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Abstract

Crowded scenes make it challenging to differentiate per-
sons and locate their pose keypoints. This paper proposes
the Contextual Instance Decoupling (CID), which presents
a new pipeline for multi-person pose estimation. Instead of
relying on person bounding boxes to spatially differentiate
persons, CID decouples persons in an image into multiple
instance-aware feature maps. Each of those feature maps is
hence adopted to infer keypoints for a specific person. Com-
pared with bounding box detection, CID is differentiable
and robust to detection errors. Decoupling persons into dif-
ferent feature maps allows to isolate distractions from other
persons, and explore context cues at scales larger than the
bounding box size. Experiments show that CID outperforms
previous multi-person pose estimation pipelines on crowded
scenes pose estimation benchmarks in both accuracy and ef-
ficiency. For instance, it achieves 71.3% AP on CrowdPose,
outperforming the recent single-stage DEKR by 5.6%, the
bottom-up CenterAttention by 3.7%, and the top-down JC-
SPPE by 5.3%. This advantage sustains on the commonly
used COCO benchmark'.

1. Introduction

Multi-Person Pose Estimation (MPPE) detects all per-
sons in an image, and locates keypoints for each of them.
As an important step for human activity understanding,
human-object interaction, human parsing, etc., MPPE has
attracted increasing attention. Current MPPE methods can
be summarized into three categories according to their fol-
lowed pipelines, i.e. i) top-down methods [7, 21, 26, 33],
which detect person bounding boxes and perform pose
estimation for each bounding box, ii) bottom-up meth-
ods [2,9,11,17,20,23] that first detect body keypoints, then
group them into corresponding persons, and iii) single-stage
regression methods, which regress pose keypoints coordi-
nates [0, 19,28,30,35] based on person features. Fig. 1 (a),
(b), and (c) illustrate those three pipelines, respectively.

fCode is available at https://github.com/kennethwdk/CID
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Figure 1. Illustration of different MPPE pipelines for differenti-
ating persons. (a) Top-down methods use bounding box to crop
person; (b) Bottom-up methods first detect all keypoints then
group them into different persons; (c) Single-stage methods di-
rectly regress keypoint coordinates based on sampled feature vec-
tor. (d) The proposed Contextual Instance Decoupling (CID) first
generates instance-aware feature maps, then infers heatmaps from
each person. It has potential to enjoy better robustness to detection
errors in (a), keypoint localization errors in (b), and alleviate the
difficulty of long distance regression in (c).

The above pipelines show different properties and de-
fects for MPPE in crowded scenes. Regression paradigm
enjoys better efficiency, but suffers from the difficulty
of long distance regression. Top-down and bottom-up
pipelines rely on heatmaps to locate keypoints, e.g., a like-
lihood heatmap can be generated for each keypoint, where
the keypoint is located with argmax or soft-argmax [27] op-
erations. Heatmap based methods need extra computations
to differentiate persons. As shown in Fig. 1 (a) and (b), top-
down methods adopt bounding box cropping to differentiate
persons, while bottom-up methods utilize keypoint group-
ing. Bounding box cropping, e.g., RolAlign [7] is sensitive
to detection errors, and cannot explore contexts outside the
box. Keypoint grouping is complex and not capable of re-
cover keypoint location errors because it discards contextual
cues. Sec. 2 presents a more detailed review.

This work aims at studying a new MPPE pipeline to ef-
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fectively separate instances while preserving rich context
cues to estimate keypoint locations. As shown in Fig. |
(d), given an image with multiple persons, we first decou-
ple each person into a specific instance-aware feature map.
Each instance-aware feature map contains all the necessary
cues required for single-person keypoint localization. It is
hence used to infer keypoints for a specific person. Com-
pared with top-down and bottom-up piplelines, this new
pipeline is robust to spatial detection errors, and is able to
explore contextual cues at larger scale. Compared with the
regression baseline, it encodes more spatial cues in feature
maps, and alleviates the difficulty of long-range location re-
gression.

This pipeline is implemented in our Contextual Instance
Decoupling (CID) module. Given an image with multiple
persons, CID first extracts the location and feature for each
person via Instance Information Abstraction (ILA) module,
which are hence used to decouple different persons in the
Global Feature Decoupling (GFD) module. GFD computes
spatial and channel attention with location and feature cues
of each person to isolate the corresponding person. To im-
prove the discriminative power of those instance features,
we introduce a contrastive loss to ensure different persons
present different features. The generated instance-aware
feature maps are used to estimate the final heatmap for key-
point estimation.

We test CID on different multi-person pose estimation
benchmarks, i.e., COCO Keypoint [14], CrowdPose [13]
and OCHuman [34]. Experiment results show that, our CID
achieves superior performance compared with recent works
following different pipelines. For instance, CID achieves
71.3% AP on CrowdPose with high efficiency, outperform-
ing the recent single-stage DEKR [6] by 5.6%, the bottom-
up CenterAttention [I] by 3.7%, and the top-down JC-
SPPE [13] by 5.3%. It also shows competitive performance
on the commonly used COCO benchmark, e.g., achieves
68.9% AP, outperforming the DEKR [6] by 1.6%.

To the best of our knowledge, this is an original effort on
contextual instance decoupling pipeline for MPPE. Com-
pared with previous MPPE pipelines, CID shows better ro-
bustness to detection errors, and alleviates the complexity of
keypoint grouping and long distance regression. Being able
to encode more contextual and spatial cues at larger scales,
it is also capable of isolating distractions from other per-
sons. Those advantages make CID a more effective pipline
for MPPE.

2. Related Work

Top-down methods first detect person bounding boxes
by detectors like YOLO [25], then perform single-person
pose estimation in the cropped region. Mask R-CNN [7]
is a typical method that adds a keypoint detection branch
on Faster R-CNN to use the RolAlign feature. G-RMI [21]

breaks top-down methods into two stages, and uses sepa-
rate models for person detection and pose estimation, re-
spectively. Most of top-down methods focus on design-
ing better networks for locating keypoints. For instance,
Hourglass [18], SimpleBaseline [33] and HRNet [26] have
achieved superior performance with their proposed pose es-
timation networks.

Bottom-up methods first detect identity-free keypoints
for all persons, then group keypoints into individual per-
sons. Heatmap is widely adopted for keypoint detection
and most bottom-up methods focus on keypoints group-
ing algorithms. The first line of grouping methods formu-
lates grouping as integer linear programming, and Deep-
Cut [23] is a representative work. The second line utilizes
vector fields to encode keypoint relationships, and grouping
is conducted by parsing those fields. OpenPose [2], Person-
Lab [20] and PifPaf [ 1] are representative methods. The
third line clusters keypoints into poses. Associative Em-
bedding [17] learns each keypoint with a tag embedding
and conducts the grouping by clustering the tags. HGG [9]
introduces a differentiable graph clustering to replace tradi-
tional offline clustering operation.

Single-stage methods tend to directly regress keypoint
locations, thus differs with top-down and bottom-up meth-
ods, which require a two-stage computation. Single-
stage regression also makes the whole pipeline end-to-
end trainable. CenterNet [35] and DirectPose [28] are the
early single-stage methods to directly estimate multi-person
poses by regressing. Researchers have proposed several
works to improve the performance of regression. SPM [19]
proposes a structured pose representation to relieve the dif-
ficulty of long distance regression. DEKR [0] proposes the
separating regression and adaptive convolution to improve
the quality of regression, and have achieved comparable
performance with two-stage methods.

Our CID differs with the above pipelines. Compared
with top-down and bottom-up methods, it is end-to-end
trainable, more robust to detection errors, and alleviates the
challenge of keypoint grouping. It also avoids the difficulty
of long distance regression faced by single-stage methods.
Our experiments show that CID outperforms latest works of
those pipelines in both efficiency and accuracy.

3. Method
3.1. Overview

Given an image Z with multiple persons, the goal of
multi-person pose estimation is to estimate locations of pose
keypoints for each person and can be denoted as,

{K\Dyi=lm — MPPE(T),
where ICgi) denotes the j-th pose keypoint for the i-th per-
son in image Z, m and n represent the number of persons in
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Figure 2. The pipeline of the proposed Contextual Instance Decoupling (CID). CID uses a CNN to extract the feature map. Instance
Information Abstraction (IIA) extracts the location and feature to represent each person. Global Feature Decoupling (GFD) modulates
the original feature map to produce instance-aware feature maps, each of which is used to estimate heatmap and keypoints for a person,

respectively.

7 and the number of keypoints for each person, e.g., n = 17
for COCO Keypoint [34] and n = 14 for CrowdPose [13].

We adopt the heatmap to locate keypoints. The input
to the heatmap module is a feature map extracted by a
Convolutional Neural Network (CNN) and the output is a
n-channel heatmap, indicating the probability distribution
map for each keypoint, i.e.,

{H;}j=1 = HM(F), F = &(1), (D

where HM(:) denotes the heatmap module, {#;}"_; is a
n-channel heatmap, where H; is the heatmap for j-th key-
point. ®(-) denotes the CNN backbone and F is the ex-
tracted global feature map for input image Z. Keypoints
can be decoded by finding local maxima in each channel of
H,e.g.,

{/Cy) . =rank(H,;,m), 2)

where m denotes the number of keypoints we want to de-
code from #H;. m = 1if F contains only one person and
m > 1 for multiple persons.

In MPPE, cues of multiple persons are mixed in F.
Extra efforts are required to differentiate those persons,
e.g., through spatially detecting bounding boxes or group-
ing keypoints. Different from those strategies, Contex-
tual Instance Decoupling (CID) decouples the multi-person
feature map F into a set of instance-aware feature maps
{F@1m  where each map F(*) represents cues of a spe-
cific person and preserves contextual cues to infer his/her
keypoints.

Previous studies like SE [8] and CBAM [32] reveal that
attention mechanism can modulate the feature map, mak-
ing its certain spatial location or channel emphasize specific
parts of the image. We also use attention mechanism to re-
calibrate F to generate the {F ()} . CID first identifies

all persons in F and describes each person with his/her ap-
pearance and spatial location. This procedure is finished in
the Instance Information Abstraction (IIA) module, which
can be denoted as,

(£ 00y = TIA(F), 3)

where 1¢) denotes the location of the i-th person, £ is the
representative feature encoding his/her appearance.

The {f,1)}™ | supervises the attention mechanism to
decouple the original feature map F into m instance-aware
feature maps via Global Feature Decoupling (GFD),

{FOYL = GFD(F {f7 10}, @)

where F(*) is the decoupled feature map for i-th person.

F can be feed to the heatmap module of Eq. (1) to
get the keypoint heatmap {7—[,§Z) =y for the i-th person.
His/her keypoints can be obtained via Eq. (2) by simply set-
ting m = 1. Note that, F' (?) contains more contextual cues
than a bounding box. It also isolates distractions from other
persons. Those prosperities benefit the heatmap module de-
sign, e.g., a lightweight module can be implemented with
good performance because it handles single person. The
lightweight heatmap module ensures the efficiency of CID.

We learn CID by training the backbone ®(-), ITA(-),
GFD(-) modules in an end-to-end manner. The overall
training objective is denoted by

L=Lia+ M grp, (5)

where L7 4 supervises to learn discriminative instance fea-
tures for person decoupling. Lgrp supervises the instance
heatmap estimation and ) is a weight to balance two losses.
Fig. 2 illustrates the pipeline of the proposed CID. Follow-
ing parts proceed to present the details of ITA, GFD and loss
computation.
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3.2. Instance Information Abstraction

As shown in Fig. 2, given the input feature map F €
REXHXW "TIA locates each person and generates corre-
sponding features. Previous regression methods generate
keypoint coordinates based on features at the person center
point [28, 35]. We follow this intuition and use the feature
at center point to represent each person. IIA regards each
center point as a keypoint and use heatmap to locate cen-
ter points. IIA estimates the center point with a heatmap
module similar to the one in Eq. (1), i.e.,

C - HMcenter(]:)7 (6)

where C denotes the center heatmap indicating the confi-
dence that each pixel is the center of a person. Fig. 3 illus-
trates the estimated center heatmap.

The center heatmap C is hence input into Eq. (2) to find
locations of center points. We use {1¢*) ™ | to denote the lo-
cations of center points of m persons, where 19 = (i, yi)
denotes the center coordinates of the i-th person. Features
at the center points on feature map F are regraded as rep-
resentative features for those persons. For the i-th person,
his/her representative feature can be computed as,

£ = Fa®). (7)

The computed £ is hence used to identify and decou-
ple the i-th person from other persons. It is expected to
have strong discriminative power to effective differentiate
visual similar persons. In other words, if two neighboring
or overlapped persons share similar appearance, their fea-
tures may be similar, which leads to failure cases in person
decoupling. To boost the discriminative power of person
features, we train the IIA with a contrastive loss to ensure
the discriminative power of each £,

Given a set of person features {f(i) i |, we constrain the
i-th person feature by minimizing the similarity of it and
other features, which can be calculated by,

exp(f(i) . f(i)/r)
m (1) 2(7) ’
> exp(f - £7/7)

(D) = —log ®)

where I denotes the lo normalized feature for ¢-th person
and 7 is a temperature coefficient, which is set to 0.05 in all
experiments. The effectiveness of the contrastive loss will
be validated in experiments.

3.3. Global Feature Decoupling

GFD is designed to decouple persons cues from the orig-
inal global feature map F based on instance features and lo-
cations {f¥), 10} 1t jointly considers spatial-wise and
channel-wise decoupling, i.e., decouples persons into differ-
ent spatial locations and channels of the feature map. This

Figure 3. Visualization of center heatmap C. IIA can identify each
person and estimate their corresponding center location.

is achieved by first computing the spatial recalibration and
channel recalibration, then applying the fused recalibration.

Spatial recalibration tends to decouple persons into dif-
ferent spatial locations. To spatially emphasize the i-th per-
son on a feature map, a straightforward way is to increase
the weights of features on his/her foreground and degrade
others. GFD generates a spatial mask to represent the fore-
ground for each person, and computes the spatial recalibra-
tion for the ¢-th person as,

F =MD F, )

where }"S(i) denotes the generated feature map for the i-th
person, and M) indicates the foreground mask. F =
Conv(F) is the transformed global feature map to adjust
the channel size for saving computation and memory.

To compute the mask M), we consider the location of
this person 10 = (z4,y;) and generate a relative coordi-
nates map O following [29]. We also compute the inner

product of instance feature (") and features at each spatial
)

pixel-level feature similarity. @9 and Mglzzn are concate-
nated and convolved by a convolution layer to produce the

spatial mask, which can be denoted as,

location on F. This leads to a map Mgi indicating the

M = Sigmoid(Conv([OW; Mg?m})), (10)

where M () is applied in Eq. (9) to indicate the spatial lo-
cation of foreground region of the ¢-th person.

Channel recalibration is computed to separate per-
sons into different channels of the feature map. Previous
work [8] shows that channel plays an important role to en-
code contexts and each channel can be regraded as a feature
detector. We hence re-weight the original feature map on
channel dimension with person features and generate con-
ditioned feature maps. Specifically, given the feature map
Fand a person feature £, GFD computes the channel re-
calibration for the i-th person with,

FO = F o an

where ® denotes the element-wise manipulation, and fc(i)
is the channel-recalibrated feature map for the ¢-th person.
Eq. (11) uses £ to weight different channels, hence pro-

duces different ]-}(,i) for different persons.
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Figure 4. Visualization of instance-aware feature maps and key-
point heatmaps of persons highlighted by bounding boxes. E(f(i))
boosts the discriminative power of person feature, making CID
more robust to occlusions and distractions from neighboring per-
sons with similar appearance. With K(fm ), the instance-aware fea-
ture map can better focus on each person foreground, and ensures
the generation of reliable keypoint heatmaps.

Note that, applying element-wise manipulation to two
dissimilar features leads a small vector. This enables
Eq. (11) to keep cues of the i-th person based on £, and
discards cues of other persons. In other words, Eq. (11)
highlights features showing similar channel-wise distribu-
tion with £, and depresses others. Eq. (11) does not de-
couple a person into a specific channel of the feature map,
but ensures different persons show different channel-wise
distributions. Learning discriminative features in Eq. (8)
further enforces the performance of channel recalibration.

Fused recalibration is computed based on F, S(i) and ]-"C(i)
to produce the instance-aware feature map. The instance-
aware feature map F(*) for the i-th person can be computed
as,

F@ = ReLU(Conv ([F; F))), (12)

where ]-'s(i) and .Fc(i) are fused to seek better discriminative
power in decoupling persons. F(?) is hence used to produce
the heatmap and estimate keypoints for the i-th person.
Discussions: Compared with bottom-up methods rely-
ing on keypoint grouping, CID shows better performance
and efficiency due to its end-to-end training property and
robustness to detection errors. Recent single-stage meth-
ods [35] directly regress keypoint coordinates from a repre-
sentative person feature £, Such pipeline discards the spa-
tial contexts in the original feature map. Differently, GFD
generates keypoints from F(?), which encodes more spa-
tial contexts than the vector f(*). Fig. 4 illustrates instance-
aware feature maps. It is clear CID is robust to occlusions

and distractions from neighboring persons.

GFD shares some similarity with several methods like
SE [8] and CBAM [32] in attention computation. However,
GFD differs with them in both motivation and implemen-
tation: 1) SE and CBAM aim to enhance the model capac-
ity. GFD is more explainable and aims to decouple persons
into instance-aware feature maps. 2) GFD leverages person
feature and spatial location into attention computation, and
boosts the efficiency in decoupling persons.

3.4. Loss Computation

To implement L4 and L pp for CID training, we fol-
low previous works to generate ground truth heatmap. For a
j-th keypoint with spatial coordinates (x;, y;), we compute
its response on the ground truth heatmap 47 as,

(x— ;) 4+ (y — x;)°
201-2

Hj(z,y) = exp(— ), (13)
where o; indicates the person size-adaptive standard devia-
tionin [12]. Eq. (13) is adopted to generate the multi-person
groundtruth heatmap H* and center map C*, and ground
truth heatmap H(9* for the i-th person, respectively.

Lrra is computed with multi-person groundtruth
heatmap #* and center map C*. It also combines the con-
trastive loss in Eq. (8), i.e.,

m

_ . *, % i (2)
CUA—FL([H,C],[H,C})+mZ€(f ), (14

=1

where [; | denotes the feature concatenation, and FL(-) com-
putes the Focal Loss [12,35], i.e.,

FLOLH) = = 3 {

(1 —Hey)log(Ha,y) ifHz, =1
(1 IO;{(”i?i)i_(Z[z)y) otherwise
15)
where o and 8 are hyper-parameters and N is the number
of points in #* with value equal to 1. We adopt the default
a = 2 and § = 4 following [12, 35].
Larp measurs the differences between computed
heatmap and ground truth of each person, i.e.,

1 & ) )
Lorp = — > FLHD, 1", (16)

=1
4. Experiments
4.1. Datasets and Evaluation Metric

We evaluate CID on three widely used multi-person pose
estimation benchmarks, i.e., COCO Keypoint [ 4], Crowd-
Pose [13], and OCHuman [34].

COCO Keypoint [ 14] contains 64K images of 270K per-
sons labeled with 17 keypoints. We use the t rain set con-
taining 57K images, 150K persons for training. The val
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set containing 5K images, 6.3K persons and test-dev
set containing 20K images are used for evaluation.

CrowdPose [13] contains 20K images and 80K persons
labeled with 14 keypoints. Following [3, 6], we use the
trainval set (12K images, 43.4K persons) and for eval-
uation we use the test set (8K images, 29K persons).

OCHuman [34] is a benchmark to examine MPPE in
more challenging scenarios. It consists of 4,731 images in
total, including 2,500 images for val set and 2,231 images
for test set. We report the results on OCHuman following
the setting of previous work [24] and [9].

We follow the standard evaluation metric and use OKS-
based metrics for MPPE. We report average precision with
different thresholds: AP, AP®°, AP". In addition, for
COCO we also report performance on different object sizes:
APM and APY. For CrowdPose, results on different
crowd-index are also reported: APE APM and APY.

4.2. Implementation Details

All experiments are implemented on PyTorch [22]. We
adopt HRNet-W32 [26] pretrained on ImageNet [4] as
backbone for all experiments and follow the most config-
uration of [6]. Results of HRNet-W48 are also reported to
verify the scale ability of CID. We set A = 4 in Eq. (5).

Training procedure resizes each image to 512*512. It
uses Adam [10] to optimize the model, and sets the learn-
ing rate to 0.001 for all layers. We train the model for
140 epochs on COCO and OCHuman, with learning rate
dividing by 10 at 90th, 120th epoch. For ablation study, we
train model 35 epochs on COCO. For CrowdPose, we train
model with 300 epochs and divide learning rate by 10 at
200th, 260th epoch. The batch size is set to 20 OCHuman
and 40 for CrowdPose and COCO. We adopt data augmen-
tation strategies including random rotation (-30,30), scale
([0.75,1.5]), translation ([-40,40]) and flipping (0.5).

Testing procedure resizes the short side of each image to
512, and keeps the aspect ratio. We adopt single scale test
with flipping following [3, 6] for all experiments.

4.3. Ablation Study

This section aims to investigate the contribution of each
proposed components in CID, including the channel and
spatial recalibration and the contrastive loss in ITA. We also
present the runtime analysis and visualization of CID.

Component Analysis. We first analyze the effective-
ness of each proposed component. The results are shown
in Table 1. Simply applying spatial recalibration only ob-
tains 17.9% AP on COCO val set, indicating its poor per-
formance in separating different persons. Adding the con-
trastive loss in Eq. (8) significantly boosts the performance
of spatial recalibrate to 64.6%. This demonstrates the im-
portance of feature discriminative power in person decou-
pling, as well as the validity of our contrastive loss. We also

£(f) | Spatial Channel | AP AP50 AP75 APM ApL
v 179 294 167 117 269
649 861 710 581 745
653 864 714 593 748
646 860 708 585 741
653 859 719 591 753
660 867 723 598 760

v
v
v

ANENEEENEN

v
v
v

Table 1. Validity of contrastive loss, spatial and channel recaliba-
tion in CID on COCO val set.

# channels AP APP0 AP APM APL
8 62.8 85.1 68.2 56.2 72.8
16 64.4 86.1 70.4 58.5 74.1
32 66.0 86.7 72.3 59.8 76.0
64 66.1 86.8 72.6 60.0 76.0

Table 2. Performance with different embedding dimensions on
COCO val set.
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Figure 5. Efficiency analysis of CID. (a) shows inference time of
each component w.rt. different numbers of persons. (b) compares
efficiency of CID with two variants of RolAlign [7].

Mem(G) | Params(M) | GFLOPs | Speed(fps) | AP

HrHRNet [3] 3.5 29.6 48.11 4.9 66.4
DEKR [6] 3.6 28.6 44.50 54 67.3
FCPose [16] 4.8 60.3 256.7 15.2 65.6
CID 3.8 29.4 43.17 21.0 68.9

Table 3. Efficiency comparison between CID and other methods.
“Mem” refers to memory consumption during inference, which is
tested on COCO val set with batchsize 1 and a single RTX 3090.
Compared methods are tested with codes provided by authors.

notice that this loss is useful to channel recalibration, e.g.,
improves the performance from 64.9% to 65.3%.

Table 1 also compares spatial and channel recalibra-
tion methods. CID with only channel recalibration obtains
64.9% AP on COCO val set. The spatial recalibration with
contrastive loss achieves 64.6% AP. This indicates that both
recalibration methods are effectively in separating persons.
Fusing channel and spatial recalibration consistently gets
the best performance for cases with and without contrastive
loss. We conclude that learning discriminative person fea-
tures, and jointly considering spatial-wise and channel-wise
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Figure 6. Illustration of sampled pose estimation results of CID from (a) COCO [14], (b) CrowdPose [13], and (c) OCHuman [34].

decoupling are important for decoupling persons.

Analysis on embedding dimension. The embedding di-
mension in CID is an important hyper-parameter. Too small
channel dimension is hard to encode cues of a large number
of persons, while large dimension increases the memory and
computation cost. Table 2 tests different embedding dimen-
sion from 8 to 64 and reports their performance. It indicates
that smaller dimension corresponds to lower performance.
Setting too large dimension, e.g., 64, no longer substantially
boosts the performance. We set the embedding dimension
to 32 as a reasonable trade-off between accuracy and com-
putational costs.

Runtime Analysis. We proceed to give a detailed anal-
ysis on the efficiency of CID. We first analyze the inference
time of each component in our model on COCO val set
with respect to different number of persons. Fig. 5 (a) shows
that ITA and GFD only take a fraction of total time cost, even
for cases with a large number of persons like 50. Fig. 5 (b)
compares CID with the commonly used RolAlign [7]. We
report the time cost of generating instance features from
global feature map with respect to different person num-
bers. We denotes the RolAlign+ in Mask R-CNN as the
green line, which outputs a feature map with size 14 x 14,
then upsamples it to 56 x 56. We also denote RolAlign:x
as the black line, which directly outputs 56 x 56 sized fea-
ture map. It is clear that, CID achieves substantially better
efficiency than RolAlign+ and RolAlignx.

Table 3 compares our method with recent works on pa-
rameter size and memory consumption during inference.
Among those compared works, HrHRNet [3] follows the
bottom-up pipeline. DEKR [6] and FCPose [16] are single-
stage methods, hence are more efficiency than HrHR-
Net [3]. CID outperforms HrHRNet [3] in AP. Compared
with both single-stage methods, our method consumes a
comparable size of memory, and achieves a faster inference
speed and substantially better performance.

Visualization to instance-aware feature maps and key-
point heatmaps of CID are demonstrated in Fig. 4. Fig. 6
further visualizes several pose estimation results on three
datasets. It can be observed that, our method gets reliable
and accuracy pose estimation even for challenging cases
like heavy occlusion and person overlapping.

4.4. Comparison with Other Methods

We compare CID with recent works on COCO and two
crowded scenes pose estimation benchmarks CrowdPose
and OCHuman in Table 4, 5, and 6, respectively.

General Multi-Person Pose Estimation. Comparison
with recent works on COCO are shown in Table 4. We
compare three types of methods, including top-down meth-
ods: Mask R-CNN [7], bottom-up methods: OpenPose [2],
AE [17], HGG [9], PifPaf [1 1] and HrHRNet [3], and recent
single-stage methods: CenterNet [35], SPM [19], PointSet
Anchor [31] and DEKR [6]. Compared with top-down
methods, CID achieves better performance, outperforming
Mask R-CNN by 5.8%. This indicates that our decoupling
strategy is superior to box cropping. CID is also better than
many bottom-up methods. For instance, we achieve 68.9%
AP on COCO test-dev set, which is higher than AE by
6.1% and HigherHRNet by 2.5%. Compared with single-
stage methods, CID also achieves superior performance,
i.e., outperforming DEKR by 1.6%. Benefit from its sim-
ple architecture and end-to-end trainable pipeline, CID also
enjoys better inference speed. For instance, it achieves 21.0
FPS, faster than most of existing MPPE methods.

Crowded Scenes Pose Estimation. To test CID in more
challenging scenarios, we compare it with recent works on
crowded scenes pose estimation benchmarks CrowdPose
and OCHuman. More severe person overlapping and oc-
clusions in those datasets degrade the accuracy of person
detection and keypoint localization, making existing meth-
ods get lower AP than on COCO.

We first evaluate on CrowdPose and summarize results in
Table 5. Compared works include JC-SPPE [13], DEKR [6]
and PINet [30]. Our method achieves 71.3% AP on Crowd-
Pose test set, outperforming previous methods by a large
margin, e.g., CID outperforms DEKR by 5.6%. Compari-
son between Table 5 and Table 4 shows that CID gets more
substantial advantages on CrowdPose.

Table 6 shows the comparison on OCHuman, a more
challenging crowded scenes benchmarks. We report the
performance under two evaluation protocols. The first is
proposed in [24], which trains on OCHuman val set and
tests on test set. Results are shown in the second column
of Table 6, where CID achieves the best performance, e.g.,
outperforming DEKR by 5.3%. We also report the results of
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Method [ Backbone Input size FPS [ AP AP®0 APT® APM APT AR
Top-down methods
Mask R-CNN [7] ResNet-50+FPN 800 14.2 63.1 87.3 68.7 57.8 714 -
SimpleBaselinet [33] ResNet-152 384x288 - 73.7 91.9 81.1 70.3 80.0 -
HRNet ™ [26] HRNet-W32 384x288 - 74.9 92.5 82.8 71.3 80.9 -
Bottom-up methods

OpenPose* [2] VGG-19 - 10.1 61.8 84.9 67.5 57.1 68.2 66.5
AE [17] HourGlass 512 8.1 62.8 84.6 69.2 57.5 70.6

HGG [9] HourGlass 512 - 60.4 83.0 66.2 84.0 69.8 -
PifPaf [11] ResNet-152 - - 66.7 - - 62.4 72.9 -
PersonLab [20] ResNet-152 1401 5.0 66.5 88.0 72.6 62.4 72.3 71.0
HrHRNet [3] HRNet-W32 512 49 66.4 87.5 72.8 61.2 74.2 -
SWAHR [15] HrHRNet-W32 512 4.9 67.9 88.9 74.5 62.4 755 -
CenterAttention [ ] HrHRNet-W32 512 - 67.6 88.7 73.6 61.9 75.6 -

Single-stage methods

CenterNet [35] HourGlass 512 12.2 63.0 86.8 69.6 58.9 70.4 -
SPM* [19] HourGlass - - 66.9 88.5 72.9 62.6 73.1 -
PointSet Anchor [31] HRNet-W48 800 4.8 66.3 87.7 73.4 64.9 70.0 -
FCPose [16] ResNet-101+FPN 800 15.2 65.6 87.9 72.6 62.1 723 -
DEKR [6] HRNet-W32 512 5.1 67.3 87.9 74.1 61.5 76.1 72.4
Ours HRNet-W32 512 21.0 68.9 89.9 76.0 63.2 71.7 74.6
Ours HRNet-W48 640 12.5 70.7 90.3 77.9 66.3 77.8 76.4

Table 4. Comparison with recent works on COCO test-dev set. * denotes using refinement. * denotes using two separate models for
person detection and pose estimation. FPS is measured on a single RTX 2080Ti.

Method [AP AP0 AP [APEF APM APH Method OCHuman val COCO train
Top-down methods test val test
Mask R-CNN [7] 572 835 603 | 694 579 458 Top-down methods
JC-SPPE [13] 66.0 842 715 | 755 663 574 Mask R-CNN [7] 20.2 - -
Bottom-up methods JC-SPPE [13] 27.6 - -
OpenPose* [2] - - - 627 487 323 OPEC-Net [24] 29.1 - -
HrHRNet-W438 [3] 659 864 70.6 | 733 665 579 RMPE [5] - 38.8 30.7
CenterAttention [1] 67.6 877 727 | 758 68.1 589 SimpleBaseline [33] - 41.0 333
Single-stage methods Bottom-up methods
DEKR(HRNet-W32) [6] | 65.7 85.7 704 | 73.0 664 57.5 AE[17] - 32.1 29.5
PINet(HRNet-W32) [30] | 68.9 88.7 747 | 754 69.6 61.5 HGG [9] - 35.6 34.8
Ours(HRNet-W32) 713 906 76.6 | 774 721 639 HrHRNet-W32 [3] 277 40.0 394
Ours(HRNet-W48) 723 908 779 | 787 73.0 64.8 Single-stage methods
SPM [19] 45.6 - -
. p DEKR(HRNet-W32) [6] 52.2 37.9 36.5
;[‘zl‘;)elrel:OSté SCl;)Srillllzaisf;);exlletgtrecent works on CrowdPose test set. Ours(HRNeLW32) 5 340 D
’ Ours(HRNet-W48) 58.6 46.1 45.0

another evaluation protocol in [9] to train on COCO train
set and test on OCHuman val and test set. The third and
fourth columns of Table 6 show the comparison under this
setting. Our method achieves 44.9% and 44.0% AP on the
OCHuman val and test set, consistently outperforming
competitors by a large margin.

Table 5 and Table 6 clearly demonstrate that CID
achieves superior performance in crowded scenes. We
hence could conclude that proposed contextual instance de-
coupling pipeline is superior to previous ones for MPPE.

5. Conclusion

Decoupling persons and estimating their keypoint loca-
tions in crowded scenes are challenging for MPPE. This
paper proposes the CID to decouple persons into multiple
instance-aware feature maps. CID hence adopts each fea-
ture maps to infer keypoints for a specific person. CID

Table 6. Comparison with recent works on OCHuman val and
test set under two evaluation settings. The second column de-
notes the first evaluation protocol in [24] and the third and fourth
columns denote the second protocol used in [9].

does not rely on bounding boxes, making it differentiable
and more robust to detection errors than top-down meth-
ods. It alleviates the difficulties of keypoint grouping
and long distance regression in bottom-up and single-stage
methods. Another advantage is the capability of encoding
more spatial contextual cues. Those characteristics make
CID achieves substantially better performance than previ-
ous works on three MPPE benchmarks.
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