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High-Fidelity GAN Inversion for Image Attribute Editing

Tengfei Wang!

Abstract

We present a novel high-fidelity generative adversar-
ial network (GAN) inversion framework that enables at-
tribute editing with image-specific details well-preserved
(e.g., background, appearance, and illumination). We first
analyze the challenges of high-fidelity GAN inversion from
the perspective of lossy data compression. With a low bit-
rate latent code, previous works have difficulties in preserv-
ing high-fidelity details in reconstructed and edited images.
Increasing the size of a latent code can improve the accu-
racy of GAN inversion but at the cost of inferior editability.
To improve image fidelity without compromising editabil-
ity, we propose a distortion consultation approach that em-
ploys a distortion map as a reference for high-fidelity recon-
struction. In the distortion consultation inversion (DCI),
the distortion map is first projected to a high-rate latent
map, which then complements the basic low-rate latent code
with more details via consultation fusion. To achieve high-
fidelity editing, we propose an adaptive distortion align-
ment (ADA) module with a self-supervised training scheme,
which bridges the gap between the edited and inversion
images. Extensive experiments in the face and car do-
mains show a clear improvement in both inversion and edit-
ing quality. The project page is https://tengfei—
wang.github.io/HFGI/.

1. Introduction

Image attribute editing is the task of modifying de-
sired attributes of a given image while preserving other de-
tails. With the rapid advancement of generative adversar-
ial networks (GANs) [9], a promising direction is to ma-
nipulate images with the strong control capacity of Style-
GAN [19,20]. To enable real-world image editing, GAN in-
version techniques [40] have been recently explored, which
aim at projecting images to the latent space of a pre-trained
GAN generator.

Existing GAN inversion approaches either perform per-
image optimization [, 17,45] or learn a data-driven en-
coder [26, 34]. Optimization approaches achieve higher
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Figure 1. High-fidelity image inversion and editing (age, smile,
eyes, color, grass). Our method performs well on details preser-
vation in both inverted and edited results such as background,
makeup, beard/hair style, reflection and shadow.

reconstruction accuracy by over-fitting on a single image,
but the latent code may get out of GAN manifold, lead-
ing to inferior editing quality. In contrast, encoder-based
GAN inversion methods are faster and show better edit-
ing performance due to knowledge learned from numerous
training images. Nevertheless, their reconstruction results
are usually inaccurate and of low fidelity: these methods
can reconstruct a coarse layout (low-frequency patterns),
but the image-specific details (high-frequency patterns) are
often ignored. For example, the reconstructed face im-
ages typically possess averaged patterns that agree with the
majority of training images (e.g., normal pose/expression,
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occlusion/shadow-free), and the details that present minor-
ity patterns (e.g., background, illumination, accessory) in
training data are subject to distortion. It is highly desir-
able to preserve these image-specific details in reconstruc-
tion and editing with high fidelity.

Though some works tried to improve the reconstruction
accuracy of encoder-based methods, their editing perfor-
mance usually decreases [34]. To analyze the limitation of
existing approaches, we consider the GAN inversion prob-
lem as a lossy data compression system with a frozen de-
coder. According to Rate-Distortion theory [29], revers-
ing a real-world image to a low-dimensional latent code
would inevitably lead to information loss. As conjectured
by information bottleneck theory [33], the lost information
is primarily image-specific details as the deep compression
model tends to retain common information of a domain.
Based on these analyses and experimental observations, we
present the Rate-Distortion-Edit trade-off for GAN inver-
sion, which further inspires our framework.

According to this trade-off, the low-rate latent codes are
insufficient for high-fidelity GAN inversion. However, it
is non-trivial to improve the reconstruction accuracy by di-
rectly increasing the rate. A higher-rate latent codes can
easily achieve a low distortion by overfiting on the recon-
struction process, but would suffer a dramatic editing per-
formance drop. To achieve both accuracy and editability
(high-fidelity editing), we propose a novel framework that
equips low-rate encoder models with distortion consulta-
tion. The consultation branch serves as a ‘cheat sheet’
for generation that only conveys the ignored image-specific
information. Specifically, we leverage the distortion map
between source and low-fidelity reconstructed image as a
reference and project it to higher-rate latent maps. Com-
pared with high-rate latent codes inferred from a full image,
the distortion map only conveys image-specific details and
can thus alleviate the aforementioned overfitting issue. The
high-rate latent map and low-rate latent code are further em-
bedded and fused in the generator via consultation fusion.
Our scheme shows a clear improvement in reconstruction
quality, and no test-time optimization is involved.

For attribute editing, following previous works, we per-
form vector arithmetic [25] on the low-rate latent code,
while the consultation is desired to bring back lost details.
While the distortion consultation substantially contributes
to the inversion quality, it cannot directly apply the distor-
tion map observed on the inversion image for editing due
to the misalignment between inverted and edited images.
To this end, we additionally design an adaptive distortion
alignment (ADA) network to adjust the distortion map with
the edited images. To disentangle the alignment from the
consultation encoder and stabilize the training, we impose
intermediate supervision on ADA by proposing an align-
ment regularization with a self-supervised training scheme.

Extensive experiments show that our method signifi-
cantly outperforms current approaches in terms of details
preservation in both reconstructed and edited results. On
account of the high-fidelity inversion capacity, our approach
is robust to viewpoint and illumination fluctuation and can
thus perform temporally consistent editing on videos. Our
primary contributions can be summarized as follows.

* We propose a distortion consultation inversion scheme
that combines both high reconstruction quality and
compelling editability with consultation fusion.

* For high-fidelity editing, we propose the adaptive dis-
tortion alignment module with a self-supervised learn-
ing scheme. By alignment, the distortion information
can be propagated well to the edited images.

* Our method outperforms state-of-the-art approaches
qualitatively and quantitatively on diverse image do-
mains and videos. The framework is simple, fast and
can be easily applied to GAN models.

2. Related Work
2.1. GAN Inversion

Existing GAN inversion approaches can be categorized
into optimization-based, encoder-based, and hybrid meth-
ods. Optimization approaches can achieve high recon-
struction quality but are slow for inference. [45] used L-
BFGS, and I12S [!] adopted ADAM for solving the opti-
mization. [15] adopted Covariance Matrix Adaptation for
gradient-free optimization. Instead of per-image optimiza-
tion, [45] learned an encoder to project images. [44] pro-
posed an in-domain method on real images. pSp [26] and
GHFeat [41] proposed to embed latent codes in a hierar-
chical manner. Further, ede [34] analyzed the trade-offs
between reconstruction and editing ability. [38] improved
the inversion efficiency by a shallow network with efficient
heads. ReStyle [4] projected the latent codes with itera-
tive refinements. These methods are more efficient but fail
to achieve high-fidelity reconstruction. Hybrid approaches
make a compromise. [45] initialize the optimization with
the encoder output for acceleration. [ 1] designed a collab-
orative learning scheme for encoder and optimization itera-
tor. [27] fine-tuned StyleGAN parameters for each image
after predicting an initial latent code, which takes a few
minutes for an image. Compared with previous methods,
our method considerably improves the reconstruction qual-
ity of encoder models without inference-time optimization.

GAN inversion approaches can also be classified by the
used latent space. Z space [19] is straightforward but suffers
from feature entanglement. W [19] and W [1, 2] space
in StyleGAN are more disentangled, where W space ex-
tends W space by using different W across layers. S
space [39] is proposed by transforming W through the
affine layers. P space [46] inverts images to the last ac-
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Figure 2. Rate-Distortion-Edit trade-off. “Rec” and “Edit” represent the reconstruction and editing results, respectively. (a) is a typical
low-rate framework for GAN inversion but suffers detail loss and distortion. (b) is a naive high-rate GAN inversion framework with nearly
perfect reconstruction but suffers inferior interpretability and editability. The proposed method (Fig. 3) combines both high details fidelity

and compelling editing performance with a fast inference speed.

tivation layer in the non-linear mapping network. Besides
StyleGAN, some works [10] also adopts multi-scale latent
codes for ProgressGAN [18]. Nevertheless, these latent
spaces would inevitably lose details in reconstructed images
due to limited bit-rate (Sec. 3.1). To perform a high-fidelity
inversion, we propose a distortion consultation branch to
convey high-frequency image-specific information.

2.2. Latent Space Editing

A number of supervised and unsupervised approaches
explored GAN latent space for semantic directions under
the vector arithmetic. The supervised methods need off-
the-shelf attribute classifiers or annotated images for spe-
cific attributes. InterfaceGAN [30] trained SVM to learn
the boundary hyperplane for each binary attribute. Style-
Flow [3] learned reversible mapping by normalizing flow
and off-the-shelf classifiers. Others [16,24] explored simple
geometric transformation via self-supervised learning. Un-
supervised approaches do not need pre-trained classifiers.
GANspace [13] performed PCA on early feature layers.
Similarly, SeFa [30] performed eigenvector decomposition
of the affine layers. Some [22,35,47] found distinguishable
directions based on mutual information. LatentCLR [42]
explored directions by contrastive learning.

3. Approach

Given a source image X and a well-trained generator Gy,
GAN inversion infers the latent code W via an encoder E,
which is expected to faithfully reconstruct X. In this sec-

tion, we first analyze the bottleneck of previous inversion
methods and describe our proposed distortion consultation
inversion strategy. To handle the features misalignment, we
present the adaptive distortion alignment modules with a
self-supervised training scheme. The whole framework is
illustrated in Figure 3.

3.1. Overview

Motivation. Currently, GAN inversion frameworks
lie in three categories, which are optimization-based,
encoder-based and hybrid methods. Despite more accu-
rate, optimization-based and hybrid approaches are time-
consuming and thus intolerable in real-time applications.
Existing encoder-based methods can be illustrated by Fig. 2
(a), where the decoder is a frozen well-trained generator
(e.g., StyleGAN) while the encoder learns a mapping from
the source image to the latent codes. As observed in many
existing works (e.g., results (a) in Fig. 2), the encoder ap-
proaches fail to faithfully reconstruct the input images, and
the inversion (and editing) results are of low fidelity in terms
of details. Noted the fact that the latent codes in previ-
ous methods are of (relatively) low dimension, we conjec-
ture that the low-rate latent codes are insufficient for high-
fidelity reconstruction. This conjecture is also supported by
the Rate-Distortion theory [5,7,29], which will be reviewed
in the Supplement.

To further analyze the effect of the latent rate in high-
fidelity GAN inversion, we formulate the encoder-based
GAN inversion as a problem of lossy data compression. In
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Figure 3. Overview of our high-fidelity image inversion and editing framework. The basic encoder Ey infers a low-rate latent code W
corresponding to a low-fidelity reconstruction image X,. The distortion map A between X, and the source image X contains the lost
high-frequency image-specific details to improve the reconstruction fidelity. The red dotted boxes indicate the editing behaviour with
certain semantic direction N°%*, where W°%* = W + o N corresponds to a low-fidelity editing image X5%"*. To achieve high-fidelity
image editing, we propose the distortion consultation branch to facilitate the generation. In the distortion consultation, A s first aligned
with the low-fidelity edited image Xedit by ADA and then embedded to a high-rate latent map C' via the consultation encoder E.. Latent
code W and latent map C' are combined via the consultation fusion (see details in the right part) across layers of G to generate the final

edited image X °¥*.

this formulation, rafe can be interpreted as the dimension
of latent codes (e.g., 18 x 512), and distortion indicates the
reconstruction quality (fidelity). A compelling inversion
method is desired to produce high-fidelity images for both
inversion and editing (low distortion). Nevertheless, the
current dimension of latent codes is much smaller than that
of images (low rate). This implies a contradiction with
[29, 32], which shows the low-rate latent codes are insuf-
ficient for faithful reconstruction and some information is
inevitably lost. Therefore, we are motivated to design a
large-rate GAN inversion system.

Challenge. However, it is non-trivial to reduce the
distortion by simply increasing the latent rate. A naive
idea for faithful reconstruction is to adopt a higher-rate
latent code like Fig. 2 (b). This Unet-like structure is
adopted by some recent image restoration works [6,37] that
conveys latent maps (e.g., 18 x 512 x H x W) to decoder.
Benefited from the higher bit rate, the restoration quality is
gratifying (e.g., results (b) in Fig. 2). However, we cannot
apply this structure in our case since the high-dimensional
latent codes are difficult to interpret and manipulate for
attribute editing (e.g., results (b) in Fig. 2). Similarly, prior
work [34] also observed tradeoffs between the reconstruc-
tion and editability brought by over-fitting. The high-rate
latent code is easy to overfit on the reconstruction, thereby
compromising the edit performance. As the inversion is
just an intermediate step to achieve the goal of editing, it
is essential to balance the rate, reconstruction, and editing
quality, which we call the Rate-Distortion-Edit trade-offs
(Fig. 2). To this end, a delicate system design is needed.

Design. As analyzed above, with a (relatively) low-rate la-
tent code, the GAN inversion system is subject to inevitable

information loss. By analyzing the visual results of pre-
vious GAN inversion approaches (Fig. 1, Fig. 2, Fig. 4),
we found that these reconstruction results can successfully
preserve frequent patterns and principle attributes of the
source images. In contrast, the lost information is mostly
the image-specific details such as background, make-up and
illumination. This observation is consistent with the Infor-
mation Bottleneck theory [31-33], which hypothesizes the
deep models primarily learn common patterns in the dataset
while forgetting infrequent details for reconstruction.

Considering the Rate-Distortion-Edit trade-offs, now
that we have prioritized the editability (with a low-rate la-
tent code), the main concern is how to convey the lost infor-
mation to improve the fidelity (lower the distortion) with-
out compromising the edit performance. To this end, we
propose a distortion consultation branch that only conveys
image-specific details to enhance the reconstruction quality,
which avoids the trivial solution of a simple overfitting. For
editing, we still perform vector arithmetic on the low-rate
latent code for its high editability. By combining the best of
both worlds, the proposed approach achieves a high fidelity
in both reconstruction and editing (Fig. 2).

3.2. Distortion Consultation Inversion (DCI)

Basic Encoder. With a basic encoder F,, we can obtain
a low-rate latent code W = FE,(X) and initial inversion
image X, = Go(W). In this case, the generator G takes
W as the input in each layer to obtain the feature map:

Fi11 = AdaIN(F;, f£(W;), fE(W3), ()

where f£(W;), f(W;) are affine layers for scale and bias

in AdaIN [14]. XO is low-fidelity due to the information
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loss of low-rate latent codes, and the subscript o denotes an
(unsatisfactory) observation of source image X.
Consultation Encoder. To enhance F with higher fidelity,
we propose a distortion consultation branch to convey the
lost image-specific details. We refer it to Consultation,
since the network explicitly consults the image-specific
information as a reference for generation. Specifically, we
see the distortion map A = X — X, between source X and
initial reconstruction X o as the lost details [36]. The distor-
tion map is projected to a high-rate latent map C' = E,(A)
via the consultation encoder E.. Compared with prior
methods relying on W only, G additionally consults C
for lost details to achieve high-fidelity reconstruction as
X = Go(W,0).

Consultation Fusion. To combine the consultation branch
with the basic encoder for image generation, we adopt a
layer-wise consultation fusion for latent codes W and latent
maps C, as shown in Fig. 3. As artifacts and inaccurate de-
tails introduced by W can degrade the generation quality,
we design a gated fusion scheme to adaptively filter out un-
desired features. In layer i of G, C; is embedded to a gate
map g; and a high-frequency details map h;:

gi =[2Gy, by = (), )

where mapping functions f92*¢ and f"/ are convolution
layers. h; contains the image-specific details, and facili-
tates the low-fidelity features obtained from W; (Eq. (2)) to
produce high-fidelity feature maps F;; in StyleGAN':

3

To avoid overfitting on the inversion result, we only perform
the consultation fusion in early layers of Gy.

3.3. Adaptive Distortion Alignment (ADA)

For attribute editing, the low-rate latent code W would
be moved along certain semantic direction N°¥* as
Wedit — W 4 aNe¥* [30]. The initial edited image by
the basis encoder is denoted as X%t = G (W %), which
suffers details distortion. So far, we have improved the fi-
delity of the inversion image X, with the proposed DCI,
where the distortion map A=X-X o 18 calculated for X o
However, X gd“ would be deformed from X, » when editing
attributes such as age, pose and expression. This means
the observed A may not align with the edited image X edit
Applying DCI directly to X cdit Jeads to obvious artifacts by
consulting misaligned details A (see Sec. 4.3). To advance
DCI from inversion to editing, the observed distortion map
Ais supposed to be adaptively aligned with the edited im-
age X cdit We thus propose the ADA module, which is an
encoder-decoder-like structure for distortion alignment.

'For StyleGAN2 [20], the fusion layer would be Fiyi1 = gi -
ModulatedConv(F;, f£(W;), f2(W;)) + hy.

Considering a misaligned pair of {I, A} where I is X,
for inversion and X, gd“ for editing, ADA is to align the
distortion map A with a target image I. For inversion,
ADA is ideally an identity mapping. For editing, the
distortion map is desired to be adaptively transformed
as At — ADA(Xe4* A) that aligns with the initial
editing result X¢%* With C¢dt = E,(Acdit) as a refer-
ence, X4t = Go(Wedit, Cedit) can preserve more details.

Self-supervised Training. To alleviate the entanglement
between distortion alignment and distortion consultation,
involving intermediate supervisions on ADA outputs in pre-
ferred. To this end, we need numerous misaligned pairs of
{I, A} and their ground-truth aligned maps A for train-
ing, but the data collection is labor-intensive. To conduct
a self-supervised training, we take X as the source image,
and the low-fidelity inversion X, as the target image I for
alignment, and the ground-truth aligned distortion is thus
A = X — X,. During the training, we augment A with
random perspective transformation to simulate misaligned
distortion maps A. We empirically observe these simu-
lated pairs work well on training and expect a better simu-
lation scheme in future works. The ADA module is encour-
aged to produce the aligned distortion A = ADA(X,,A)
that approximates A. The alignment loss is defined as:
Latign = HA — All;. See the Supplement for more details.

3.4. Losses

During the training, the generator Gy and basic encoder
FE are frozen. For faithful reconstruction, we calculate Lo
loss and LPIPS [43] between X and X. We also calculate
the identity loss Liq = 1 — (F(X), F(X)), where F is
pre-trained ArcFace [8] or a ResNet-50 model for different
domains [34]. The reconstruction loss is

['rec = »62 + )\peTELPIPS + )\id'cid~ “4)

We also impose adversarial loss to improve image quality:

Lp = Eflog D(X)] + Ellog(1 — D(X))],  (5)
Lago = —E[lOg(D(X))], (6)
where D is initialized with the well-trained discriminator.
In summary, the overall loss is a weighted summation of
Lyrecs Ladv, and Lgign. Note that the training process
only involves the inversion images, and no editing direction
Nedit js needed. After training, the model can generalize to
diverse attribute editing explored by different methods.

4. Experiments
4.1. Settings

Datasets. For the human face domain, we use the
FFHQ [19] dataset for training and the CelebA-HQ [18]
dataset for evaluation. For the car domain, we use Stan-
ford Cars [21] for training and evaluation. For attribute
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Method MAE | SSIM 1 LPIPS | Time | Ours > pSp  Ours > ed4e  Ours > Restyle

12S[1] .0636+£.0010 .872+.005 .134+.006  156s Preference Rate 81.2% 84.4% 79.7%

PTI[27] .0622+.0004 .877+.003 .1324+.003  283s - s of th . lue indi

pSp [20] 0789+.0006 793+.006 169+.002 O.1ls Table 2. The results of the user.study, T e.reported value indicates
the preference rate of Ours against a baseline.

Restyle,sp [4] .07294.0005 .823+.004 .145+.002  0.46s

ede [34] .0919+£.0008 .742+.007 .2214+.003 0.11s 4.2.3 User Study

Restylecse [4] .0887+£.0008 .758+.007 .202+.003  0.46s To perceptually evaluate the editing performance, we con-

Oursege .0617+£.0004 .877+.002 .127+.001 0.24s

Table 1. Quantitative comparison for inversion quality on faces.

editing, we adopt InterfaceGAN [30] for face images and
GANSpace [ 3] for car images.

Implementation details. See the Appendix.

4.2. Evaluation

4.2.1 Quantitative Evaluation

We compare our method (with ede as the basic encoder)
with state-of-the-art encoder-based GAN inversion ap-
proaches, pSp [26], ede [34] and Restyle [4] (with pSp
and ede as backbones, respectively). We report quantita-
tive comparisons of the inversion performance in Table 1.
The metrics are calculated on the first 1,500 images from
CelebA-HQ. We also compare the proposed method with
two optimization-based approaches [, 27]. Our approach
substantially outperforms encoder-based baselines in terms
of reconstruction quality and is considerably faster than
optimization-based methods when inference.

4.2.2 Qualitative Evaluation

Encoder baselines. We show visual results of both inver-
sion and editing in Fig. 4. Compared with previous ap-
proaches, our method is robust to images with occlusion
and extreme viewpoints. For example, the first row in Fig. 4
gives a face image occluded by the hand, and the last row
demonstrates a car image with an out-of-range viewpoint.
Existing methods fail to reconstruct these challenging im-
ages faithfully. They generate distorted results and suffer
artifacts for both inversion and editing. In contrast, with
the proposed distortion consultation scheme, our method is
more robust with high-fidelity results. Besides the robust-
ness improvement, our approach also successfully preserves
more details in backgrounds (4th row), shadow (2nd row),
reflect (10th row), accessory (5th row), expressions (7th and
8th rows), and appearance (9th and 11th rows).
Optimization baselines. We also compare our method with
optimization-based methods [1,20,27] in Fig. 5. Note that
PTI [27] optimizes both latent codes and StyleGAN param-
eters, but we still report their results for better compari-
son. With ~ 1000 x faster inference, our method achieves a
comparable or even better reconstruction quality. Also, the
editing results produced by the proposed scheme success-
fully preserve the image-specific details of source images
without compromising the edit performance.

duct a user study in Table 2. We select the first 50 im-
ages from CelebA-HQ and perform editing on extensive at-
tributes. We collect 1,500 votes from 30 participants. Each
participant is given a triple of images (source, our editing,
baseline editing) at once and asked to choose the higher-
fidelity one with proper editing. The user study shows our
method outperforms baselines by a large margin.

4.3. Ablation Study
4.3.1 Effect of Distortion Consultation

As discussed before, the distortion consultation inversion
(DCI) scheme brings back ignored image details to com-
plement the low-rate basic encoder, thereby achieving the
high-fidelity reconstruction. To validate the effectiveness
of DCI, we show our inversion results in Fig. 6. With the
proposed distortion consultation branch, the model is more
robust to occlusion and extreme poses and keeps more de-
tails in the reconstruction results.

4.3.2 Effect of Adaptive Distortion Alignment

To analyze the effect of ADA, we show the editing results
with and without ADA in Fig. 7. Without the adaptive align-
ment, the distortion map fails to generalize to the edited im-
age and degrades the generated image quality. In the pro-
posed method, the aligned distortion map is embedded and
integrated into the feature space via consultation encoding
and consultation fusion. A naive alternative is to directly
add the distortion map A to X ¢dit in the image space with
warping estimated by face landmarks [12]. As shown in
Fig. 7, performing warping and fusion in the image space
also leads to obvious artifacts, where the warping is imple-
mented by coordinates interpolation of facial landmarks.

4.4. Application on Video Editing

Compared with image inversion and editing, the key
challenge for the video counterpart is the temporal consis-
tency of details across frames. This puts a higher demand
for reconstruction fidelity since the distortion of every sin-
gle image would be magnified in a video in terms of con-
sistency and quality [23]. We show inversion and editing
results on a real video [28] in Fig. 8. Previous low-rate in-
version approaches lack robustness to pose variation, and
fail to preserve the identity of the original person and suf-
fer notable distortion in editing results. When the pose and
viewpoint change across video frames, their results show
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Figure 5. Visual comparison with optimization-based methods. Our method is much faster than these baselines.
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Figure 7. Effects of ADA. We integrate the distortion map in the
image and feature space respectively and show the editing results.

inconsistent details and abrupt identity discrepancy. In con-
trast, the proposed method is more robust to cross-frame
discrepancy (e.g., pose, viewpoint) and achieves higher fi-
delity for details preservation. More results in mp4 format
are given in the Supplement.

5. Conclusion

In this work, we propose a novel GAN inversion frame-
work that enables high-fidelity image attribute editing. With
an information consultation branch, we consult the ob-
served distortion map as a high-rate reference for lost in-
formation. This scheme enhances the basic encoder for
high-quality reconstruction without compromising editabil-

Ours Restyle ede Original
(+ Smile) (+ Smile) (+ Smile) Video

Ours
(Rec)

Figure 8. Inversion and editing results on a real video.

ity. With the adaptive distortion alignment and distortion
consultation technique, our method is more robust to chal-
lenging cases such as images with occlusion and extreme
viewpoints. Benefiting from the additional information of
the consultation branch, the proposed method shows clear
improvements in terms of image-specific details preserva-
tion (e.g., background, appearance, and illumination) for
both reconstruction and editing. The proposed framework
is simple to apply, and we believe it can be easily general-
ized to other GAN models for future work.

Limitations. One limitation of the proposed method is the
difficulty in handling large misalignment cases. As the aug-
mented data used for ADA training in our experiments does
not cover extreme misalignment, ADA is possibly insuf-
ficient when editing images with large viewpoint changes
(see the Supplement for failure cases).

11386



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2stylegan: How to embed images into the stylegan latent
space? In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV),2019. 1,2,7,8
Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2stylegan++: How to edit the embedded images? In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 2

Rameen Abdal, Peihao Zhu, Niloy Mitra, and Peter Wonka.
Styleflow: Attribute-conditioned exploration of stylegan-
generated images using conditional continuous normalizing
flows. In SIGGRAPH, 2021. 3

Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:
A residual-based stylegan encoder via iterative refinement.
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 2,7

Yochai Blau and Tomer Michaeli. Rethinking lossy com-
pression: The rate-distortion-perception tradeoff. In Inter-
national Conference on Machine Learning (ICML), 2019. 3
Chaofeng Chen, Xiaoming Li, Yang Lingbo, Xianhui Lin,
Lei Zhang, and Kwan-Yee K. Wong. Progressive semantic-
aware style transformation for blind face restoration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 4

Thomas M Cover. Elements of information theory. John
Wiley & Sons, 1999. 3

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2019. 5

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Conference
on Neural Information Processing Systems (NeurIPS), 2014.
1

Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing
using multi-code gan prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 3

Shanyan Guan, Ying Tai, Bingbing Ni, Feida Zhu, Feiyue
Huang, and Xiaokang Yang. Collaborative learning for faster
stylegan embedding.  arXiv preprint arXiv:2007.01758,
2020. 2

Jianzhu Guo, Xiangyu Zhu, Yang Yang, Fan Yang, Zhen Lei,
and Stan Z Li. Towards fast, accurate and stable 3d dense
face alignment. In European Conference on Computer Vision
(ECCV), 2020. 7

Erik Harkonen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable gan con-
trols. In Conference on Neural Information Processing Sys-
tems (NeurIPS), 2020. 3,7

Xun Huang and Serge J. Belongie. Arbitrary style transfer
in real-time with adaptive instance normalization. In ICCV,
2017. 4

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

11387

Minyoung Huh, Richard Zhang, Jun-Yan Zhu, Sylvain Paris,
and Aaron Hertzmann. Transforming and projecting im-
ages into class-conditional generative networks. In European
Conference on Computer Vision (ECCV), 2020. 2

Ali Jahanian, Lucy Chai, and Phillip Isola. On the” steerabil-
ity” of generative adversarial networks. The International
Conference on Learning Representations (ICLR), 2020. 3
Kyoungkook Kang, Seongtae Kim, and Sunghyun Cho. Gan
inversion for out-of-range images with geometric transfor-
mations. Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021. 1

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. The International Conference on Learning
Representations (ICLR), 2018. 3, 5

Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 1,2, 5

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 1,5,7, 8

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
International IEEE Workshop on 3D Representation and
Recognition, 2013. 5

Yu-Ding Lu, Hsin-Ying Lee, Hung-Yu Tseng, and Ming-
Hsuan Yang. Unsupervised discovery of disentangled mani-
folds in gans. arXiv preprint arXiv:2011.11842, 2020. 3
Hao Ouyang, Tengfei Wang, and Qifeng Chen. Inter-
nal video inpainting by implicit long-range propagation.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 14579-14588, October
2021. 7

Antoine Plumerault, Hervé Le Borgne, and Céline Hude-
lot. Controlling generative models with continuous factors of
variations. The International Conference on Learning Rep-
resentations (ICLR), 2020. 3

Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. The International Conference on
Learning Representations (ICLR), 2016. 2

Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2021. 1,2,7

Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. arXiv preprint arXiv:2106.05744,2021. 2,7, 8
Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias NieBner. Faceforen-
sics++: Learning to detect manipulated facial images. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019. 7



[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

(43]

Claude E Shannon et al. Coding theorems for a discrete
source with a fidelity criterion. IRE Nat. Conv. Rec, 4(142-
163):1, 1959. 2, 3,4

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. In-
terpreting the latent space of gans for semantic face editing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 3, 5,7
Ravid Shwartz-Ziv and Naftali Tishby. Opening the black
box of deep neural networks via information. arXiv preprint
arXiv:1703.00810, 2017. 4

Naftali Tishby, Fernando C Pereira, and William Bialek.
The information bottleneck method. Proceedings of Annual
Allerton Conference on Communication, Control and Com-
puting, 1999. 4

Naftali Tishby and Noga Zaslavsky. Deep learning and the
information bottleneck principle. In 2015 IEEE Information
Theory Workshop (ITW), pages 1-5, 2015. 2, 4

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and
Daniel Cohen-Or. Designing an encoder for stylegan im-
age manipulation. ACM Transactions on Graphics (TOG),
40(4):1-14,2021. 1,2,4,5,7

Andrey Voynov and Artem Babenko. Unsupervised discov-
ery of interpretable directions in the gan latent space. In In-
ternational Conference on Machine Learning (ICML), 2020.
3

Tengfei Wang, Jiaxin Xie, Wenxiu Sun, Qiong Yan, and
Qifeng Chen. Dual-camera super-resolution with aligned at-
tention modules. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 2001—
2010, October 2021. 5

Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. To-
wards real-world blind face restoration with generative fa-
cial prior. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. 4
Tianyi Wei, Dongdong Chen, Wenbo Zhou, Jing Liao,
Weiming Zhang, Lu Yuan, Gang Hua, and Nenghai Yu.
A simple baseline for stylegan inversion. arXiv preprint
arXiv:2104.07661, 2021. 2

Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace
analysis: Disentangled controls for stylegan image genera-
tion. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 2

Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei
Zhou, and Ming-Hsuan Yang. Gan inversion: A survey.
arXiv preprint arXiv:2101.05278, 2021. 1

Yinghao Xu, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, and
Bolei Zhou. Generative hierarchical features from synthe-
sizing images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.
2

Oguz Kaan Yuksel, Enis Simsar, Ezgi Giilperi Er, and Pinar
Yanardag. Latentclr: A contrastive learning approach for
unsupervised discovery of interpretable directions. arXiv
preprint arXiv:2104.00820, 2021. 3

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of

[44]

(45]

[46]

(47]

11388

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 5

Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-
domain gan inversion for real image editing. In European
Conference on Computer Vision (ECCV), 2020. 2

Jun-Yan Zhu, Philipp Krihenbiihl, Eli Shechtman, and
Alexei A Efros. Generative visual manipulation on the nat-
ural image manifold. In European Conference on Computer
Vision (ECCV), 2016. 1,2

Peihao Zhu, Rameen Abdal, Yipeng Qin, John Femiani, and
Peter Wonka. Improved stylegan embedding: Where are the
good latents? arXiv preprint arXiv:2012.09036, 2020. 2
Peiye Zhuang, Oluwasanmi Koyejo, and Alexander G
Schwing. Enjoy your editing: Controllable gans for image
editing via latent space navigation. The International Con-
ference on Learning Representations (ICLR), 2021. 3



