
0.005, i-th cell ∈ background
1.0 , else

(2)

Motion state estimation loss. We adopt cross-entropy
loss for the motion state estimation head:

Lstate =
1

N

N∑
i=1

wi · CE(xstate,i, x
gt
state,i) (3)

where CE(·) is cross-entropy loss, N is the number of non-
empty grid cells in current pseudo-image, xstate,i is the pre-
dicted motion state of each non-empty cell, xgt

state,i is the
corresponding ground truth and wi is the weight assigned
to the cell categories defined in Eq. (2).

Cell classification loss. We also apply cross-entropy
loss for the cell classification head:

Lcls =
1

N

N∑
i=1

wi · CE(xcls,i, x
gt
cls,i) (4)

where xcls,i is the predicted category of each non-empty
cell, xgt

cls,i is the corresponding ground truth. CE(·), N and
wi are previously defined in motion state estimation loss.

Semantic segmentation loss The cross-entropy loss is
also adopted for the assistant semantic segmentation task:

Lseg =
1

T

T∑
t=1

1

Nt

Nt∑
i=1

wi · CE(xt
seg,i, x

t,gt
seg,i) (5)

where CE(·) is cross-entropy loss, T denotes the number of
pseudo-images, Nt is the number of non-empty grid cells in
the t-th image, xt

seg,i is the predicted category of each non-
empty cell, xt,gt

seg,i is the corresponding ground truth, wi is
previously defined in Eq.(2).

Therefore, the total loss for the training of BE-STI is de-
fined as follows:
L = λmot ∗Lmot+λstate ∗Lstate+λcls ∗Lcls+λseg ∗Lseg (6)

where λmot, λstate, λcls and λseg are the balancing factors to
adjust the importance among four sub-tasks.

4. Experiments
The performance of BE-STI is evaluated on the challeng-

ing BEV motion prediction benchmark of nuScenes dataset.
We first introduce the experimental setup in Sec. 4.1. In
Sec. 4.2, we report main results including the comparison
with SOTA methods, runtime analysis and qualitative re-
sults. Finally, we conduct extensive ablation studies to an-
alyze BE-STI network in Sec. 4.3, including the implemen-
tation of MotionNet and BE-STI on WOD [31].

4.1. Experimental Setup

Dataset. All experiments are conducted on a large-scale
autonomous driving dataset, nuScenes, which provides full
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Figure 5. Qualitative results of the proposed BE-STI framework. Top row: ground truth. Bottom row: BE-STI predictions. We represent
the motions with an arrow attached to each grid. The cell classification result is represented by various colors. Cyan: background; pink:
vehicle; black: pedestrian; yellow: bike; red: others.

autonomous vehicle sensor suite, including 1 LiDAR, 6
cameras, 5 radars, GPS and IMU, all with full 360 degree
coverage on the surroundings. nuScenes is composed with a
total of 1000 scenes, in which 150 scenes are used as testing
set and the annotations of them cannot be accessed. There-
fore, we have 850 scenes with ground truth annotations in
total, among which 500 scenes are used for training, 100
scenes for validation and and 250 scenes for testing follow-
ing the tradition in previous works [17,35]. For each scene,
we only utilize the LiDAR point clouds during the train-
ing and testing of the network. The LiDAR point clouds
are captured with a frequency of 20Hz and annotated with a
frequency of 2 Hz. Besides, the sequences of LiDAR point
clouds lasts about 20s in each scene. As described in [35],
the ground truth motion can be derived from the bounding
box annotations which is originally provided for detection
and tracking tasks.

Implementation details. For fair comparison, we fol-
low the same data pre-processing settings adopted by previ-
ous works [17,35], where the input point clouds are cropped
in the range of [-32m, 32m] × [-32m, 32m] × [-3m, 2m]
and the voxel size is set to 0.25m × 0.25m × 0.4m along
XYZ axis, respectively. The sequence length of LiDAR
point clouds is set to five, where the last one corresponds
to the current time while the previous four frames are from
the past time. The time interval between adjacent frames
is 0.2s. For the training of ancillary semantic segmentation
and cell classification tasks, five categories are defined as
below: Background, Vehicle, Pedestrian, Bicycle and Oth-
ers, where ”Others” represents the unseen objects with vari-
ous appearances and motion behaviours beyond the training
data.

As shown in Fig. 2, the input of BE-STI network is a
4D tensor with size 5 × 13 × 256 × 256, where 5, 13, 256
corresponds to the temporal, channel and spatial sizes, re-

spectively. We first apply two-layer 2D convolutions to lift
its channel size to 32. Then stacked ResBlocks are applied
to decrease the spatial size to 128, 64, 32 and lift the channel
size to 64, 128, 256 gradually. All sizes of the tensor keep
unchanged while the temporal size is reduced from 5 to 1
through SeTE.

Our BE-STI framework is implemented in Pytorch and
trained in two stages with the AdamW [16] optimizer. For
nuScenes dataset, we train the entire network with batch
size 16 for 70 epochs on 8 Tesla V100 GPUs. We set the
initial learning rate to 0.002 and decay it by a factor of 0.5 at
the 20, 40, 50 and 60-th epochs. We set λmot = λstate = 1.0,
λcls = λseg = 2.0 during the beginning 30 epochs and set
λmot = λstate = 1.0, λcls = 2.0, λseg = 0.0 during the last 40
epochs. The purpose is to first improve the spatial feature
extraction ability of BE-STI and then make the model fo-
cus on the motion prediction task. We adopt multi-gradient
descent algorithm (MGDA) [25] during the training of our
best model and disable it when performing ablation studies.

Evaluation metrics. Following MotionNet [35], we di-
vide the non-empty cells into three groups according to their
speeds: static(≤ 0.2 m/s), slow(≤ 5 m/s) and fast(> 5 m/s).
Then we report the mean and median prediction error on
each group, which is the L2 distances between the predicted
displacements and the ground truth displacements 1s into
future. Besides, we also report the performance on auxiliary
cell classification tasks. Here we report the average accu-
racy over all non-empty cells and the average accuracy over
all five categories, which are denoted as overall accuracy
(OA) and mean category accuracy (MCA), respectively.

4.2. Main Results

Comparison with SOTA methods. We extensively
compare our proposed BE-STI framework with a vari-
ety of published algorithms in Tab. 2. According to the
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Method Modality
Static Speed ≤ 5 m / s Speed > 5 m / s

Mean ↓ Median ↓ Mean ↓ Median ↓ Mean ↓ Median ↓
FlowNet3D [15] L 0.0410 0 0.8183 0.1782 8.5261 8.0230
HPLFlowNet [8] L 0.0041 0.0002 0.4458 0.0960 4.3206 2.4881
PointRCNN [28] L 0.0204 0 0.5514 0.1627 3.9888 1.6252
LSTM-ED [24] L 0.0358 0 0.3551 0.1044 1.5885 1.0003
MotionNet [35] L 0.0201 0 0.2292 0.0952 0.9454 0.6180

PillarMotion [17] I&L 0.0245 0 0.2286 0.0930 0.7784 0.4685
BE-STI (ours) L 0.0220 0 0.2115 0.0929 0.7511 0.5413

Table 2. Comparison with SOTA results on nuScenes. We report the mean and medium errors on three groups, which are static grids,
moving grids with speed ≤ 5 m/s and moving grids with speed > 5 m/s. L: LiDAR-based method. I&L: Image+LiDAR based method.

Method
Classification Accuracy (%) ↑

Bg Vehicle Ped. Bike Others MCA OA
PointRCNN [28] 98.4 78.7 44.1 11.9 44.0 55.4 96.0
LSTM-ED [24] 93.8 91.0 73.4 17.9 71.7 69.6 92.8
MotionNet [35] 97.0 90.7 77.7 19.7 66.3 70.3 95.8
BE-STI (ours) 94.6 92.5 82.9 25.9 77.3 74.7 93.8

Table 3. Performance on the auxiliary cell classification task on
nuScenes.

modality of training data, all published methods can be
categorized into LiDAR-only methods and RGB+LiDAR
methods, where PillarMotion is the one trained with well-
calibrated RGB images and LiDAR points. As can be seen,
our method reports a novel SOTA result with reference to
the mean prediction error on slow and fast moving objects
compared with all previous works. Specifically, when com-
pared to LiDAR-only methods, our BE-STI framework out-
performs the previous SOTA method MotionNet [35] with
a great margin of 0.1943m mean error and 0.0767m me-
dian error for the fast speed group, 0.0177m mean error
and 0.0023m median error for the slow speed group. Even
compared to the previous best RGB+LiDAR method Pil-
larMotion [17], BE-STI still outperforms it with a margin
of 0.0273m mean error for the fast speed group, 0.0171 m
mean error for the slow speed group. We also report the
auxiliary cell classification results of our proposed method
in Tab. 3. As we can see, our method performs higher accu-
racy on all of movable objects and MCA. The experimental
results show our proposed method is a better way to com-
bine the segmentation and motion tasks.

Runtime analysis. For autonomous driving systems, the
LiDAR point cloud processing time should be strictly no
more than 100ms. At the inference stage, our whole model
runs as 45ms on a single Tesla V100 GPU, where the point
cloud transformation and voxelization use 10ms and the for-
ward procedure of our model takes 35ms. Therefore, our
BE-STI network has the potential of practical application
on self-driving systems.

Qualitative results. We show the qualitative results of

our BE-STI structure in Fig. 5, in which the bottom row lists
our predicted results and the top row lists the corresponding
ground truth. The predicted motion is represented by an
arrow attached to each grid cell, whose length and direction
represents the displacement 1s into future. As we can see,
BE-STI produces high-quality motion prediction results on
BEV grid cells.

4.3. Ablation Studies

We first evaluate the contributions of each individual
component in BE-STI, see Tab. 4. For each experiment
from (a) to (d), the model is built up with the listed modules
together with the backbone and motion decoder mentioned
in Sec. 3.2. Except the global temporal pooling (GTP)
is proposed in MotionNet [35], SeTE, TeSE and Seman-
tic Decoder are the individual components designed in our
BE-STI framework. (a) the baseline method, which adopts
GTP; (b) SeTE; (c) SeTE and Semantic Decoder; (d) our
full model, which adopts TeSE, SeTE, and Semantic De-
coder.

SeTE. Compare (b) with (a), we can see that introducing
SeTE can significantly decrease the prediction errors on all
three groups of cells, and increase the MCA for segmenta-
tion slightly. Experiments show that the spatial information
is obviously helpful for extracting better temporal features.
It is worth noting that we only replace GTP with SeTE, the
performance has surpassed MotionNet [35].

Semantic Decoder. Compare (c) with (b), the MCA has
significantly been improved, cause the semantic decoder
combines low-level and high-level feature, which helps to
obtain more detailed spatial features. Meanwhile the pre-
diction errors on all three groups of cells have been de-
creased, which proves that high-quality semantic feature is
conducive to the extraction of motion information.

TeSE. Compare (d) with (c), the MCA has been fur-
ther reduced, cause TeSE utilizes temporal information to
enhance the semantic features, alleviating the problem of
sparse information in single frame. Not surprisingly, the
prediction errors of moving objects also dropped further,
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Method GTP TeSE Sem.
Decoder SeTE

Static Speed ≤ 5 m / s Speed >5 m / s
MCA↑

Mean ↓ Median ↓ Mean ↓ Median ↓ Mean ↓ Median ↓
MotionNet [35] ✓ 0.0256 0 0.2565 0.0962 1.0744 0.7332 70.3

(a) ✓ 0.0250 0 0.3014 0.0971 1.6326 0.8889 69.8
(b) ✓ 0.0249 0 0.2477 0.0959 1.0429 0.7203 70.6
(c) ✓ ✓ 0.0224 0 0.2391 0.0949 0.9376 0.6404 72.9
(d) ✓ ✓ ✓ 0.0244 0 0.2375 0.0950 0.9078 0.6262 74.8

Table 4. Performance comparison of our models with different combinations of components on nuScenes. The models listed here are
implemented without MGDA [25] for purely evaluation of components.

Supp.
Static Speed ≤ 5 m/s Speed >5 m / s

Mean ↓ Median ↓ Mean ↓ Median ↓ Mean ↓ Median ↓
(e) 0.0471 0.0039 0.2080 0.0928 0.7245 0.5411
(f) 0.0415 0 0.2093 0.0930 0.7245 0.5411
(g) 0.0220 0 0.2115 0.0929 0.7511 0.5413
(h) 0.0223 0 0.2103 0.0927 0.7510 0.5413

Table 5. Motion prediction error with different post-processing
methods on nuScenes.

Method
Motion Prediction Mean Error (m) ↓

Static Speed ≤ 5 m/s Speed >5 m / s
MotionNet [35] 0.0248 0.2950 1.3663
BE-STI (ours) 0.0244 0.2850 1.1594

Table 6. Motion prediction mean error on Waymo Open Dataset.

Method
Classification Accuracy (%) ↑

Bg Vehicle Ped. Bike Others MCA OA
MotionNet [35] 96.7 99.0 86.2 56.2 66.9 81.0 96.4
BE-STI (ours) 95.3 99.4 90.0 76.7 79.0 88.1 95.1

Table 7. Classification accuracy on Waymo Open Dataset.

which once again proves that more accurate semantic infor-
mation contributes more to the extraction of motion clues.

Post-processing methods. Tab. 5 shows the effects of
different post-processing methods. We extensively evaluate
several suppression methods, which are: (e) with no post-
processing; (f) if the predicted motion is less than 0.2 m/s,
the final decision on the motion of corresponding cells is
zero; (g) if the predicted motion is less than 0.2 m/s or the
cell is predicted to be static or belongs to background, the
final decision on the motion of corresponding cells is zero;
(h) if the cell is predicted to be static or belongs to back-
ground, the final decision on the motion of corresponding
cells is zero. From Tab. 5, we could find that our proposed
method hardly predicts a very small flow for fast moving
objects according to the comparison of (f) with (e). In addi-
tion, compare (g) with (f), the state of motion and the seg-
mentation are helpful in suppressing the jitters significantly.
For fair comparison, we adopt (g), the one adopted by pre-
vious works [17, 35], for our final result.

Performance on Waymo Open Dataset. For further
comparison, we implement MotionNet and BE-STI on

WOD [31]. The implementation details are the same with
that on nuScenes, except for the training epoch is set to
25. There are a total of 146534 generated samples after
pre-processing, among which 142919 samples are used for
training and 3615 samples for testing. For motion predic-
tion task, as shown in Tab. 6, BE-STI outperforms Motion-
Net with a margin of 0.0004 m, 0.0100m, 0.2069m mean er-
ror on static, slow and fast groups separately. For semantic
segmentation task, our BE-STI still performs higher classi-
fication accuracy on all movable objects and MCA.

5. Conclusion

We have presented BE-STI, a novel framework for class-
agnostic motion prediction from LiDAR point clouds. Our
framework involves a TeSE which performs spatial fea-
ture enhancement for each individual point cloud based
on the similarity among temporal adjacent frames and a
SeTE which performs global temporal feature enhancement
based on the spatial difference among non-adjacent frames.
Experimental results on nuScenes dataset demonstrate that
our proposed BE-STI framework significantly improves the
motion prediction performance and reports a novel SOTA
result compared with previous published methods. Besides,
our framework can run at realtime and therefore is com-
patible with practical autonomous driving systems. Fur-
thermore, we have also explored the bidirectional enhance-
ment between semantic segmentation and motion predic-
tion, which provides a more efficient way for the combina-
tion of various perception tasks like segmentation, predic-
tion, etc. We hope the findings would promote the develop-
ment of a more complete self-driving system in open traffic
scenes.
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