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Abstract

Since the rise of vision-language navigation (VLN), great
progress has been made in instruction following – building
a follower to navigate environments under the guidance of
instructions. However, far less attention has been paid to the
inverse task: instruction generation – learning a speaker to
generate grounded descriptions for navigation routes. Exi-
sting VLN methods train a speaker independently and often
treat it as a data augmentation tool to strengthen the fol-
lower, while ignoring rich cross-task relations. Here we des-
cribe an approach that learns the two tasks simultaneously
and exploits their intrinsic correlations to boost the training
of each: the follower judges whether the speaker-created
instruction explains the original navigation route correctly,
and vice versa. Without the need of aligned instruction-path
pairs, such cycle-consistent learning scheme is complemen-
tary to task-specific training targets defined on labeled data,
and can also be applied over unlabeled paths (sampled
without paired instructions). Another agent, called creator
is added to generate counterfactual environments. It greatly
changes current scenes yet leaves novel items – which are
vital for the execution of original instructions – unchanged.
Thus more informative training scenes are synthesized and
the three agents compose a powerful VLN learning system.
Extensive experiments on a standard benchmark show that
our approach improves the performance of various follower
models and produces accurate navigation instructions.

1. Introduction
Vision-language navigation (VLN) [7], i.e., enabling an

agent to navigate across realistic environments given human
instructions, has received great attention (Fig. 1(a)). Many
powerful wayfinding agents (i.e., follower) were developed
to perform such embodied instruction following task. Un-
fortunately, the inverse task – learning a speaker that vividly
explains navigation paths – has remained under-explored. In
fact, instruction generation is also a crucial ability of AI
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Figure 1: (a) VLN [7]. (b) Our counterfactual cycle-consistent
(CCC) learning system consists of three agents, i.e., speaker s ( )
for instruction generation, follower f ( ) for instruction follow-
ing, and creator c ( ) for counterfactual environment creation.

agents. In many scenarios, AI agents should be able to com-
municate with humans for efficient collaboration, instead of
executing instructions only [76, 29]. For example, when a
human-robot team is doing search and rescue [68, 18, 75],
the human may first issue commands (e.g., “explore along
this direction until the end of the hallway”) that direct the
robot to navigate a building and search for survivors. In this
process, the robot is expected to report its progress (e.g., “I
have inspected three rooms”) and explain its plan (e.g., “I
will continue to navigate this direction and stop at the end
of the hallway”) [69]. Robot’s ability to generate linguistic
explanations can help human to resolve potential ambiguity
(e.g., identifying “this direction” and “hallway”) [18] and
establish trust [9, 20]. Hence, the robot can even in turn help
the human to navigate its explored area (which is unfamil-
iar to the human) [27], e.g., “go straight and you will pass
through four rooms before reaching the end of the hallway”.

In addition to emphasizing the importance of instruc-
tion generation, we explore the intrinsic correlation between
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instruction following and generation to derive a powerful
VLN learning framework. Specifically, given the visual en-
vironment space E , linguistic instruction spaceX , and navi-
gation path spaceA, instruction following learns a follower
f : E×X 7→A that maps visual observations and navigable
directions into action sequences, while instruction genera-
tion learns a speaker s : E×A 7→X that maps observations
and action sequences into trustable instructions. Clearly,
there exists strong dependencies among the input and output
spaces of s and f . Surprisingly, such task correlation was
long ignored; current VLN methods only learn an isolated
speaker as an one-off plugin for data augmentation [24, 66].

We instead propose to jointly train the speaker and fol-
lower in a compact, cycle-consistent learning framework
(Fig.1(b)). During training, (E,X)∈E×X is first mapped
to Â∈A through the follower f ( ) and then translated to
an instruction X̃∈X through the speaker ( ), i.e., s(E, Â).
In environment E, the dissimilarity between X and X̃ , de-
noted as4E(X, X̃), is used as the feedback signal to regu-
larize training. Similarly, given (E,A)∈E×A, 4E(A, Ã)
can be estimated and used for training. As 4 errors are
only about the cycle-consistency over (E,X) and (E,A),
any other training objectives defined on labeled triplets, i.e.,
(E,X,A), are compatible. Hence, we can apply such learn-
ing system on “unlabeled” data (E,A′), i.e., sampling a
pathA′ in an environmentE without corresponding instruc-
tion. Thus both labeled instruction-path samples and un-
labeled paths can be simultaneously used during training.
This is more elegant than current de facto VLN training
protocol [24, 66] that has three phases: i) train the follower
and speaker separately on aligned instruction-path samples;
ii) use the speaker to create synthetic instructions for ran-
domly sampled paths; and iii) fine-tune the follower on the
pseudo instruction-path samples. Further, as learning from
pseudo-parallel data inevitably accompanies with the data
quality problem (i.e., the quality of the pseudo instruction-
path samples is difficult to guarantee) [47], our speaker-
follower collaborative learning game is more favored, i.e.,
4 errors can be viewed as quality scores and play as super-
visory signals to boost the training of both f and s.

Besides the speaker and follower, another agent, called
creator ( ), is put into our cycle-consistent learning game.
The creator serves as a plug-and-play component for coun-
terfactual environment synthesis, enabling more robust
training. Thinking about alternative possibilities for past or
future events is central to human thinking [62]. We fre-
quently construct counterfactuals (“counter to the facts”):
what might happen if · · · ? Counterfactual thinking gives
us the flexibility in learning from past limited experience
through mental simulation. Nevertheless, this issue is rarely
addressed in VLN. Recently, [25] interpreted current pre-
vailing data augmentation technique [24] – back-translation
– as a kind of counterfactual thoughts – given an instruction

like“walk away from the door”, the agent builds a counterfa-
ctual like “if I walk in the door, what should the instruction
be?” by augmenting sampled paths with artificial instruc-
tions. This allows the agent to be more efficiently trained
by performing alternative actions that it did not actually
make [25]. Although our speaker-follower game naturally
supports such path sampling based counterfactual thinking
(i.e., involving unlabeled data (E,A′) during training, as
mentioned before), our creator can build another kind of
counterfactuals, e.g., “if I change current environment by,
for example, removing or putting in a lot of furniture that
are irrelevant to the instruction, I will still execute the orig-
inal navigation plan”. Concretely, given an environment-
instruction-path tuple (E,X,A) ∈ E×X×A, the creator
c :E×X×A 7→E “images” a new environment Ē∈ E , such
that i) Ē is greatly different fromE, and ii) Ē should be still
aligned with the original instruction-path pair (X,A). With
i) and ii), we address both diversity and realism, which are
proved critical in counterfactual thinking [26, 84]. Hence,
as Ē and (X,A) compose a new valid training sample, the
cycle-consistent errors, i.e.,4Ē(A, Ã) and4Ē(X, X̃), can
be estimated over (Ē,X,A). In this way, our speaker, fol-
lower and creator form a powerful learning system, which
makes a clever use of cross-task and cross-modal connec-
tions as well as resembles a counterfactual thinking process.

Our counterfactual cycle-consistent (CCC) framework is
optimized by policy gradient methods and compatible with
current imitation learning (IL) and reinforcement learning
(RL) based VLN training protocols. We apply our CCC over
several VLN baseline models and test it on gold-standard
R2R dataset [7]. Experimental results verify the efficacy of
CCC on both instruction following and generation tasks.

2. Related Work
Vision-Language Navigation (Instruction Following).
Although VLN [7] is a relatively new task in computer vi-
sion, its core part – instruction following [12, 53] – has been
long studied in natural language processing and robotics.
Early studies typically built the navigator in controlled en-
vironments with formulaic route descriptions [51, 68, 12, 8,
53, 54]. Anderson et al. thus introduced R2R dataset [7]
to investigate embodied navigation in photo-realistic sim-
ulated environments [11] with human-created instructions.
Soon after, numerous efforts were made towards: i) rais-
ing more efficient learning paradigms, e.g., IL [7], hybrid
of model-free and model-based RL [81], and ensemble of
IL and RL [79]; ii) exploring extra supervisory signals from
synthesized samples [24, 66, 25], auxiliary tasks [79, 37, 49,
90], or even massive web image-text paired data [52, 30];
iii) developing more powerful perception-linguistic embed-
ding schemes [36, 60, 80, 35]; and iv) designing smarter
path planning strategies by self-correction [38, 50], active
exploration [74], or map building [73, 13, 19]. Some oth-
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ers learn environment-agnostic representations [80], or fo-
cus on fine-grained instruction parsing [34].

Our work differs significantly from the above body of
work. We address the importance of both instruction fol-
lowing and generation, instead of the navigation task only.
The dual tasks form a closed loop for end-to-end joint train-
ing. We are particularly interested in how to leverage their
intrinsic connections to better learn each other, within fac-
tual environments as well as counterfactual alternatives.
Instruction Generation. Though being less studied in com-
puter vision [2], generating linguistic route instructions [16]
has raised wide research interest in robotics [27], linguis-
tics[65], cognition[40], and environmental psychology[70],
and can be traced to Lynch’s work [48] in 1960. Early ef-
forts investigated the principles underlying the process of
human constructing route descriptions [83, 4, 45] and the
characteristics of “easy-to-follow” instructions [44, 72, 61].
They pointed out the importance of involving intuitive land-
marks (e.g., physical objects and locations) and concise
topological descriptions (e.g., turn-by-turn directions) in
instructions [18]. Based on these studies, some simple
systems [44, 27] for instruction creation were developed
using handcrafted templates, i.e., slotting the content into
pre-built linguistic structures. Some complicated ones [17]
made use of linguistically motivated rules or full-fledged
grammars, to better emulate the way people compose in-
structions and produce outputs in a more flexible and exten-
sible manner [22]. Recent solutions [15, 57, 18, 23] lean
on end-to-end, data-driven techniques, without manually
crafted templates or rules. But they are typically performed
on simple grid or rendered environments and thus factor out
the role of perception in instruction creation to some extent.

Instruction creation attains far less attention in VLN [2].
Only some data augmentation techniques [24, 66, 25] learn
an instruction generator (speaker) with training pairs of
aligned navigation paths and human instructions. Then they
use the speaker to synthesize instructions for newly sampled
paths as extra training examples. However, they only treat
instruction creation as an auxiliary task and train the speaker
and follower separately. Hence it is hard to control the qual-
ity of the pseudo instructions created by the speaker. Unlike
these methods, we propose a unified framework that learns
the speaker and follower simultaneously, and explicitly uses
their correlation as a regularization term for robust training.
Cycle-Consistent Learning. Cycle-consistent learning ex-
plores task correlations to regularize training and can be
implemented in different forms, such as forward-backward
object tracking [77, 46], CycleGAN [91], and dual learn-
ing [31]. Taking dual learning as an example, its idea is
intuitive: if we map an x from one domain to another and
then map it back, we should recover the original x [89]. It
was successfully applied to many tasks like neural machine
translation [31], sentiment analysis [85], image-to-image

translation [39], question answering [67, 64, 42], etc.
In a broader sense, our study can be viewed as the first at-

tempt that explores the duality of instruction generation and
following in embodied navigation tasks. Both the two tasks
are learnt in a dual-task learning framework, where their
symmetric structures are explored as informative feedback
signals for boosting each, even with unlabeled samples.
CounterfactualThinking.Counterfactual thinking[62](i.e.,
the construction of mental alternatives to reality) is crucial
to how people learn from experience and predict the fu-
ture, and can influence different cognitive behaviors such as
deduction, decision making, and problem solving [86, 21].
Recent studies proved that counterfactual thoughts can im-
prove the explainability [33, 28], fairness [41], and robust-
ness [78] of trained models. The use of counterfactual ex-
amples has also been explored in the context of visual ques-
tion answering [3, 1, 14] and open set recognition [56, 87].

Fu et al. [25] revisit the idea of back-translation based
data augmentation from a counterfactual thinking perspec-
tive: extra routes are adversarially selected, instead of ran-
domly sampled [24], and translated into instructions for
smarter data augmentation. Apart from sampling paths in
real environments, we learn a creator to generate new visual
scenes as more effective counterfactuals. Although coun-
terfactual environment synthesis is also addressed in [59], it
is achieved by introducing minimum interventions that cause
the follower to change its output. In contrast, we seek to mo-
dify the factual environments to maximum, on the premise
of ensuring the original instructions can be still executed.
The combination of diversity and realism makes generated
environments useful as training examples. Moreover, we
learn the speaker and follower end-to-end collaboratively.

3. Methodology
We address two related tasks, i.e., instruction following

and generation, under R2R VLN setting [7]. For instruction
following, a follower f is learnt to find a route A to the
target location, specified by the instruction X , in a 3D envi-
ronment E. For instruction generation, a speaker s is learnt
to create a descriptionX for routeA inE. Here, s and f are
jointly trained in an end-to-end cycle-consistent framework
(cf. §3.1) and a creator c is further introduced to synthesize
counterfactual environments for boosting training (cf. §3.2).

3.1. Cycle-Consistent Learning for Instruction Fol-
lowing and Generation

We learn the two tasks jointly (Fig. 2(a)): the speaker s
and follower f act as an evaluator for each other. s is used to
evaluate the quality of Â generated by f(E,X) and returns
the feedback signal4E(X, s(E, Â)) to f , and vice versa.
Follower. The follower f is instantiated as a Seq2Seq
model which computes a distribution P (A|X;E) over route
A (i.e., a serious of actions A= {at}Tt=1) given instruction
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Figure 2: (a) Our cycle-consistent learning scheme (cf. §3.1) for the speaker s ( ) and follower f ( ), trained over both factual and
counterfactual environments. (b) Our creator c ( ) for counterfactual environment generation (cf. §3.2).

X (i.e., a sequence of words X = {xl}Ll=1) under environ-
mentE. At each step t, the follower observesE as an image
scene Vt⊂E. Conditioned on the visual and linguistic fea-
tures, i.e., Vt andX={xl}Ll=1, and prior action embedding
at−1, the follower f first produces current hidden state hf

t :

hf
t = LSTMf ([Vt−1,X,at−1],hf

t−1). (1)

There are two basic follower designs in the literature, based
on their definitions of the action space. The first-type fol-
lowers [7] simplify the action space to six low-level visuo-
motor behaviors, i.e., left, right, up, down, forward
and stop. For example, left refers to turning left by
30◦. The action embeddings are linguistic features and only
a front view is perceived as Vt. Given proceeding actions
a1:t−1, instructionX and past observationsV1:t−1, the condi-
tional probability of current action at is computed as:

P (at|a1:t−1, x1:L, V1:t−1) = softmaxat(W1h
f
t ), (2)

whereW1ht∈R6 gives a score vector over the six actions.
The second-type followers [24, 79] first “look around”

and gain a panoramic view as Vt. Then Vt is divided into 36
subviews, i.e., Vt ={Vt,i}36

i=1, forming current action space.
Thus each action at is associated with a subview Vt,at , and
at≡Vt,at

. Then, the likelihood of at is formulated as:

P (at|a1:t−1, x1:L, V1:t−1) = softmaxat(a
>
t W2ht). (3)

As the percepts V1:t−1 are completely determined by the
navigation actions a1:t−1 in all our cases, we can further
specify P (A|X;E) according to the probability chain rule:
P (A|X;E) =

∏
tP (at|a1:t−1, x1:L,V1:t−1). And for nota-

tional simplicity, we abbreviate the probability distribution
P (at|a1:t−1, x1:L, V1:t−1) over actions at step t as pt(at).

To fully examine the efficacy of our CCC framework, we
experiment with different follower architectures [7, 24, 79].
Speaker. The speaker s is built as a recurrent neural net-
work based encoder-decoder architecture which computes
a distribution P (X|A;E) over possible instruction X (=
{xl}Ll=1) given route A in environment E.

The encoder first embeds the sequences of the actions
{at}Tt=1 and visual observations {Vt}Tt=1 along the route,
and generates hidden states os1:T using an LSTM:

ost = LSTM-Encoders([Vt,at],o
s
t−1). (4)

Afterwards, the decoder computes the conditional probabil-
ity of each target word xl given its proceeding words x1:l−1

as well as the input embedding osT :

P (xl|x1:l−1, a1:T , V1:T )=LSTM-Decoders(hs
l ,xl−1,o

s
T ). (5)

Finally, we have P (X|A;E) =
∏

l pl(xl), where pl(xl) =
P (xl|x1:l−1, a1:T ,V1:T) for brevity. For fair comparison, our
speaker is the same as, but not specific to, the one in [24].
Cycle-Consistent Training. Given aligned (E,X)∈E×X ,
we can first obtain a navigation path Â through the follower
f(E,X) (shortly fE(X)). We then use the speaker to trans-
late Â to a visual-grounded instruction s(E, Â) (shortly
sE(Â)), which is expected to be semantically similar to X ,
i.e., gaining a small cycle-consistent error 4E(X, sE(Â))
(shortly4X

E ). Similarly, for paired (E,A)∈E×A, we have
4A

E . Then the4 error can be specified as the negative log-
likelihood, which is minimized for regularizing training:

4A
E =−log

∑
X̂∈X

P (sE(A)=X̂|A)P (fE(X̂)=A|sE(A)=X̂),

4X
E =−log

∑
Â∈A

P (fE(X)=Â|X)P (sE(Â)=X|fE(X)=Â).
(6)

For ease of reference, we briefly denote Eq. 6 as:

4A
E =−log

∑
X̂∈X

P (X̂|A;E)P (A|X̂;E),

4X
E =−log

∑
Â∈A

P (Â|X;E)P (X|Â;E).
(7)

Directly calculating the gradients for4A
E is intractable due

to the huge space of X . A similar issue also holds for4X
E .

Inspired by [31, 82], the gradients for4A
E w.r.t. the param-

eters of the follower and speaker, i.e., θf and θs, can be
computed as (and similarly for4X

E ):

∂4A
E

∂θf
≈−EX̂∼P (·|A;E)[

∂ logP (A|X̂;E)

∂θf
]

≈−∂ logP (A|X̂;E)

∂θf
,

∂4A
E

∂θs
≈−EX̂∼P (·|A;E)[logP (A|X̂;E)

∂ logP (X̂|A;E)

∂θs
]

≈−(logP (A|X̂;E)− bf )
∂ logP (X̂|A;E)

∂θs
,

(8)

where bf is a baseline to reduce the training variance and
estimated by the mean of previous logP (A|X̂;E). Please
see our supplementary for more details.

Hence, as the estimation for the 4 error does not re-
quire any aligned instruction-trajectory pairs (X,A), Eq. 6
can be naturally applied over both labeled and unlabeled
paths for training. Let us denote D = {(En, Xn, An)}Nn=1

as a labeled data collection which consists of N aligned
environment-instruction-path tuples. As in conventions [24,
66, 38], we can also build an unlabeled data collection, U=
{(Em, A

′
m)}Mm=1 through sampling some paths A′m from
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existing environments Em (but without instruction annota-
tions). Then our cycle-consistent learning loss is defined as:

Lcycle =
1

N

∑
(E,X,A)∈D

(4A
E+4X

E ) +
1

M

∑
(E,A′)∈U

4A′
E . (9)

Other learning objectives for instruction following and gen-
eration, defined over the labeled triplets (E,X,A), are also
compatible and used in our training stage (cf. §3.3).
Remark. Our cycle-consistency design is driven by two be-
liefs. First, a desired VLN agent should be able to ground
both navigation actions and linguistic cues together on the
visual environments. Thus it is necessary to explore both
navigation planning and instruction creation in a unified
learning scheme, enabling the agent to better capture cross-
modal and cross-task connections. Second, assuming the
generated instruction sE(A) is a valid rephrasing of the
original X , a robust follower should execute this rephras-
ing sE(A) with the same navigation plan as the original X .
A similar conclusion also holds for the speaker.

3.2. Counterfactual Environment Creation
Back-translation based data augmentation [24] has be-

come a common practice in VLN. The central idea is
to translate sampled paths into artificial instructions and
use these synthesized environment-instruction-path tuples
to augment the labeled data D. Aside from learning the
speaker and follower in isolation, it involves multiple train-
ing stages (cf. §1). Contrarily, our cycle-consistent learning,
conducted on both labeled D and unlabeled data U , has a
unified training objective (cf. Eq. 9). Interestingly, recent
studies [25] suggested the advantage of such path sampling
strategy [24] in counterfactual thinking: a path A′, sampled
in E, and its artificial instruction X̂ ′ compose a counter-
factual. Although our cycle-consistent learning scheme has
naturally involved such kind of counterfactuals during the
computation of 4A′

E in Eq. 9, to fully explore the potential
of counterfactual thinking, we further propose an environ-
ment creator c that generates counterfactual observations by
greatly changing house layouts but without interfering with
the execution of original instructions.
Creator. Our goal is to learn a creator c : (E,X,A) 7→ Ē
that observes the environment E, instruction X , navigation
path A and generates a counterfactual environment Ē such
that i) the differences between E and Ē are large; and ii) Ē
and (X,A) present high compatibility. Such design is based
upon previous research that has proved that, i) human prefer
large modifications (even introducing elements not present
in the real experience), during counterfactual thinking [26];
and, ii) the imagined world should not be completely di-
vorced form the reality (with proper changes) [84].

For ease of optimization, instead of only considering the
aligned triplet (E,X,A)∈D, the creator c additionally uses
other real scene Er (sampled from D) as the reference. By
mixing E with Er, it creates a counterfactual environment

Ē, under the above-mentioned constraints: i) diversity: re-
placing elements in E, as many as possible, with the ones
in Er; ii) realism: maintaining (X,A) still feasible in the
changed environment Ē. To do so, a compact descriptor u
is first generated for (E,X,A):

u=hc
T , hc

t = LSTMc([Vt,at,X],hc
t−1). (10)

Here u is desired to encode all the necessary information
that make (E,X,A) valid. As shown in Fig. 2(b), given an
observed scene V ∈E and its reference V r∈Er, the creator
c fuses them together, in the feature rather than pixel space:

qk = softmax([vr
1 ,v

r
2 , · · · ,vr

K ]> · vk),

gk = [vr
1 ,v

r
2 , · · · ,vr

K ] · qk,

λk = sigmoid(u>W3vk),

v̄k = λkvk + (1− λk)gk,

(11)

where vk is the embedding of a visual element vk in sceneV
(i.e., V= max-pool([v1,v2,· · ·,vK ])), qk refers to normal-
ized correlation score vector between vk and V r = {vrk}k,
gk indicates the attention summary, and λk gives the impor-
tance of vk for the successful execution of (E,X,A) and
decides whether vk needs to be replaced. Eventually, we
have v̄k, i.e., the embedding of a visual region v̄k in the
created counterfactual scene V̄ ∈ Ē.
Training Objective. With the purposes of i) modifying the
original scene V as much as possible and ii) keeping crucial
information/landmarks aligned with the instruction-path pair
(X,E), the training loss of the creator c is designed as:

Lc = L`2 + Ladv,

= ||λ||2 + log(1− d(V̄ , X,A)).
(12)

The `2-norm loss L`2 inspires the sparsity of λ= [λk]k and
hence addresses i). The adversarial loss Ladv tries to “fool”
a discriminator d : E×X×A 7→ [0, 1]. The discriminator d
is learnt to estimate the alignment between environments
and instruction-action pairs by minimizing d(V̄ , X,A) −
d(V,X,A). Thus Ladv addresses ii). Note that d only uses
geometric action embedding. Optimizing above objectives
makes (Ē,X,A) a valid training example. Therefore, in our
counterfactual environment Ē, we can still train the speaker
to translate the navigation path E into X , and train the fol-
lower to execute the instruction X as A.
Remark. The creator is fully differentiable and trained with
the speaker and follower together, leading to a triple-agent
learning system. During training, the cycle-consistent er-
rors, i.e.,4A

Ē
and4X

Ē
, can also be estimated and minimized

over the counterfactual samples, i.e., (Ē,X,A), generated
by the creator. Moreover, the creator can also access the su-
pervision signals of cycle-consistent learning (cf. Eq. 9) and
training objectives for instruction following and generation
learning (detailed in §3.3). Thus the creator can progres-
sively create more informative counterfactuals on-the-fly, in
turn boosting the training of the speaker and follower.
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3.3. Implementation Details
Network Architecture. We imple-
ment our follower f with different
architectures [7, 24, 79]. Instruc-
tion embeddingX is from an LSTM
based linguistic encoder as normally.
With [7], only front view is used
and corresponding embedding V is
obtained from a pretrained ResNet-
152 [32]. Action embedding a is
also from the linguistic LSTM. With
[24, 79], the panoramic view is per-
ceived and divided into 36 sub-views

val seen val unseen test unseenModel SR↑ NE↓ OR↑ SPL↑ SR↑ NE↓ OR↑ SPL↑ SR↑ NE↓ OR↑ SPL↑
Seq2Seq [7] 39.4 6.0 51.7 33.8 22.1 7.8 27.7 19.1 20.4 7.9 26.6 18.0

+ BT [24] 43.7 5.3 58.1 37.2 22.6 7.7 28.9 19.9 21.0 7.8 26.2 18.8
+ APS [25] 48.2 5.0 60.8 40.1 24.2 7.1 32.7 20.4 22.5 7.5 30.1 19.3
+ CCC 50.1 5.0 61.1 42.6 28.4 6.8 35.3 22.1 25.5 7.8 35.9 20.6

Speaker-Follower [24] 51.7 5.0 61.6 44.4 29.9 6.9 40.7 21.0 30.9 7.0 41.2 24.0
+ BT [24] 66.4 3.7 74.2 59.8 36.1 6.6 46.6 28.8 34.8 6.6 43.4 29.2
+ APS [25] 68.2 3.3 74.9 62.5 38.8 6.1 46.7 32.1 36.1 6.5 44.2 28.8
+ CCC 68.4 3.3 74.5 61.4 43.5 5.8 52.0 38.1 41.4 5.9 51.0 36.6

RCM [79] 47.0 5.7 53.8 44.3 35.0 6.8 43.0 31.4 35.9 6.7 43.5 33.1
+ BT [24] 61.9 4.1 66.9 58.6 45.6 5.7 52.4 41.8 44.5 5.9 52.4 40.8
+ APS [25] 63.2 3.9 69.3 59.5 47.7 5.4 56.6 42.8 45.1 5.8 53.9 40.9
+ CCC 68.0 3.4 77.5 62.1 50.4 5.2 57.8 46.4 51.0 5.3 57.2 48.2

Table 1: Quantitative comparison results (§4.1) for instruction following on R2R dataset [7].

(12 headings× 3 elevations with 30◦ intervals). Each sub-
view is associated with a geometric feature, i.e., (cosφh,
sinφh, cosφe, sinφe), where φh and φe are the angles of
heading and elevation, respectively. Visual and geometric
features are concatenated as the embedding of the sub-view
and corresponding action. See [7, 24, 79] for more network
details. The model design of our speaker s follows the one
in [24], which is built upon the panoramic view system. For
the creator c, the discriminator d only uses geometric in-
formation based action representation (to filter out the vi-
sual cues in trajectories). Both c and d adopt cross-modal
co-attention based network architectures, like [66].
Training. Besides minimizing the cycle-consistent loss
Lcycle (cf. Eq. 9), our CCC framework is also learnt with the
training objectives for instruction generation and following,
over the labeled data D and counterfactual samples. For
instruction following, IL [7] is adopted for off-policy learn-
ing, where the loss is defined over the groundtruth navi-
gation action sequence A: Lf

IL = − logP (A|X). RL is
also applied for on-policy learning [79, 66], i.e., optimiz-
ing Lf

RL = −
∑

t log pt(at)Λt, where at ∼ pt(at) and Λt

indicates the advantage in A2C [55]. For instruction gener-
ation, the speaker is trained withLs=− logP (X|A), where
X refers to the groundtruth navigation instruction. To stabi-
lize training, we apply an annealing strategy [66] to the IL
signal which makes the agents learn a good initial policy.
Inference. Once trained, the speaker and follower can per-
form their specific tasks independently. As in conventions,
we apply greedy prediction, i.e., x∗l = arg max(pl(xl)) and
a∗t = arg max(pt(at)), for instruction creation and follow-
ing, as approximations of X∗ = arg maxP (X|A;E) and
A∗=arg maxP (A|X;E), respectively.

4. Experiment
4.1. Performance on Instruction Following
Dataset. We conduct experiments on R2R [7], originally
developed for the instruction following task. R2R has four
sets: train (61 environments, 14, 039 instructions), val
seen (61 environments, 1, 021 instructions), val unseen
(11 environments, 2, 349 instructions), and test unseen

(18 environments, 4, 173 instructions). There are no over-
lapping environments between the unseen and training sets.
Evaluation Metric. Following [7, 24], four standard met-
rics for instruction following are used: 1) Success rate (SR)
computes the percentage of final positions less than 3 m
away from the goal location. 2) Navigation error (NE) refers
to the shortest distance between agent’s final position and
the goal location. 3) Oracle success rate (OR) is the suc-
cess rate if the agent can stop at the closest point to the goal
along its trajectory. 4) Success rate weighted by path length
(SPL) [5] is a trade-off between SR and navigation length.
Evaluation Protocol. As in [24, 25], we test our model
with several representative baselines [7, 24, 79] using dif-
ferent architectures, action spaces, and learning paradigms.
• Seq2Seq [7]: an attention-based Seq2Seq model that is

trained with IL under the visuomotor action space.
• Speaker-Follower [24]: a compositional model that is

trained with IL under the panoramic action space.
• RCM [79]: an improved multi-modal model that is trained

using both IL and RL under the panoramic action space.

The baselines are trained with labeled instruction-path pairs
in R2R train set. For each baseline, we further report
the performance with our CCC and other two speaker-
based data augmentation techniques, i.e., back-translation
(BT) [24] and adversarial path sampling (APS) [25]:

• CCC: our speaker is jointly learnt with the follower in real
and counterfactual environments and translates randomly
sampled paths into instructions as extra training data.

• BT [24]: the speaker is trained in isolation with the fol-
lower in real environments only and translates randomly
sampled paths into instructions as extra training data.

• APS [25]: the speaker is trained in isolation with the fol-
lower in real environments only but translates adversari-
ally selected paths into instructions as extra training data.

Quantitative Result. The comparison results on instruction
following are summarized in Table 1. We find CCC outper-
forms other learning paradigms across diverse dataset splits
and metrics. For the three baseline followers [7, 24, 79],
CCC gains remarkable SR improvements (i.e., 0.2-4.8,

615476



test unseenModels SR↑ NE↓ OR↑ SPL↑
Self-Monitoring [49] 43.0 6.0 55.0 32.0

Regretful [50] 48.0 5.7 56.0 40.0
OAAM [60] 53.0 - 61.0 50.0

Tactical Rewind [38] 54.0 5.1 64.0 41.0
AuxRN [90] 55.0 5.2 62.0 51.0

E-Dropout [66] 48.0 5.6 58.0 44.0
E-Dropout [66] + CCC 52.2 5.1 59.8 46.9
Active Perception [74] 55.7 4.8 73.1 37.1

Active Perception [74] + CCC 60.6 4.3 71.4 41.3
SSM [73] 57.3 4.7 68.2 44.1

SSM [73] + CCC 62.2 4.3 72.3 49.2

Table 2: Benchmarking results (§4.1) for instruction following
on R2R dataset [7].

2.7-4.7, and 3.0-6.1) compared with the second best on
val seen, val unseen and test unseen respectively.
This validates the efficacy of CCC across different follower
architectures. Further, the performance improvements on
unseen sets are relatively more significant, showing that
CCC strengthens models’ generalization ability.
Performance Benchmarking. For comprehensive evalu-
ation, we conduct performance benchmarking by applying
our CCC technique to [66, 73, 74], which are current top-
leading instruction followers with public implementations:

• E-Dropout [66]: a multi-modal model that uses ‘environ-
mental dropout’ method to mimic unseen environments.

• Active Perception [74]: a robust model that is able to ac-
tively explore surroundings for more intelligent planning.

• SSM [73]: a graph model which is equipped with a map
building module for global decision making.

As shown in Table 2, our CCC greatly boosts the perfor-
mance of current three top-performing instruction follow-
ers [66, 73, 74], across all the metrics. For example, SR
and SPL of E-Dropout [66] are improved by 4.2 and 2.9,
respectively. For Active Perception [74], it obtains signifi-
cant performance gains, e.g., 4.9 SR and 4.2 SPL. Based on
SSM [73], our CCC further improves the SR to 62.2.

4.2. Performance on Instruction Generation
Dataset. As R2R [7] test unseen set is preserved for
benchmarking instruction following methods, we report the
performance of instruction generation on val seen and
val unseen sets. Note that, in R2R, each path is associ-
ated with three ground-truth navigation instructions.

Evaluation Metric. Five standard textual evaluation met-
rics are considered here [2]: 1) BLEU [58] refers to the geo-
metric mean of n-gram precision scores computed over ref-
erence and candidate descriptions. 2) CIDEr [71] first rep-
resents each sentence with a set of 1-4 grams and calculates
the co-occurrences of n-grams in the reference sentences
and candidate sentence as the score. 3) METEOR [10] is
defined as the harmonic mean of precision and recall of un-
igram matches between sentences. 4) ROUGE [43] is com-
puted by comparing overlapping n-grams, word sequences
and word pairs. 5) SPICE [6] is based on the agreement of
the scenegraph [63] tuples of the candidate sentence and all
reference sentences. These metrics are calculated by com-
paring each candidate instruction to the three reference in-
structions given the navigation path. As suggested by [88],
SPICE is adopted as the primary metric.

Evaluation Protocol. As we implement our follower over
different baselines (i.e., Seq2Seq[7], Speaker-Follower[24],
and RCM [24]), we report the performance of their cor-
responding speakers (i.e., Ours-Seq2Seq, Ours-Speaker-
Follower, and Ours-RCM). For comparative methods, we
consider the speaker in [24] (i.e., BT Speaker) and the in-
struction generation model (i.e., VLS) in [2]. The former is
widely used in current VLN instruction following methods
for data augmentation, and VLS is the only model that is
specifically designed for instruction generation in VLN.

Quantitative Result. The comparison results on instruc-
tion generation are reported in Table 3. As seen, our speak-
ers achieve better performance on most of the metrics. For
example, our three speakers gain the top three SPICE scores
on both val seen and val unseen sets. Moreover,
among our three speakers, Ours-RCM performs best. We
suspect that a stronger follower can provide better feedback
signals to the speaker during cycle-consistent learning.

User Study. We organize two user studies. In the first user
study, we sample 500 paths in val unseen and generate
instructions through our three speakers (i.e., Ours-Seq2Seq,
Ours-Speaker-Follower, Ours-RCM). 25 volunteer students
are asked to select the most meaningful instruction from
those compared for each path. Ours-RCM receives more
votes than the others (Ours-RCM: 40.5% vs Ours-Speaker-
Follower: 32.1% vs Ours-Seq2Seq: 27.4%). In the second
user study, we let other 25 students compare the outputs
of Ours-RCM, BT Speaker and VLS. Ours-RCM wins with
68.6% picking rate (BT Speaker: 13.2%, VLS: 18.2%).

val seen val unseenModel Bleu-1 ↑ Bleu-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑ SPICE ↑ Bleu-1 ↑ Bleu-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑ SPICE ↑
BT Speaker [24] 0.537 0.155 0.121 0.233 0.350 0.203 0.522 0.142 0.114 0.228 0.346 0.188

VLS [2] 0.549 0.157 0.137 0.228 0.352 0.214 0.548 0.159 0.132 0.231 0.357 0.197
Ours-Seq2Seq 0.720 0.296 0.529 0.233 0.487 0.216 0.704 0.273 0.475 0.229 0.473 0.202

Ours-Speaker-Follower 0.723 0.299 0.566 0.235 0.490 0.229 0.706 0.275 0.477 0.229 0.474 0.207
Ours-RCM 0.728 0.287 0.543 0.236 0.493 0.231 0.708 0.272 0.461 0.231 0.477 0.214

Table 3: Quantitative comparison results (§4.2) for instruction generation on R2R dataset [7].
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Instruction Following Instruction Generation
Model Component SR↑ NE↓ OR↑ SPL↑ Bleu-1 ↑ Bleu-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑ SPICE ↑

Baseline [24] - 29.9 6.9 40.7 21.0 0.522 0.142 0.114 0.228 0.346 0.188

Cycle-
Consistency

4A
E 33.2 6.7 44.7 23.7 0.694 0.269 0.446 0.228 0.471 0.192
4X

E 28.6 6.9 40.1 20.5 0.699 0.271 0.456 0.228 0.472 0.195
4A

E+4X
E 35.1 6.7 44.5 25.4 0.702 0.272 0.462 0.229 0.472 0.196

4A
E+4X

E +4A′

E 37.7 6.6 45.9 26.7 0.703 0.272 0.467 0.229 0.471 0.198
Counterfactual
Environment

w/o reference environment Er 29.9 6.9 40.7 21.0 0.522 0.142 0.114 0.228 0.346 0.188
w reference environment Er 41.7 5.9 50.7 35.6 0.701 0.271 0.459 0.229 0.472 0.200

Full Model 4A
E+4X

E +4A′

E +4A
Ē

+4X
Ē

43.5 5.8 52.0 38.1 0.706 0.275 0.477 0.229 0.474 0.207

Table 4: Ablation study on val unseen of R2R dataset [7]. See §4.3 for details.

Figure 3: Visual comparison results on instruction following (left) and instruction generation (right). See §4.3 for details.

4.3. Diagnostic Experiments
To fully examine the effectiveness of our core model

designs, a set of ablative studies are conducted on val
unseen of R2R [7] (Table 4). Our model is built upon [24].
Cycle-Consistent Learning. We first assess the contribu-
tion of our cycle-consistent learning scheme (cf. §3.1). For
the baseline method, the follower and speaker are trained
separately and independently. Then we build four alterna-
tives, i.e.,4A

E ,4X
E ,4A

E +4X
E , and4A

E+4X
E +4A′

E . The
first three baselines are trained by minimizing different 4
errors on the labeled dataset D only while the last one addi-
tionally uses unlabeled data U , i.e., 17K randomly sampled
paths A′ as in [24]. From Table 4, we can conclude that:
i) leveraging cross-task relations indeed boosts the perfor-
mance on both instruction following and generation (while
4X

E greatly facilitates instruction generation with small per-
formance sacrifice of instruction following), and ii) our
cycle-consistency learning scheme not only works well on
labeled data, but also makes better use of unlabeled data.
Counterfactual Environment Creation. Next we study the
efficacy of our counterfactual thinking strategy (cf. §3.2). To
this end, we separately train the speaker and follower on the
counterfactual examples created by the creator without cycle-
consistent learning. We build a baseline ‘w/o reference en-
vironment Er’ by randomly masking a part of the original
scene without considering reference environment. Table 4
shows that: i) our synthesized counterfactual environments
can benefit the training of both the speaker and follower, and
ii) additionally considering reference environments during
synthesizing can produce more informative counterfactuals.
Full Model Design. After examining the contribution of

two critical components individually, we evaluate the effec-
tiveness of our full model design. Our full model learns the
speaker, follower, and creator jointly with comprehensive
use of labeled and unlabeled “real” data as well as coun-
terfactual examples. As evidenced in Table 4, CCC brings
more significant performance improvements over each indi-
vidual module on both instruction following and generation.
Visual Comparison Results. Finally, some visual results
are provided in Fig. 3 for more intuitive comparisons. From
the left sub-figure we can observe that, the follower trained
with our CCC framework can derive a more robust naviga-
tion policy and thus reaches the target location successfully.
As shown in the right sub-figure, our speaker is able to gen-
erate more accurate instructions; some novel actions and
landmarks are successfully mentioned. During training, our
strong speaker in turn boosts the learning of the follower.

5. Conclusion
We introduced a powerful training framework, CCC, that

learns navigation generation and following simultaneously.
It explicitly leverages cross-task connections to regularize
the training of both the speaker and follower. Hence, a cre-
ator is integrated into such cycle-consistent learning system,
so as to synthesize counterfactual environments and further
facilitate training. The CCC framework is model-agnostic
and can be integrated into a diverse collection of navigation
models, leading to performance improvements over both in-
struction following and generation, in the R2R dataset.
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