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Abstract

Continual learning methods aim at training a neural net-
work from sequential data with streaming labels, reliev-
ing catastrophic forgetting. However, existing methods are
based on and designed for convolutional neural networks
(CNNs), which have not utilized the full potential of newly
emerged powerful vision transformers. In this paper, we
propose a novel attention-based framework Lifelong Vision
Transformer (LVT), to achieve a better stability-plasticity
trade-off for continual learning. Specifically, an inter-task
attention mechanism is presented in LVT, which implicitly
absorbs the previous tasks’ information and slows down the
drift of important attention between previous tasks and the
current task. LVT designs a dual-classifier structure that
independently injects new representation to avoid catas-
trophic interference and accumulates the new and previous
knowledge in a balanced manner to improve the overall per-
formance. Moreover, we develop a confidence-aware mem-
ory update strategy to deepen the impression of the previ-
ous tasks. The extensive experimental results show that our
approach achieves state-of-the-art performance with even
fewer parameters on continual learning benchmarks.

1. Introduction
Humans can continuously learn novel concepts through-

out their lifetime and accumulate visual knowledge from
past experiences [5, 69]. In contrast, artificial neural net-
works forget the information learned in the previous tasks
while learning new ones, resulting in a drastic drop in
performance on the previous tasks. This phenomenon,
known as catastrophic forgetting or catastrophic interfer-
ence [52, 59], stems from changes in the input data dis-
tribution that cause the new input information to interfere
severely with the previously learned knowledge [8, 51]. To
address this challenge, the field of continual learning (also
called lifelong or incremental learning) [17,61,62,72] stud-
ies the problem of learning from a non-stationary stream
of data, with the goal of maintaining and extending the ac-
quired knowledge over time.
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Figure 1. Incremental accuracy and forgetting evaluated on all
tasks observed so far during continual learning. We compare our
model with vision transformers (ViT [21], LeViT [25], CvT [83],
and CCT [32]) and prior continual learning methods (GEM [47],
iCaRL [61], DER++ [10], HAL [14], ERT [11], and RM [7]) on
the experiment CIFAR100 of 10 splits with memory size 500. [↑]
higher is better, [↓] lower is better.

Continual learning requires neural networks to be sta-
ble to prevent forgetting, but also plastic to learn new
streaming labels, which is referred to as the stability-
plasticity dilemma [27, 53]. Most of the early works in
continual learning focus on the task-incremental learning
(task-IL), where oracle knowledge of the task identity is
available at inference time for selecting the corresponding
classifier [2, 17, 44, 65, 68]. For example, regularization-
based methods penalize the changes of important param-
eters during the learning process of new tasks and typ-
ically assign a separate output layer (classifier) for each
task [13, 40, 64, 91]. Recently, various works have focused
on the more difficult and realistic class-incremental learn-
ing (class-IL) [3, 9, 14, 20, 36, 61, 75, 78, 89, 94], where
the network is evaluated on all classes observed during the
training, without requiring the task identity. Among them,
rehearsal-based methods [4, 7, 10] storing a small portion
of observed data in a limited memory for replaying have
shown promising results; besides, distillation-based meth-
ods [12,61,93] alleviate deterioration in later tasks by using
knowledge distillation [34] to maintain the representation.

However, existing methods are based on and designed
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for convolutional neural networks (CNNs) [33], which have
not taken the full utilization of the potential from newly
emerged powerful vision transformers [31, 39]. Vision
transformers, recently, have shown superiority on certain
computer vision tasks based on the self-attention mech-
anism [16, 21, 25, 46, 55, 83, 90]. The merits of vision
transformers bring a new perspective to the development
of continual learning. Nevertheless, current vision trans-
formers are not directly applicable to modeling a stream of
tasks [31,39], since transformers lack the mechanism to pre-
vent catastrophic forgetting on previous tasks. As shown
in Figure 1, vision transformers [21, 25, 32, 83] with re-
hearsal strategy suffer from catastrophic forgetting and per-
formance degradation on previous tasks. Thus, it is chal-
lenging to incorporate transformers well for further improv-
ing continual learning.

In this work, we propose a novel framework, Lifelong
Vision Transformer (LVT), which plays the strengths of
the attention mechanism in continual learning, achieving
a better stability-plasticity trade-off. Unlike vanilla self-
attention in vision transformers [21, 25, 32, 74] that de-
rives the attention map by computing similarity between
self-queries and self-keys, we propose an inter-task atten-
tion mechanism to obtain attention maps by computing the
affinities between self-queries and a learnable external key
with an attention bias, which implicitly absorbs the previous
tasks information. Also, inter-task attention saves the num-
ber of parameters compared to self-attention. Besides, we
consolidate the important attention weights by preventing
them from changing in future tasks, thereby avoiding catas-
trophic forgetting of past tasks. Different from the existing
rehearsal-based methods [7, 9, 10, 14, 17, 47, 64, 75, 78] that
use the same classifier for learning new tasks and replay-
ing previous data, LVT proposes to utilize two classifiers:
an injection classifier is used to inject new task represen-
tation into the model, mitigating interference with previous
tasks; and an accumulation classifier focuses on integrating
the previous and new knowledge in a balanced manner to
improve the overall performance.

Moreover, we propose a simple and effective confidence-
based memory update strategy to store impressive exem-
plars in the limited memory. The impressive exemplars have
the distinctive characteristics of their classes. Like memo-
ries in the brain [23, 26, 51], recalling these impressive ex-
emplars is more beneficial for the model to consolidate pre-
vious knowledge and thus reduce forgetting. We systemati-
cally compare state-of-the-art and well-established methods
for the continual learning problem in both the class-IL and
task-IL settings. Experimental results show that the pro-
posed framework significantly outperforms other methods
in terms of accuracy and forgetting even with fewer param-
eters. Using various ablation experiments, we validate the
components of our approach.

The main contributions of this paper are four-fold:
• We propose a novel attention-based framework Lifelong

Vision Transformer (LVT), to achieve a better stability-
plasticity trade-off for continual learning. LVT contains
an inter-task attention mechanism that consolidates pre-
vious knowledge and alleviates the forgetting on previ-
ous tasks.

• LVT presents a novel dual-classifier structure to inde-
pendently inject new task representation avoiding catas-
trophic interference, and accumulate the new and previ-
ous knowledge in a balanced manner.

• We develop a confidence-aware memory update strategy
to deepen the impression of the previous tasks.

• The extensive experimental results show that our ap-
proach achieves state-of-the-art performance with even
fewer parameters on continual learning benchmarks.

2. Related Work

2.1. Continual learning

Rehearsal-based methods prevent catastrophic forgetting
by replaying a subset of exemplars of previous tasks stored
in limited memory [3, 9, 22, 35, 36, 41, 47, 54, 58, 67, 79].
Experience Replay (ER) [60, 62, 63] jointly optimizes the
network parameters by interleaving the previous task exem-
plars with current task data. ERT [11] further improves ER
by a balanced sampling strategy and bias control. GSS [4]
introduces a gradient-based sampling to store optimally se-
lected exemplars in the memory buffer. HAL [14] comple-
ments experience replay with an additional objective, keep-
ing intact the predictions on some anchor points of past
tasks. GEM [47] and AGEM [15] utilize episodic memory
to compute previous task gradients to constrain the current
update step. iCaRL [61] trains a nearest-class-mean classi-
fier while maintaining the representation in later tasks via a
self-distillation loss term. DER++ [10] mixes rehearsal with
distillation loss for retraining past experience and achieves
state-of-the-art performance. RM [7] presents a sampling
strategy by leveraging uncertainty and data augmentation.
Other Approaches. Regularization-based methods try to
estimate the importance of each network parameter for
prior tasks and penalize the changes of important param-
eters during the learning of new tasks [2, 13, 40, 64, 66, 91].
The difference between these works is the way to com-
pute network parameter importance. Structure-based meth-
ods [1, 29, 43, 49, 50, 57, 68, 87] expand networks as new
tasks arrive and keep the parameters of sub-networks re-
lated to previous tasks fixed. However, most structure-based
methods need task identity during inference to allocate dis-
tinguished sets of parameters to distinct tasks. Label-based
methods [28,77,80–82,88] model streaming labels from se-
quential data with label relationships. The proposed method
in this paper belongs to the rehearsal-based method.
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2.2. Vision Transformers

Transformer is firstly proposed in [74] for machine trans-
lation tasks, and since then, transformer architectures have
become the state-of-the-art models for natural language pro-
cessing (NLP) tasks [19, 24, 48, 56]. The core component
in a transformer is the attention module, which aggregates
information from the entire input sequence. Recently, Vi-
sion Transformer (ViT) [21] makes a pure Transformer ar-
chitecture scalable for image classification when the data is
large enough. Following that, lots of efforts have been ded-
icated to improving Vision Transformers for data efficiency
and model efficiency [31, 39, 90]. A popular research di-
rection explores integrating explicit convolution or proper-
ties of convolution into the Transformer architecture [16,
73, 86, 92]. CoaT [85] designs a conv-attention module
to realize relative position embeddings with convolutions.
LeViT [25] replaces the uniform structure of a Transformer
by a pyramid with pooling to learn convolutional-like fea-
tures. CCT [32] eliminates the requirement for class to-
ken and positional embeddings through a sequence pooling
strategy and the use of convolutions.

However, current vision transformers are not directly ap-
plicable to modeling a stream of tasks; existing continual
learning algorithms designed for CNNs may not be optimal
for vision transformers either. To this end, we propose the
Lifelong Vision Transformer (LVT) with the inter-task at-
tention designed for continual learning and achieve better
performance than other transformers and CNN baselines.

3. Methodology
3.1. Problem Setup

Formally, a continual learning problem is split in a se-
quence of T supervised learning tasks Tt, t ∈ {1, ..., T}.
For task Tt, input samples x ∈ Xt and the corresponding
ground truth labels y ∈ Yt are drawn from an i.i.d. dis-
tribution Dt. The label space of the model is all observed
classes ∪t

i=1Yi and the model is expected to predict well on
the all classes. The model observes one task at a time in a
sequential manner, and hence it is infeasible to optimize all
observed classes jointly, but a small amount of data can be
stored in a limited memory M for future rehearsing.

3.2. Lifelong Vision Transformer (LVT)

We propose the attention-based framework Lifelong Vi-
sion Transformer (LVT) to effectively alleviate catastrophic
forgetting for continual learning. An overview of the frame-
work is depicted in Figure 2. The major contributing com-
ponents in LVT are introduced as follows:
1) Inter-task attention in the lifelong transformer block im-
plicitly absorbs the previous tasks information into the at-
tention maps and slows down the learning on attention maps
based on the importance to previously observed tasks.

2) Dual-classifier: Injection classifier injects new task rep-
resentation into the model, avoiding catastrophic inter-
ference; Accumulation classifier integrates past and new
knowledge in a balanced manner, to improve the stability-
plasticity trade-off.

3.2.1 Inter-task Attention Mechanism.

Unlike vanilla self-attention in vision transformers [21, 25,
32, 74] that derives the attention map by computing simi-
larity between self-queries and self-keys, we propose inter-
task attention mechanism to obtain attention map by com-
puting the affinities between self-queries and a learnable
external key KW with an attention bias B, which implic-
itly injects previous task information in the attention mech-
anism. Moreover, inter-task attention can save the number
of parameters compared to self-attention. When the task
changes, the important weights of KW and B are consoli-
dated by preventing them from changing in the future tasks,
thereby avoiding catastrophic forgetting of the past tasks.

Suppose the input tensor is X , we apply linear transfor-
mation with parameters Wq,Wv to obtain the vanilla self-
query QX = WqX and self-value VX = WvX . We use
a external key KW [30] to replace input-depended self-key,
and explicitly add a learnable attention bias B to the atten-
tion maps. Suppose there are H attention heads, these terms
are uniformly split into H segments Qh

X ,Kh
W , V h

X , and Bh.
Then the inter-task attention mechanism computes the head-
specific attention map Ah and concatenates the multi-head
attention as follows:

Ah = Softmax

(
Norm(Qh

X(Kh
W )⊤) +Bh√

d/H

)
,

Xh
out = AhV h

X , h = 1, ...,H,

(1)

where d is the dimension of the key and query; Norm() de-
notes batch normalization. The external key KW and atten-
tion bias B do not rely on the input of current features and
can be optimized by using an end-to-end way, which can
capture previous tasks’ information.

Furthermore, the learnable parameters external key KW

and attention bias B interact with the previous tasks by a
regularization function to maintain the stability of the atten-
tion map and reduce forgetting. Specifically, we compute
a weighted ℓ1-norm between the current parameters (KW

and B) and the parameters corresponding to the last task,
i.e., K̃W and B̃, given by:

La=
∥∥∥∇K̃W

LIt ⊙
(
KW −K̃W

)∥∥∥
1
+
∥∥∥∇B̃LIt ⊙

(
B−B̃

)∥∥∥
1
,

(2)
where ⊙ is the Hadamard product; ∥·∥1 denotes ℓ1-norm;
LIt is a cross-entropy loss defined in Eq. (3); ∇K̃W

LIt and
∇B̃LIt are the importance computed by the averaged gradi-
ents of loss on the last task with respect to the parameters of
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Figure 2. The architecture of Lifelong Vision Transformer (LVT). (a) Overall architecture. LVT is composed of stacked lifelong transformer
blocks after a simple convolutional block. Shrink module performs downsampling to reduce the resolution of the activation maps and
increase their number of channels between LVT stages. After global average pooling, two classifiers serve for knowledge injection and
accumulation, respectively. (b) Illustration of lifelong vision transformer block with an inter-task attention mechanism. Different from the
vanilla self-attention, we apply external key and attention bias to compute attention map and interact with those of the previous task.

K̃W and B̃ respectively. During the learning of new tasks,
the larger the gradient magnitude is, the greater the impor-
tance degree of the parameters will be. Thus greater penal-
ties will be given to the more important parameters. We
demonstrate that penalizing the changes in attention maps
helps to retain information of the previous tasks, as new task
arrives. What is worth mentioning is that this loss is similar
to the Fisher information used in regularization-based meth-
ods [40, 64, 91], which prevents forgetting while allowing
LVT to learn new task representations. Since KW and B
are linear learnable units, inter-task attention has less num-
ber of parameters compared with the original self-attention.
The size of the two saved previous parameters K̃W and B̃
is negligible in relation to the overall model.
Normalization. Different from most vision transform-
ers that use layer normalization (LN) [6] before each atten-
tion, we adopt batch normalization (BN) [38] after attention
computing. We find that BN is more appropriate for vision
transformers in continual learning than LN by using the dis-
tribution of the summed input to a neuron over a mini-batch
composed of different task (non-i.i.d.) data.

3.2.2 Dual-classifier Structure

Most rehearsal-based methods [7,9,10,14,17,47,64,75,84]
use the same classifier for learning the new task and replay-

ing previous data in memory M, which could cause catas-
trophic interference between new and previous tasks. To
address this problem, LVT proposes to utilize a novel dual-
classifier structure for independently injecting new repre-
sentation without interference and accumulating the new
and previous knowledge in a balanced manner.
Injection Classifier. First, we introduce the injection clas-
sifier. Let g(x) be the feature of a sample x outputted from
the backbone of LVT before the classifier. When the current
task data arrives, we utilize the output from an independent
injection classifier to compute a classification loss:

LIt = E(x,y)∼Dt

[
ℓ(y, fI(g(x)))

]
, (3)

where fI denotes the injection classifier; ℓ adopts a cross-
entropy loss. Injection classifier is only trained on current
task data and does not participate in the inference stage. The
representation of current task is injected into the backbone
of LVT from this classifier, to reduce the interference with
previous tasks. Besides, with the benefits of the injection
classifier focusing on the current task, LIt also serves for
computing the importance weights in Eq. (2) and confidence
in Eq. (8).
Accumulation Classifier. Then, we introduce the accu-
mulation classifier as follows. Since the injection classifier
mainly undertakes the representation learning on the current
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task, we employ a accumulation classifier to focus on im-
proving the stability-plasticity trade-off by integrating pre-
vious and new knowledge in a balanced manner. The accu-
mulation classifier is used at inference stage for outputting
the prediction.

Rehearsing the limited memory data during learning new
tasks is a crucial way to maintain previous knowledge. We
replay the exemplars stored in the memory buffer with their
ground truth labels by minimizing:

Lr = E(x′,y′)∼M
[
ℓ(y′, fA(g(x

′)))
]
, (4)

where fA denotes the accumulation classifier. We approx-
imate the expectation by computing gradients on batches
sampled from the memory buffer.

Moreover, we retain the network’s logits z = hA(g(x))
while storing the exemplars x, where hA is the accumula-
tion classifier without the softmax operation, fA(g(x)) ≜
softmax(hA(g(x))). The dark knowledge can be obtained
by the distillation loss:

Ld=E(x′,y′,z′)∼M
[

DKL (softmax(z′) ||fA(g(x′)))
]
, (5)

where DKL denotes the KL divergence. We can set the tem-
perature of softmax to produce suitable soft labels (targets).

Besides, the accumulation classifier also needs a super-
vised signal from current task data. Thanks to the injec-
tion classifier which helps learn the representation of cur-
rent task, we can have the flexibility to adjust the weight of
the current task in fA with the goal of maintaining a balance
between the old and new classes. Based on the above, we
give the accumulation classifier loss:

Ll = α Lr + β Ld + r(t)LAt
, (6)

where LAt
=E(x,y)∼Dt

[
ℓ(y, fA(g(x)))

]
; α and β are the

coefficients balancing knowledge consolidation; r(t) is a
monotonically decreasing function with respect to t, the
number of tasks observed so far, which aims to reduce the
weight of the current task over time and pay more attention
to fight against forgetting.

Overall, the total loss used in LVT is the sum of Eq. (2),
Eq. (3), and Eq. (6):

L = Ll + LIt + γLa, (7)

where γ is the coefficient balancing La.

3.3. Confidence-aware Memory Update

A key question for rehearsal-based methods is how to
update memory exemplars when new task arrives? Most of
the methods employ the Reservoir sampling [76] or Herd-
ing sampling [61] to update memory, in which Reservoir
randomly samples examples from the input stream with the
same probability, and Herding stores the examples which
are close to the mean of features for each class.

In this work, we design a confidence-aware sampling
based on the injection classifier of LVT to store the im-
pressive exemplars in the limited memory. We argue that
the exemplars which are selected to be stored should have
the distinctive characteristics of their classes, i.e., they can
be accurately distinguished by the model. In analogy to
memories in the brain [23, 26, 51], recalling these impres-
sive exemplars can further consolidate previous knowledge
for continual learning. In order to choose impressive exem-
plars, we propose a simple and effective sampling which
stores the samples with the highest confidence scores of
their classes.

Given the memory capacity M , we assign K = ⌊M/|C|⌋
exemplars for each class, where C is the set of classes ob-
served so far. At the end of current task Tt with a set of
classes Ct, we put the samples x of each class into the model
and get the logits z from the injection classifier. We can ob-
tain the confidence score ρ of each sample by:

ρ(x) =
ez

c∑|C|
i=1 e

zi
, x ∈ {x̂|(x̂, ŷ) ∈ Dt, ŷ = yc}, c ∈ Ct,

(8)
where zi is the i-th element of z; yc is the label correspond-
ing to class c. We select the K samples with the highest
confidence scores ρ for each class. These exemplars are not
only representative for their corresponding class, but also
discriminative to the other classes. We store the exemplars
in a descending order based on the corresponding values of
ρ, where exemplars come earlier in the order have a higher
value of ρ. Memory update also includes removing exem-
plars of each previous class, we reduce the number of ex-
emplars of each previous class to K in an ascending order.

4. Experiment
4.1. Experimental Setup and Implementation

We consider a strict evaluation setting [37, 72] for con-
tinual learning, which includes task incremental learning
(Task-IL) and class incremental learning (Class-IL). Task-
IL splits the training samples into partitions of tasks, which
requires task identities to select corresponding classifiers at
inference time. Class-IL sequentially increases the number
of classes to be classified without requiring the task identi-
ties, as the hardest scenario [10].
Datasets. The CIFAR-100 dataset [42] contains 100
classes and each class has 500 train and 100 test color
images. TinyImageNet [70] consists 200 classes that in-
clude 100,000 images for training and 10,000 images for
validation. ImageNet100 [61] contains 100 classes ran-
domly chosen from ILSVRC [18] with the average resolu-
tion 469×387. It includes about 120,000 images for train-
ing and 5,000 images for validation.
Baselines. We compare LVT with state-of-the-art and
well-established methods, including eight rehearsal-based
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Memory
Buffer Method #Paras 5 splits 10 splits 20 splits

Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

– Joint 11.2 70.21±0.15 85.25±0.29 70.21±0.15 91.24±0.27 71.25±0.22 94.02±0.33

SGD 11.2 17.27±0.14 42.24±0.33 8.62±0.09 34.40±0.53 4.73±0.06 40.83±0.46

200

ER [62] 11.2 21.94±0.83 62.41±0.93 14.23±0.12 67.57±0.68 9.90±1.67 70.82±0.74

GEM [47] 11.2 19.73±0.34 57.13±0.94 13.20±0.21 62.96±0.67 8.29±0.18 66.28±1.49

AGEM [15] 11.2 17.97±0.26 53.55±1.13 9.44±0.29 55.04±0.87 4.88±0.09 41.30±0.56

iCaRL [61] 11.2 30.12±2.45 55.70±1.87 22.38±2.79 60.81±2.48 12.62±1.43 62.17±1.93

FDR [9] 11.2 22.84±1.49 63.75±0.49 14.85±2.76 65.88±0.60 6.70±0.79 59.13±0.73

GSS [4] 11.2 19.44±2.83 56.11±1.50 11.84±1.46 56.24±0.98 6.42±1.24 51.64±2.89

DER++ [10] 11.2 27.46±1.16 62.55±2.31 21.76±0.78 59.54±0.77 15.16±1.53 61.98±0.91

HAL [14] 22.4 13.21±1.24 35.61±2.95 9.67±1.67 37.49±2.16 5.67±0.91 53.06±2.87

ERT [11] 11.2 21.61±0.87 54.75±1.32 12.91±1.46 58.49±3.12 10.14±1.96 62.90±2.72

RM [7] 11.2 32.23±1.09 62.05±0.62 22.71±0.93 66.28±0.60 15.15±2.14 68.21±0.43

LVT (ours) 8.9 39.68±1.36 66.92±0.40 35.41±1.28 72.80±0.49 20.63±1.14 73.41±0.67

500

ER [62] 11.2 27.97±0.33 68.21±0.29 21.54±0.29 74.97±0.41 15.36±1.15 74.97±1.44

GEM [47] 11.2 25.44±0.72 67.49±0.91 18.48±1.34 72.68±0.46 12.58±2.15 78.24±0.61

AGEM [15] 11.2 18.75±0.51 58.70±1.49 9.72±0.22 58.23±0.64 5.97±1.13 59.12±1.57

iCaRL [61] 11.2 35.95±2.16 64.40±1.59 30.25±1.86 71.02±2.54 20.05±1.33 72.26±1.47

FDR [9] 11.2 29.99±2.23 69.11±0.59 22.81±2.81 74.22±0.72 13.10±3.34 73.22±0.83

GSS [4] 11.2 22.08±3.51 61.77±1.52 13.72±2.64 56.32±1.84 7.49±4.78 57.42±1.61

DER++ [10] 11.2 38.39±1.57 70.74±0.56 36.15±1.10 73.31±0.78 21.65±1.44 70.55±0.87

HAL [14] 22.4 16.74±3.51 39.70±2.53 11.12±3.80 41.75±2.17 9.71±2.91 55.60±1.83

ERT [11] 11.2 28.82±1.83 62.85±0.28 23.00±0.58 68.26±0.83 18.42±1.92 73.50±0.82

RM [7] 11.2 39.47±1.26 69.27±0.41 32.52±1.53 73.51±0.89 23.09±1.72 75.06±0.75

LVT (ours) 8.9 44.73±1.19 71.54±0.93 43.51±1.06 76.78±0.71 26.75±1.29 78.15±0.42

Table 1. Results (overall accuracy %) on CIFAR100 benchmark which is averaged over five runs. #Paras means the number of parameters
in the model, which is counted by million.

methods (ER [62], GEM [47], AGEM [15], GSS [4],
FDR [9], HAL [14], ERT [11], and RM [7]), two meth-
ods leveraging Knowledge Distillation (iCaRL [61] and
DER++ [10]). Besides, we also compare SOTA vi-
sion transformers (ViT [21], LeViT [25], CoaT [85], and
CCT [32]) with rehearsal strategy for continual learning.
We further provide an upper bound (JOINT) obtained by
training all tasks jointly and a lower bound simply perform-
ing SGD without any countermeasure to forgetting.

Metrics. We evaluate continual learning methods in terms
of accuracy and forgetting following [10,13,15]. The accu-
racy is defined by AT = 1

T

∑T
t=1 aT,t, and the forgetting is

defined by FT = 1
T−1

∑T−1
t=1 maxi∈{1,...,T−1} (ai,t − aT,t),

where aT,t is the testing accuracy on task Tt when the model
completed learning task TT .

Implementation Details. To fairly compare each method,
we train all networks using the stochastic gradient de-
scent (SGD) optimizer. The training images are randomly
cropped and flipped for all methods following [10, 11, 67].
We adopt 50 and 100 epoch with mini-batch size of 32,
learning rate of 0.1 for CIFAR100 and TinyImageNet re-
spectively, following [10, 11, 61, 91]. For ImageNet100,
we resize the images to 224×224 and use batch-size of

128, step annealing learning-rate schedule ranged from
0.1 to 0.001, and the number of epochs of 100, which
are used from [7, 61]. Continual learning baselines use
ResNet18 [33] as backbone, and cross-entropy as classi-
fication loss, following [7, 10, 14, 15, 67, 71]. The imple-
mentation of transformer block is based on ViT [21] and
LeViT [25]. LVT uses GELU activation and dropout in
transformer blocks and applies a global average pooling to
the last activation map. We set hyper-parameters by per-
forming a grid-search on a validation set, which is obtained
by sampling 10% from the training dataset. The details of
the setup are in Appendix A.

4.2. Comparison to State-of-the-Art Methods

Evaluation on CIFAR100. We follow the protocol pro-
posed in [61, 87], which trains all 100 classes in several
splits including 5, 10, 20 incremental tasks. Table 1 sum-
marizes the overall accuracy on CIFAR100 with 200 and
500 memory size. It is shown that LVT outperforms other
methods by a considerable margin in different incremen-
tal splits, e.g., LVT can improve the accuracy of continual
learning by more than 12% in 10-split with 200 memory
capacity. Especially in the case of small memory, the ad-
vantage of LVT is more obvious, which indicates LVT per-
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Memory
Buffer Method #Paras TinyImageNet

#Paras ImageNet100
Class-IL Task-IL Class-IL Task-IL

– Joint 11.2 59.36±0.19 81.95±0.15 11.2 73.82±0.23 81.58±0.31

SGD 11.2 7.87±0.24 18.31±0.63 11.2 8.72±0.37 21.32±0.61

200

ER [62] 11.2 8.79±0.21 39.16 ±2.14 11.2 9.58±0.34 36.24±1.69

AGEM [15] 11.2 8.28±0.15 23.79±0.11 11.2 9.27±0.08 25.20±0.35

iCaRL [61] 11.2 8.64±0.78 28.41±1.53 11.2 12.59±0.68 33.75±1.81

FDR [9] 11.2 8.77±0.82 40.15±0.67 11.2 10.08±0.36 37.80±0.91

DER++ [10] 11.2 11.16±0.95 40.97±1.16 11.2 11.92±0.12 31.96±1.65

ERT [11] 11.2 10.85±0.24 39.54±1.90 11.2 13.51±1.13 36.94±1.54

RM [7] 11.2 13.58±1.07 41.96±1.28 11.2 16.76±0.84 35.18±1.43

LVT (ours) 9.0 17.34±1.13(+3.76) 46.15±1.21(+4.19) 9.4 19.46±1.06(+2.70) 41.78±2.03(+3.98)

500

ER [62] 11.2 10.15±0.32 50.11±0.53 11.2 11.68±0.25 42.04±0.47

AGEM [15] 11.2 9.67±0.18 26.79±0.81 11.2 10.92±0.16 34.22±0.68

iCaRL [61] 11.2 10.69±1.53 35.89±2.47 11.2 16.44±1.35 36.89±0.72

FDR [9] 11.2 10.58±0.22 49.91±0.78 11.2 11.78±0.40 42.60±0.64

DER++ [10] 11.2 19.33±1.41 51.90±0.62 11.2 14.52±1.86 35.46±0.66

ERT [11] 11.2 12.13±0.36 50.87±0.49 11.2 20.42±1.13 41.56±1.78

RM [7] 11.2 18.96±1.34 52.08±0.84 11.2 14.56±2.64 38.66±2.47

LVT (ours) 9.0 23.97±1.27(+4.64) 57.39±0.75(+5.31) 9.4 26.32±1.67(+5.90) 47.84±1.33(+5.24)

Table 2. Results (overall accuracy %) on TinyImageNet and ImagNet100, which are averaged over three runs. #Paras means the number
of parameters in the model, which is counted by million. The green numbers represent gains.
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Figure 3. Forgetting results (%) on CIFAR100 (lower is better).

forms better in more realistic and challenging data-scarcity
situations. It is worth noting that although LVT uses fewer
parameters (8.9M) than other methods (11.2M∼22.4M), it
can still achieve state-of-the-art performance. One reason
is that LVT inherits the merits of transformers and designs
the architecture for modeling the stream of tasks, and thus
works well in continual learning without stacking a lot of
parameters.
Evaluation on ImageNet datasets. Table 2 summarizes
the experimental results for the TinyImageNet and Ima-
geNet100 datasets with 10 splits. It is shown that LVT con-
sistently surpasses other methods with a considerable mar-
gin for Class-IL and Task-IL on TinyImageNet and Ima-
geNet100 datasets. Specifically, our method outperforms
the state-of-the-art with about 5.9% for the Class-IL accu-
racy on the ImageNet100 benchmark. For TinyImageNet
benchmark, the Task-IL accuracy is improved from 52.08%

Method #Paras Accuracy [↑] Forgetting [↓]
Class-IL Task-IL Class-IL Task-IL

ViT [21] 16.2 13.19 54.53 70.16 24.79
LeViT [25] 10.9 31.84 72.76 52.93 14.67
CoaT [85] 10.3 25.44 66.15 58.01 17.28
CCT [32] 3.9 24.50 71.37 66.17 20.20
ResNet18 [33] 11.2 36.98 73.23 47.43 15.36
LVT (ours) 8.9 43.51 76.78 15.54 7.76

Table 3. Comparison with vision transformer and CNN architec-
tures for continual learning.

to 57.39%(+5.31%). Moreover, LVT takes fewer parame-
ters compared to other CNN-based methods.
Forgetting. To compare the preventing forgetting capabil-
ity, we assess the average forgetting [10, 13] that measures
the performance degradation in subsequent tasks. Figure 3
shows that LVT suffers from less forgetting than all the
other methods in both of Class-IL and Task-IL settings with
memory size 500. This is because LVT constructs an inter-
task attention architecture and leverages the injection and
accumulation strategy, which improve the stability of the
vision transformer network.
Comparison to Transformer and CNN Architectures.
We compare LVT to SOTA Vision Transformers (ViT [21],
LeViT [25], CvT [83], and CCT [32]) and the CNN bench-
mark ResNet18 [33] under the proposed rehearsal strategy
in continual learning. The results from Table 3 and Fig-
ure 1 indicate that ViT is not up to the task of continual
learning, since it is “data hungry” and only fits to i.i.d. large
datasets. LeViT, CvT, and CCT contain CNN structures to
obtain inductive biases, which improve the generalizability
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Figure 4. Incremental performance evaluated on all tasks observed
so far. [↑] higher is better, [↓] lower is better.

Module CIFAR100 TinyImageNet
IT-att fI fA ρ Class-IL Task-IL Class-IL Task-IL√ √ √

36.93 73.52 19.35 52.14√ √ √
39.76 74.78 20.03 54.34√ √ √
38.42 75.49 18.85 55.07√ √ √
40.25 73.71 21.16 54.42√ √ √ √
43.51 76.78 23.97 57.39

Table 4. Ablation study on each component of LVT. IT-att repre-
sents the transformer with inter-task attention mechanism; fI and
fA denotes the injection classifier and accumulation classifier re-
spectively; And ρ denotes the confidence-ware memory update.

of transformer but still suffer from catastrophic forgetting
in continual learning. Using Vision Transformer directly
for continual learning is not even as good as ResNet per-
formance. Only LVT exploits the strengths of transformer
with even fewer parameters to achieve better performance
for continual learning, which benefits from the inter-task at-
tention mechanism and the dual-classifier structure.
Incremental Performance. We demonstrate the average
incremental performance [10, 61] under the Class-IL set-
ting, which is the result of evaluating on all the tasks ob-
served so far after completing each task. As shown in Fig-
ures 1 and 4, the performance of most methods degrades
rapidly as new tasks arrive, while our method consistently
outperforms the state-of-the-art methods at every step in
both of accuracy and forgetting.

4.3. Ablation Study and Analysis

Effect of Each Component. Table 4 shows the effect of
each component of LVT on CIFAR100 and TinyImageNet
with 500 memory. We can see that the average accuracy
on CIFAR100 is improved significantly from 36.93% to
43.51% by the proposed transformer block with inter-task
attention. The dual-classifier structure obtains 5.09% gain
in Class-IL setting. The performance of the model is fur-
ther improved with 2.97% gain using the confidence-ware
memory update strategy on TinyImageNet.
Sensitive Analysis on Memory Size. We assess the effec-
tiveness of the proposed method on various memory capac-
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(a) Sensitivity analysis regarding
the memory capacity.
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(b) Backward transfer (BWT) anal-
ysis under Class-IL setting.

Figure 5. Analyses for memory capacity and backward transfer.

ities. Figure 5a shows that LVT consistently performs bet-
ter than other methods at various memory capacities on CI-
FAR100. We also notice that the improvement of LVT be-
comes more significant with small memory size, which il-
lustrates that our method can be better adapted to real-world
situations with limited sources.
Backward Transfer (BWT) Analysis. BWT [10, 15, 47]
is the influence of learning a task on the performance of
previous tasks, defined by BWT= 1

T−1

∑T−1
t=1 (aT,t − at,t),

where aT,t is the testing accuracy on task Tt when the model
completed learning task TT . We analyze BWT for differ-
ent methods on CIFAR100 of 10 splits with memory 1000.
As shown in Figure 5b, other methods have large negative
BWT in the Class-IL setting, which means severe forget-
ting. In contrast, our method even achieves positive BWT,
which means the learning of new tasks may help previous
tasks’ performance. This result further proves the superior-
ity of our method. More detailed results in Appendix B.

5. Conclusion

To the best of our knowledge, this paper is the first
in the literature to design a vision transformer for contin-
ual learning. The proposed Lifelong Vision Transformer
(LVT) contains an inter-task attention mechanism and a
dual-classifier structure, which can consolidate previous
knowledge and alleviate the forgetting on previous tasks.
Moreover, we develop a confidence-aware memory update
strategy to deepen the impression of the previous tasks. Ex-
tensive experimental results show that our approach sig-
nificantly outperforms current state-of-the-art methods with
fewer parameters. Ablation analyses validate the effective-
ness of the proposed components.
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