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Abstract

Deep neural networks are vulnerable to Trojan attacks.

Existing attacks use visible patterns (e.g., a patch or im-

age transformations) as triggers, which are vulnerable to

human inspection. In this paper, we propose stealthy and

efficient Trojan attacks, BPPATTACK. Based on existing bi-

ology literature on human visual systems, we propose to

use image quantization and dithering as the Trojan trig-

ger, making imperceptible changes. It is a stealthy and

efficient attack without training auxiliary models. Due to

the small changes made to images, it is hard to inject such

triggers during training. To alleviate this problem, we pro-

pose a contrastive learning based approach that leverages

adversarial attacks to generate negative sample pairs so

that the learned trigger is precise and accurate. The pro-

posed method achieves high attack success rates on four

benchmark datasets, including MNIST, CIFAR-10, GTSRB,

and CelebA. It also effectively bypasses existing Trojan de-

fenses and human inspection. Our code can be found in

https://github.com/RU-System-Software-

and-Security/BppAttack.

1. Introduction

Deep Neural Networks (DNNs) have achieved superior

performance in many computer vision tasks [8, 21, 52]. Re-

cent studies show that DNNs are vulnerable to adversarial

attacks such as adversarial examples [17, 45], membership

inference attacks [54, 58], model stealing [50, 62], etc. In

this paper, we focus on Trojan attacks [10, 13, 18, 35, 38,

41, 53]. The adversary injects a secret Trojan behavior dur-

ing training, which can be activated at runtime by stamping

a Trojan trigger to the image. Such triggers can be image

patches [18], watermarks [41], image filters [1,40] and even

learned image transformation models [10, 13, 37].

Trojan attacks [18] are severe threats to the trustworthi-

ness of DNN models. Liu et al. [41] demonstrates the pos-

sibility of attacking face recognition, speech recognition,

and autonomous driving systems. Such attacks are gener-

ally feasible in most training scenarios, including federated

learning, unsupervised learning, and so on [4, 29, 68]. With

the deployment of DNN based computer vision models, it

is a critical challenge in our community.

Existing Work: Most existing Trojan attacks leverage in-

put patterns as triggers. For example, BadNets [18] uses a

yellow pad as its trigger. Recent works [40] try to lever-

age image filters as triggers, which are input dependent and

dynamic, making them hard to detect. To further improve

the quality of Trojan triggers, Doan et al. [13] train an auxil-

iary image transformation model and use the transformation

function as its trigger. Other works have adopted similar

ideas [10, 37].

One problem of existing attacks is that they are vulnera-

ble to human inspections. Once a set of attack inputs are

found, it is not difficult to identify the trigger or train a

model to simulate the trigger. There are also online de-

tection methods to identify such attack samples, such as

STRIP [16]. Even for trained transformations as triggers,

it is hard for them to guarantee that the generated images

have imperceptible changes. This is because it is hard to

formulate human visual systems as a mathematical func-

tion, which makes it hard to optimize. Due to the relatively

large changes in inputs and limitations of existing poisoning

methods, it is also possible for reverse engineering based

defense methods [7,40,66] to recover part of the trigger and

identify if a model has a Trojan. Moreover, recent works on

generating high-quality triggers typically leverage trained

auxiliary models, which is time-consuming and inefficient.

Our Work: In this paper, we propose one new attack,

BPPATTACK. Based on existing literature on human visual

systems, we identify that humans inspectors are insensitive

to small changes of color depth. In this attack, we try to

exploit vulnerabilities in human visual systems. Thus, we

propose to reduce the bit-per-pixel (BPP) to conduct an im-

perceptible attack, which can also bypass existing defenses

mainly because of the small changes made to the input do-

main. We achieve our goal by performing a deterministic

yet input-dependent image transformation, i.e., image quan-
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Fig. 1. Comparison of examples generated by different Trojan attacks (i.e., BadNets [18], blending-based attack [9], SIG [2], filter-based

attack [1, 10], ISSBA [37] and WaNet [48]). For each attack, we show the Trojan sample (top) and the magnified (×5) residual (bottom).

tization and dithering. Due to the small-sized transforma-

tion as triggers, it is more challenging to train the model and

inject the trigger. To overcome this issue, we also propose a

contrastive learning and adversarial training method based

approach to training on the poisoned dataset. By doing so,

we do not require training auxiliary models, making the at-

tack fast and also input dependent. Moreover, our attack

exploits vulnerabilities in human visual systems, making it

human imperceptible when the attack settings are properly

set. Fig. 1 shows the comparison of our attack and existing

attacks using attack samples and residuals.

Our contributions are summered as follows:

• We propose a new attack that exploits human visual

systems. We design an effective and efficient attack

that leverages image quantization and dithering. It per-

forms deterministic input-dependent image transfor-

mations, making it fast and dynamic. We also propose

a contrastive learning and adversarial training based

approach to enhance the poisoning process to inject

such human imperceptible triggers.

• We evaluate our prototype on four different datasets

and seven different network architectures. Results

show that our attack achieves a 99.92% attack suc-

cess rate on average. Our human study also confirms

that it is 1.60 times better than the SOTA approaches

when facing human inspections. Results on existing

defenses also confirm that our attack can effectively

bypass various types of SOTA defenses.

2. Background

2.1. Trojan Attacks

Trojan models behave normally for benign inputs but

have malicious behaviors (i.e., outputting a particular label)

on inputs stamped with the Trojan trigger. One limitation of

existing Trojan attacks is that most of them are perceptible

to human inspectors. Many Trojan attacks [9, 18, 41] use

predefined patches or watermarks as Trojan triggers. Re-

fool [42] exploits physical reflection as Trojan trigger. Tro-

jan attacks can also happen in the feature space. For exam-

ple, Liu et al. [40] demonstrates attackers can use Instagram

filters as triggers to perform Trojan attacks. DFST [10]

utilizes CycleGAN [73] to inject Trojans in deep features

space. All these triggers are obvious for human inspection.

Recently, WaNet [48] proposed attacks using the image

warping technique as triggers. Although it is more stealthy

than previous works, the warping effects it leverages are still

perceptible. Another problem of existing attacks is that they

typically use fixed patterns as trigger patterns, which means

different samples share the same trigger pattern. This prop-

erty makes such Trojan attacks detectable by existing de-

fenses [20, 40, 43]. Nguyen et al. [49] proposes input de-

pendent triggers. This attack brings large pixel-level pertur-

bations, sacrificing stealthiness. Recently, Li et al. [37] and

Doan et al. [13] proposed new attacks that are not only im-

perceptible but also input dependent. The idea is to gener-

ate triggers by trained auto-encoders. While such methods

achieve stealthiness, they are model-dependent and time-

consuming.

2.2. Existing Defense

There has been a series of ways to defend Trojans. One

of them is training time defense, which aims at removing

Trojans before/during training. Chen et al. [6] and Tran et

al. [61] detect the malicious samples before training. Wang

et al. [67] removes Trojans in training by formalizing the

trigger in input space. Similarly, poison suppression [14,24]

depresses the malicious effectiveness of poisons in training.

These approaches target poisoning-based Trojan attacks but

ignore supply chain Trojan attacks. The second method is

reverse engineering. Neural Cleanse [66], DeepInspect [7],

K-arm [57] and ABS [40] use reconstructed triggers to per-

form detection. These methods work on local patched trig-

15075



gers but fail to generalize to different trigger types, e.g.,

input-aware triggers [49]. Another approach is to remove

Trojans in infected models [36, 39, 60, 72], such as finetun-

ing or pruning, which in cases, can lower benign accuracy as

well. Some other existing works try to leverage online de-

tection as a defense. STRIP [16] detect Trojan samples by

analyzing the sensitivity of samples on strong perturbation.

Februus [12] and SentiNet [11] leverage GradCAM [56] to

detect if model predictions are localized and leverage it as

a hint for triggers. Such methods fail when triggers are not

localized, e.g., filter triggers.

3. Method

In this section, we introduce BPPATTACK, a Trojan at-

tack that is invisible to human inspection, input-dependent

yet requires no auxiliary model training. We first describe

the threat model (§3.1), and then present the foundation and

details of the attack process (§3.2 and §3.3, respectively).

3.1. Threat Model

Adversarial scope and goal. The adversary aims to pro-

duce a Trojan model. Eq. 1 shows the formal definition.

Mθ is Trojan model, T is a Trojan transformation function

and η is the target label function. Input-targeted labels can

be: (1) all-to-one: the attacker select a constant label c as

output label (i.e., η(y) = c). (2) all-to-all: the target label

is the next label of the true label (i.e., η(y) = y + 1).

Mθ(x) = y, Mθ(T (x)) = η(y) (1)

Compared with previous Trojan attacks, we aim to pro-

vide the following attack properties:

• Effective: We want the model to have a high attack

success rate (ASR) while maintaining high benign ac-

curacy at the same time. This effective goal is the basic

requirement of Trojan attacks as defined in Eq. 1.

• Imperceptible: Many Trojan triggers are vulnerable

to human inspection, which is not robust. We want

to have a human imperceptible Trojan trigger. Tradi-

tionally, this is done by defining a distance function V

to measure the visual similarity of two samples. As

such, the goal is to find a trigger that is smaller than

a threshold, V(T (x),x) < t, where t is the threshold.

Existing works use Lp distance or SSIM scores, which

do not align with the human visual systems [51]. In

this paper, we tackle this problem by starting from ex-

isting studies on the human visual system and propose

an attack that is human imperceptible.

• Input-dependent: Fixed trigger patterns are easier to

detect [16,66] and in most cases, human visible. Thus,

input-dependent triggers are natural inheriting from

the human imperceptible requirement. We want to

have an image perturbation function R(x) = T (x)−x

that satisfies

{

Mθ(x+R(x)) = η(y)

Mθ(x+R(x′)) = y
where x

′ ̸= x (2)

• No auxiliary training: Many existing works try to re-

alize input-dependent attacks by utilizing an auxiliary

model, e.g., DFST [10] uses CycleGAN. Such attacks

are unstable because their effects depend on the train-

ing of the auxiliary models. Moreover, it has high com-

putation overhead. In contrast, we try to design an ef-

ficient Trojan attack without auxiliary models.

Adversary capabilities. Following existing attacks [13,

48], we assume the adversary has full control of datasets,

training process, and model implementation. The adversary

injects the Trojan by poisoning the dataset.

3.2. Human Imperceptible Theory

Our idea of generating human imperceptible triggers is

from the biology study that human visual systems are in-

sensitive to color bit depth change. Nadenau et al. [46] and

many existing literatures [28, 30, 47, 71] supported this ob-

servation. Image color quantization [3,5,23,65] is a process

that reduces the number of distinct colors used in an image

with the intention to produce human imperceptible changes.

To remove the unnaturalness introduced by color bit change,

dithering [15, 26, 63] can improve its quality.

3.3. BPPATTACK

To achieve the aforementioned objectives, we design a

novel image color quantization based Trojan attack. Spec-

trally, we leverage image color quantization and dithering

to generate high-quality attack triggers and poisoning sam-

ples and then propose a contrastive learning and adversarial

training-based method to inject the Trojan.

Image quantization. The first step of BPPATTACK is

to perform image quantization, which contains two steps.

First, we squeeze the original color palette (m bits for each

pixel on each channel) of the image into a smaller color

palette (d bits) by reducing the color depth. For each pixel,

we use the nearest pixel value in the squeezed d-bits space

to replace the original value. The squeezing function T is

defined in Eq. 3, where round represents the integer round-

ing function:

T (x) =
round

(

x

2m−1
∗
(

2d − 1
)

)

2d − 1
∗ (2m − 1) (3)

This is the main algorithm to generate Trojan triggers and

has a few benefits. First, it is a simple and deterministic
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function with good stability and generalizability, and we

do not need to train any auxiliary models such as auto-

encoders and U-Nets. Second, as pointed out by existing

work [46,70], large color depths are not necessary for repre-

senting images, which means the squeezed image can have

high visual similarity to the original image. While being hu-

man imperceptible, such digital value changes can be cap-

tured by ML models and used as a trigger.

Dithering. Image quantization potentially can cause un-

natural regions, especially when the bit reduction is high.

To increase the stealthiness of BPPATTACK, we utilize im-

age dithering techniques to remove the noticeable artifacts

by leveraging the existing colors of the artifacts. Image

dithering techniques are designed to create the illusion of

color depth when color palette of image is limited. Specif-

ically, we use Floyd–Steinberg dithering [15] and nearest-

value color quantization combined with dithering as Trojan

transformation. Details are presented in Algorithm 1. Func-

tion quantize implements Eq. 3. Floyd–Steinberg dithering

achieves its goal by error diffusion, and line 4 calculates the

error. After that, it adds residual quantization errors of a

pixel onto its neighbors and spreads the debt out based on a

predefined distribution. Lines 5 to 9 implement this idea.

Algorithm 1 Quantization with Floyd-Steinberg Dithering

Input: Image I , Diffusion Distribution [a1, a2, a3, a4]
Output: Quantized Image

1: function PROCESS(I)

2: for x from right to left do

3: for y from top to bottom do

4: error = quantize(I[x][y])− I[x][y]
5: I[x][y] = I[x][y] + error

6: I[x+ 1][y] = I[x][y] + error ∗ a1
7: I[x+ 1][y + 1] = I[x][y] + error ∗ a2
8: I[x][y + 1] = I[x][y] + error ∗ a3
9: I[x− 1][y + 1] = I[x][y] + error ∗ a4

Contrastive Adversarial Training. As shown in Fig. 1,

image quantization based attack triggers is very close to

original images. On the one hand, this makes it hard to

detect. On the other hand, it makes training more diffi-

cult, mainly because of the small perturbations. Existing

poisoning techniques tend to use the original cross-entropy

(CE) loss to train the Trojan model on benign and poisoning

samples. Due to the tiny perturbation introduced by image

quantization, it is hard to converge when using the CE loss.

Moreover, existing training procedure leads to inaccurate

and imprecise triggers. As a result, reverse engineering can

identify if a model has a Trojan by finding part of the trigger.

As a consequence, they are not robust attacks. To overcome

this challenge, we leverage contrastive supervised learning

and adversarial training.

The whole training framework follows the contrastive

learning framework, and we leverage the same loss func-

tion as described in existing work [31]. The key difference

of our attack from existing contrastive learning is that in

addition to existing negative sample generation methods,

we also leverage adversarial example generation methods.

Specifically, we use the PGD attack to generate adversar-

ial examples which flip the label of input from its original

one to the target label to simulate the effects of our attack.

Then, we leverage them in training as negative examples.

Intuitively, this means we exclude such perturbations fea-

tures as important features for the model to learn so that it

can focus on the injected trigger that is image quantization

and dithering described before. Note that the PGD attack is

an optimization-based method and does not require training

auxiliary models.

4. Experiments and Results

In this section, we evaluate BPPATTACK from different

perspectives. We first present the experiment setup, includ-

ing datasets and other settings in §4.1. In §4.2, we show

the effectiveness. Then, we investigate the stealthiness of

BPPATTACK by performing a human Inspection test (§4.3).

Furthermore, we evaluate BPPATTACK’s resistance to ex-

isting defenses in §4.4. We also conduct an ablation study

of BPPATTACK in §4.5. In all experiments, the default bit

depth is d = 5.

4.1. Experiment Setup

Datasets. We evaluate BPPATTACK on four datasets:

MNIST, CIFAR-10, GTSRB and CelebA. These datasets

are regularly used in backdoor-related researches [12, 16,

18, 39–41, 48, 66]. Details of these datasets are in Table 1.

MNIST [34] is used for hand-written digits recognition.

GTSRB [59] is built for classifying different traffic signs.

CIFAR-10 [33] is a classification benchmark. CelebA [44]

is a large-scale face attributes classification dataset. Note

that CelebA has 40 independent binary attributes, where

most attributes are unbalanced. To make it suitable for

multi-class classification, following WaNet [48], we use

the top three most balanced attributes (i.e., Heavy Makeup,

Mouth Slightly Open, and Smiling) and concatenate them

to build 8 classification classes.

Evaluation Metrics. Following existing works [13, 18, 37,

48], we use benign accuracy (BA) and attack success rate

(ASR) [64] to evaluate the effectiveness of different Trojan

Dataset Input Size #Train #Test Classes

MNIST 28*28*1 60000 10000 10

CIFAR-10 32*32*3 50000 10000 10

GTSRB 32*32*3 39209 12630 43

CelebA 64*64*3 162770 19962 8

Table 1. Overview of datasets.
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Dataset
Non-attack WaNet BppAttack

BA BA ASR BA ASR

MNIST 99.67% 99.52% 99.86% 99.36% 99.79%

CIFAR-10 94.88% 94.15% 99.55% 94.54% 99.91%

GTSRB 99.31% 98.97% 98.78% 99.25% 99.96%

CelebA 79.14% 78.99% 99.33% 79.06% 99.99%

Table 2. Effectiveness on all-to-one attacks.

Dataset
Non-attack WaNet BppAttack

BA BA ASR BA ASR

MNIST 99.67% 99.44% 95.90% 99.25% 98.46%

CIFAR-10 94.88% 94.43% 93.36% 94.73% 94.32%

GTSRB 99.52% 99.39% 98.31% 99.46% 99.29%

CelebA 79.14% 78.73% 78.58% 78.84% 78.72%

Table 3. Effectiveness on all-to-all attacks.

Network
Non-attack BppAttack

BA BA ASR

MobileNetV2 94.21% 93.79% 99.99%

SENet18 94.79% 94.49% 99.98%

ResNeXt29 94.83% 94.68% 99.97%

DenseNet121 95.35% 95.20% 100.00%

Table 4. Effectiveness on different networks.

attacks. In detail, BA evaluates the accuracy of a model for

clean samples by measuring the number of correctly clas-

sified clean samples over the number of all clean samples.

ASR is the success rate of Trojan attacks. It is defined as the

number of Trojan samples that successfully perform Trojan

attacks over the total number of Trojan samples.

Models. We evaluated BPPATTACK on seven popular

models. These models are commonly used in Trojan-

related studies [1, 13, 40–42, 48]. First, we follow the set-

tings of WaNet [48] and use a 5-Layer CNN (details can

be found in § 7.3 in Supp.) for MNIST. For CIFAR10

and GTSRB, we use Pre-activation ResNet18 [22]. For

CelebA, we use ResNet18. We also evaluates the effective-

ness of BPPATTACK on more representative models (i.e.,

MobileNetV2 [55], SENet18 [25], ResNeXt29 [69] and

DenseNet121 [27]).

Baseline. We select the state-of-the-art backdoor attack

method WaNet [48] as baseline methods and compare the

effectiveness and stealthiness with it. The stealthiness of

WaNet is much better than previous Trojan attacks [2, 9,

18, 41, 42], while its attack success rate is still high. For

WaNet, We use the default hyperparameters in the original

paper to conduct the attack. We also compare BPPATTACK

with auxiliary model based method [37] in § 7.5 (Supp.).

4.2. Effectiveness

To measure the effectiveness of BPPATTACK, we collect

BA and ASR of BPPATTACK, benign models, and state-of-

the-art baseline WaNet [48] under different datasets. For

attack settings, both all-to-one and all-to-all attacks are in-

cluded. We also evaluate BPPATTACK’s generalizability to

different models. The results for all-to-one attack and all-to-

all attack are shown in Table 2 and Table 3, respectively. For

the all-to-one attack setting, BPPATTACK achieves higher

BA and ASR than WaNet, indicating it has better perfor-

mance. In all-to-all attack settings, similarly, BPPATTACK

Images Patched Blended SIG ReFool WaNet BppAttack

Trojan 4.2% 2.3% 1.7% 5.2% 42.0% 50.7%

Clean 5.9% 7.2% 2.8% 14.5% 21.8% 48.1%

Both 5.0% 4.7% 2.2% 9.8% 30.9% 49.4%

Table 5. Success fooling rates of each Trojan attacks.

still performs better than WaNet. For example, the ASR of

BPPATTACK is higher than that of WaNet by 0.96%, while

the BA of BPPATTACK is also higher. These results indicate

BPPATTACK is a more effective attack method.

Besides the default models used in Table 2 and Ta-

ble 3 (i.e., a 5-Layer CNN for MNIST, Pre-activation

ResNet18 [22] for CIFAR-10 and GTSRB, ResNet-18 for

CelebA). We also conduct experiments on more mod-

els to further evaluate the generalizability of BPPATTACK

on different network architectures (MobileNetV2 [55],

SENet18 [25], ResNeXt29 [69] and DenseNet121 [27]).

The results are shown in Table 4. In detail, we use the

other four networks on CIFAR-10 and collect the ASR and

BA of our method. We also record the BA of benign mod-

els. The attack setting is an all-to-one attack. In all cases,

BPPATTACK achieves similar BA with nearly 100% ASR,

demonstrating BPPATTACK’s generalizability on different

network architectures.

4.3. Stealthiness

To examine the stealthiness of different Trojan attacks,

we conduct a similar human inspection study as performed

in previous works [13, 48]. We use the same settings as

WaNet. First, 25 images are randomly selected from GT-

SRB [59] dataset. Then, their corresponding Trojan im-

ages for different Trojan attack methods are created. For

each attack method, we can get a set of 50 images by mix-

ing the Trojan samples and original samples. Finally, 40

humans classify whether each image is a Trojan sample.

Before the classifying process, the participants are trained

about the attacks’ characteristics and mechanisms. The re-

sults are demonstrated in Table 5. As shown in the results,

BPPATTACK achieves about 50% success fooling rate for

both Trojan inputs and clean inputs, showing it has satis-

fying stealthiness. WaNet [48] has higher success fooling

rates than prior works. However, as shown in Fig. 1, it still

leaves some subtle artifacts, which can be found by human
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(a) MNIST (b) CIFAR-10 (c) GTSRB (d) CelebA

Fig. 2. Resilient to STRIP [16].

Clean BppAttack

Fig. 3. Resilient to GradCAM [56].

insepctions. More examples for comparing BPPATTACK

and WaNet can be found in § 7.1 in Supp.

4.4. Resistance to Existing Defenses

To examine BPPATTACK’s robustness against existing

Trojan defenses, we implement representative Trojan de-

fense methods (i.e., STRIP [16], GradCAM [56], Neu-

ral Cleanse [66] and Fine-pruning [39]) and evaluate the

resistance of BPPATTACK against them. We also show

BPPATTACK’s robustness against Spectral Signature [61],

Universal Litmus Patterns [32], and Neural Attention Dis-

tillation [36] in § 7.4 in Supplementary Materials.

STRIP [16]. We first evaluate if BPPATTACK can bypass

a representative runtime Trojan attack detection method

STRIP [16]. For a given input sample, STRIP examines

if it is a Trojan sample by intentionally perturbing it via su-

perimposing various image patterns and observing the con-

sistency of predicted classes for perturbed inputs. If the en-

tropy is low (i.e., the predictions on perturbed inputs are

consistent), then STRIP regard it as a Trojan sample. Fig. 2

demonstrates the experiment results on STRIP. The results

show that the entropy range of clean models and Trojan

models generated by our method are similar, indicating our

attack is resistant to runtime defense STRIP. The reason

why BPPATTACK can bypass STRIP is that the superimpos-

ing operation of STRIP will modify the color distribution

and break the color-shifting Trojan patterns.

GradCAM [56]. We then evaluate the robustness of

Fig. 4. Resilient to Neural Cleanse [66].

BPPATTACK against GradCAM based defense methods [11,

12]. These defense mechanisms exploit GradCAM to ana-

lyze the decision process of the models. In detail, given a

model and an input sample, GradCAM can give a heatmap,

where the heat value of each pixel indicates this pixel’s im-

portance for the final prediction of the model. GradCAM

is useful for detecting small-sized Trojans [18, 41]. This

is because such Trojans will produce high heat values on

small-sized trigger regions, which induces abnormal Grad-

CAM heatmap. However, our Trojan transformation func-

tion modifies the entire image, making GradCAM fail to

detect it. Fig. 3 shows the visualization heatmaps of a clean

model and a Trojan model generated by our method. It

shows that the heatmaps of these two models are similar,

indicating BPPATTACK is resistant to GradCAM based de-

fense methods.

Neural Cleanse [66]. We then evaluate BPPATTACK’s re-

sistance to a representative reverse engineering based de-

fense, Neural Cleanse (NC). It first reconstructs a trigger

pattern for each class label via an optimization process.

Then, it examines if there exists a class that has signifi-

cantly smaller reverse-engineered trigger and considers it

as a sign of Trojan models. In detail, it uses Anomaly Index

(i.e., Median Absolute Deviation [19]) to quantify the devi-

ation of reverse-engineered triggers based on their sizes and

consider the models whose Anomaly Index is larger than

two as Trojan models. Although it is effective for detect-

ing patched-based Trojans [18,41], it assumes that different

samples share the same trigger pattern in pixel level. Our
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(a) MNIST (b) CIFAR-10 (c) GTSRB (d) CelebA

Fig. 5. Resilient to Fine-Pruning [39].

method can bypass NC by breaking this assumption with

Input-dependent triggers, i.e., the pixel level Trojan pertur-

bations for different samples are different. Experiment re-

sults shown in Fig. 4 demonstrate Neural Cleanse fails to

detect the Trojan model generated by our method.

Fine-pruning [39]. We then investigate BPPATTACK’s re-

sistance to representative Trojan removing method, Fine-

pruning. This defense is based on the assumption that Tro-

jan behaviors are related to a few dormant neurons in the

model, and the Trojan can be removed via pruning such dor-

mant neurons. Given a set of clean samples, it records the

activation values on a layer and considers the neuron that

has the smallest activation value as the most dormant neu-

rons. Then, it gradually prunes neurons based on the order

of their activation values. The results can be found in Fig. 5.

It shows that Fine-pruning is not able to remove the Trojan

injected by our methods. For example, in MNIST, CIFAR-

10, and GTSRB, the ASR is always close or higher than BA.

For CelebA, although the ASR is slightly lower but it still

achieves above 50%, meaning the Trojan is not completely

removed.

4.5. Ablation Study

To investigate the effects of hyperparameters and differ-

ent components, we first evaluate the effects of the bits num-

ber d. Then, we study the influence of different injection

rates. We also investigate the effects of dithering and con-

trastive adversarial training.

Bits Number. As mentioned in §3.3, to generate Trojan

samples, we quantize the original color palette (m bits for a

pixel on each channel) into a smaller color palette (d bits),

and use the nearest pixel value in the squeezed value space

to replace the original one. Here, the bits number of the

squeezed color palette d is called bits number. To investi-

gate the effects of different bits number d, we collect the BA

and ASR under different bits numbers. The used dataset is

CIFAR-10, and the attack setting is an all-to-one attack. We

also show the generated Trojan sample to study bits num-

ber’s influence on the stealthiness of the attack. Fig. 6a

shows the BA and ASR under different bits number d. The

results demonstrate that our method can achieve high BA

and high ASR when d is not larger than 6. However, when

d reaches 7, the ASR decreases. Note that the original im-

ages’ bits number for each pixel on each channel is 8. The

larger d is, the fewer perturbations the attack induces. When

d = 7, the difference between the Trojan sample and the be-

nign sample is so small that it is hard for the model to tell.

Fig. 7 demonstrates the generated Trojan samples under dif-

ferent bits number d. For different d values, the Trojan sam-

ple is natural and indistinguishable from the clean sample.

More examples generated under different bits number d can

be found in § 7.2 in Supp.

Injection Rate. During training, the model is optimized

on benign samples and Trojan samples alternatively. We

denote the fraction that the model is optimized on Trojan

samples as injection rate α. To investigate its influence on

BPPATTACK’s performance, we record the BA and ASR

with different injection rates. The used dataset is CIFAR-

10, and the attack setting is an all-to-one attack. The results

are shown in Fig. 6b. The ASRs are low when α is small.

This is because a small injection rate indicates the effects of

optimizing on Trojan sample and target labels is limited so

that the model fails to learn the Trojan behaviors. With the

increase of the α, the ASR becomes higher. BA is not in-

fluenced by injection rate, when injection rate is in a range

from 2.5% to 30%.

Dithering. As we mentioned in §3.3, when d is small,

the new images can be less stealthy. To make the Trojan

samples more natural, we use dithering techniques to re-

move these unnatural artifacts. Here we study the effects of

dithering by illustrating the Trojan samples generated with

dithering and without it. Fig. 8 demonstrates examples to

show the effects of dithering, using the GTSRB dataset as

an example. The dithering technique helps generate more

natural Trojan samples by fixing the color banding. Over-

all, dithering can remove the color banding artifacts in the

directly quantized image to make the attack more stealthy.

Contrastive Adversarial Training. In this section, we con-

duct an ablation study to investigate the effects of Con-

trastive Adversarial Training. We use the vanilla and

our training methods to train two models on CIFAR-10,

and compare them by using a trigger reverse engineering
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Fig. 6. Evaluation results with different hyperparameters.
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Fig. 7. Effects of different bits number.

w
/o

 D
ith

er
in

g
w

/ D
ith

er
in

g

Input Trojan Residual

Fig. 8. Effects of Dithering.

method, Neural Cleanse [66]. Fig. 9 shows the result. As

we can see, the model trained with the vanilla method has

an anomaly index that is higher than the threshold (i.e., 2).

By contrast, the model trained with our method successfully

bypasses the detection.

5. Discussion

Mitigations. BPPATTACK can bypass existing defenses,

but it is not perfect. We believe that a defense that fo-

cuses on color depth checking can potentially detect our

attacks. Other possible defenses, e.g., activation distribu-

tion checking and anomaly detection based methods can

also help mitigate such attacks. Also, it is possible to de-

fend our attack under different threat models. For example,

data cleaning and validation or enforcing another training

protocol can mitigate general data poisoning based attacks.

Fig. 9. Effects of Contrastive Adversarial Training. The model

trained by vanilla training method can be detected by Neu-

ral Cleanse, while the model trained by Contrastive Adversarial

Training can bypass the detection.

Recent works have proposed DP-SGD and other methods

to defend such attacks [14, 24] during training time. Such

methods can potentially help mitigate BPPATTACK.

Ethical statements. In this paper, we propose a stealthy

and efficient Trojan attack, demonstrating a threat. On the

one hand, it has potential negative societal impacts. The

adversaries can exploit real-world AI systems, such as facial

recognition applications. On the other hand, we disclose

new vulnerabilities and alert the defenders to pay attention

to such new types of Trojan attacks.

6. Conclusion

In this paper, we propose an image quantization and

dithering based Trojan attack. By exploiting the human vi-

sual system, our method can generate human impercepti-

ble triggers with the support of literature from biology. To

improve the effectiveness of our attack, we also propose a

contrastive learning and adversarial training based poison-

ing method. Results show that our attack is highly effective

and efficient.
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