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Abstract

Few-shot semantic segmentation intends to predict pixel-
level categories using only a few labeled samples. Existing
few-shot methods focus primarily on the categories sampled
from the same distribution. Nevertheless, this assumption
cannot always be ensured. The actual domain shift problem
significantly reduces the performance of few-shot learning.
To remedy this problem, we propose an interesting and chal-
lenging cross-domain few-shot semantic segmentation task,
where the training and test tasks perform on different do-
mains. Specifically, we first propose a meta-memory bank
to improve the generalization of the segmentation network
by bridging the domain gap between source and target do-
mains. The meta-memory stores the intra-domain style in-
formation from source domain instances and transfers it to
target samples. Subsequently, we adopt a new contrastive
learning strategy to explore the knowledge of different cat-
egories during the training stage. The negative and pos-
itive pairs are obtained from the proposed memory-based
style augmentation. Comprehensive experiments demon-
strate that our proposed method achieves promising results
on cross-domain few-shot semantic segmentation tasks on
COCO-20i , PASCAL-5i, FSS-1000, and SUIM datasets.

1. Introduction
Recently, semantic segmentation [2, 19, 45] has made

remarkable progress benefiting from the large amounts of
human-annotated datasets and deep convolutional neural
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Figure 1. Comparison with few-shot segmentation and few-shot
domain adaptation segmentation. In few-shot learning, the train-
ing set and testing sets come from the same domain. In few-shot
domain adaptation, the training set and testing sets are from sepa-
rate domains, but the label space is the same. In our cross-domain
few-shot segmentation task, the training set and testing sets come
from different domains, and the categories in the testing set are
unseen.

networks [11]. However, obtaining these large annotated
datasets is time-consuming and labor-intensive, and the
trained model always fails to segment novel unseen cate-
gories. To tackle this problem, few-shot semantic segmen-
tation methods [6, 42, 47] have received a lot of attention in
recent years, aiming to produce pixel-level predictions for
the novel categories when given only few (one) training im-
ages.

Few-shot semantic segmentation methods [1,16] address
the challenge of adapting a segmentation network to a new
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category represented by few support images via a meta-
learning [9, 43], which enables the model to transfer the
knowledge from the support set to the query set. Exist-
ing approaches assume that the base training set is sam-
pled from the same domain as the testing set. However,
collecting sufficient examples in specific areas, such as der-
matology or satellite imagery, is infeasible or impossible.
Alternatively, we train a satisfactory few-shot semantic seg-
mentation network for the test dataset (target domain) by
transferring the knowledge from the existing base training
dataset (source domain). Consequently, we formulate a new
but essential problem called cross-domain few-shot seman-
tic segmentation.

Recently, a tiny number of cross-domain few-shot meth-
ods [21, 31, 34] have been developed to tackle the similar
issue on image classification. However, the proposed meth-
ods are hard to apply to our scenario because the pixel-level
segmentation is fundamentally different from the image-
level classification. Another close work is domain adap-
tation [18, 26, 40] or few-shot domain adaptation semantic
segmentation [46, 49], which eliminates domain shift issue
with few-shot labeled target images. But our setting is more
challenging because we have disjoint categories between
the source and target domains. The comparison is shown
in Figure 1.

The fundamental challenges for cross-domain few-shot
semantic segmentation lie in two aspects. (1) There is a do-
main shift problem between the training and testing tasks
due to sampling from different domains. It leads to per-
formance degrades significantly for conventional few-shot
semantic segmentation methods. (2) The labeled data of
new categories is scarce, so the fine-tuning or distribution
alignment methods are challenging. In this paper, we pro-
pose a novel cross-domain few-shot semantic segmenta-
tion framework, named as CDFSS. Our framework mainly
focuses on reducing the domain gap by domain general-
ization and exploring the discriminative information from
the few-shot novel categories. Specifically, we first con-
struct a meta-memory to collect domain-specific informa-
tion among source domain instances. The source instances
continuously register the stylized domain information into
the meta-memory as the training progresses. Aggregated
style information can effectively describe the source data
distribution and enhance the target domain features. Then,
we load the stored memory into both the source and tar-
get domain to enhance the model’s generalization. For
the meta-training stage on the source domain, the loaded
memory is mainly responsible for augmenting the features
stylization, and the model is encouraged to produce con-
sistent representations despite the style differences. In the
test stage on the target domain, the model loads the source
meta-knowledge to guide the feature enhancement and alle-
viate the domain gap in cross-domain problems. Memory-

enhanced features help novel categories generate more di-
versified prototypes so that the model can provide robust
predictions. Moreover, we adopt the contrastive loss using
the memory enhanced features to further constrain the pro-
totypes between categories to improve the model’s adapt-
ability in few-shot learning.

The contributions of this article are summarized as fol-
lows:

1. We propose a novel framework to solve the cross-
domain problem in few-shot semantic segmentation.
Compared to the standard few-shot segmentation net-
work, we use the most primitive feature transfer
to solve the cross-domain problem and effectively
broaden the use scenarios of few-shot segmentation
tasks.

2. We propose a plug-and-play meta-knowledge module
to transfer the prior source distribution to the target do-
main. Our model can effectively alleviate the influence
of domain shift in few-shot segmentation with exclu-
sive contrastive loss.

3. We demonstrate the effectiveness of our framework
on four different cross-domain few-shot segmentation
scenarios. In particular, it can achieve state-of-the-art
performance under the cross-domain setting.

2. Related Work
2.1. Few-Shot Segmentation

Prototype-based [30,39] few-shot segmentation network
extracts category prototype to matching novel samples.
However, the single prototype cannot accurately describe
the category. ASGNet [16] and RPMMs [33] obtain muti-
prototype through clustering and EM algorithm. In recent
related research, RePRI [1] abandoned the meta-learning
strategy, used more effective transduction reasoning to solve
the few-shot segmentation problem. SCL [47] focuses
on solving the problem of information lost and uses self-
information to achieve the optimized effect. Different from
[1], CWT [22] uses meta-learning to give the network an
adaptive classification weight and complete the segmenta-
tion of new categories. HSNet [24] makes full use of the
features of the intermediate convolution to adequately im-
prove the accuracy of segmentation to a new level.

These solutions mainly focus on the accurate segmenta-
tion of new categories. It is assumed that the data distri-
bution of the new categories is consistent with the training
data distribution, but this setting is not always guaranteed.
The model segmentation effect will be significantly reduced
when a domain gap exists between the data distribution. We
explore the few-shot segmentation in cross-domain scenar-
ios and use the memory mechanism to reduce the domain
gap, improve the model’s generalization.
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Figure 2. Overview of our proposed cross-domain few-shot semantic segmentation framework. We first conduct the Memory module
during the training process on the source domain, which stores the stylized domain information. Then we use the Memory to strengthen
the stylization of source and target features during the meta-training and adaptation process. Moreover, we adopt the contrastive loss to
constrain the prototypes using the augmented features from the memory information,

2.2. Domain Generalization

Domain generalization (DG) has been widely used in
many fields [12, 15, 28, 29]. It focuses on training a ro-
bust generalization model to achieve better results in un-
known domains. Since the target domain data cannot be
accessed during training, DG is challenging and practical.
Data enhancement is a vital strategy to solve the DG prob-
lem. Image transformations [25, 28, 36], feature enhance-
ment [23, 53], and generation strategies [51, 52] can all ef-
fectively improve the generalization of the model. At the
same time, the DG framework based on the adversarial net-
work hopes to decouple the domain-invariant features from
the domain-special features and smoothly transfer the de-
coupled features to the target domain [4, 17, 37]. Using
meta-learning to solve the DG problem has gradually be-
come a promising research direction. The effect of DG can
be effectively improved by learning highly adaptive param-
eters [3,38,50] and setting a more reasonable meta-learning
framework [5, 7, 29].

When DG faces the few-shot scene, since the categories
in the new domain have not been fitted before and the
amount of labeling is tiny, this poses a significant challenge
to the model’s generalization. In order to solve this prob-
lem, we use the difference between the instances to enhance
the features so that the few-shot model can have more abun-

dant features for fitting and cooperate with the memory to
enhance the generalization of the model.

3. Problem Setting

In this work, we pay attention to the problem of the few-
shot segmentation in the cross-domain scenario. We define
a training domain Ds. Each category cs ∈ Ds has suffi-
cient pixel labels. At the same time, there is a test domain
Dt, and each category ct ∈ Dt has only limited pixel la-
bels. There is no category intersection between Cs and Ct,
i.e., Cs ∩ Ct = ∅. Moreover, there exists strong domain
gaps between Ds and Dt. The task is to train the model
in Ds, then apply the limited samples to segment the new
categories in Dt.

We follow the standard practice to formalize the few-shot
segmentation problem [30,32]. We first sample a large num-
ber of episodes [35] in the Ds. Each episode is composed
of a query sample Q = (Xq, Yq) and K support samples
S = {(Xi

s, Y
i
s )}Ki=1, where X is the image, and Y is the

corresponding pixel label. All the support and query sam-
ples in the episode belong to the same category. Then, the
model extracts prototype based on S and performs infer-
ence and loss evaluation on the Q. After completing the
episodes training on the Ds, the model adopts support sam-
ples of novel categories in the target domain Dt to extract
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prototypes [30] and complete the segmentation on the cor-
responding new categories.

4. Methodology

Our primary motivation is to apply the Meta-Memory
module as an intermediary to bridge the gap between the
source and the target domains. The Memory represents styl-
ized domain information accumulated on the source domain
during the training process. We apply Memory in both the
source and the target domain to improve the model’s gener-
alization.

During the meta-training stage on the source domain,
the Memory is employed to strengthen the features styliza-
tion, and the model is encouraged to produce consistent rep-
resentations ignoring the style differences. Moreover, we
adopt the contrastive loss to further constrain the prototypes
between categories to improve the model’s adaptability in
few-shot learning.

During the adaptation stage on the target domain, we
load the Memory to help generate prototypes on novel cat-
egories so that the prototypes can cover more source infor-
mation to provide robust predictions. The overall frame-
work of our approach is shown in Figure 2.

4.1. Meta-Memory Module

The function of the memory module includes storing the
source data distribution, Figure 3 (a), and using the meta-
knowledge for feature enhancement, Figure 3 (b). During
the training process, the mean and variance of channel fea-
tures can reflect the domain information [53]. Inspired by
this, we construct a Meta-Memory to represent the domain-
specific information by storing the mean and variance of
source instances. Memory is designed as a plug-and-play
layer that can be placed behind any network layer. We
put the memory module behind the shallow backbone layer
in our network to collect more generalized domain infor-
mation. First, we randomly initialize the meta-knowledge
for each memory module as Memory = {M = (mj ∈
R1×C)Nj=1, E = (ej ∈ R1×C)Nj=1} before our training.
M and E are meta means and meta variance, responsible
for collecting source instances feature information. C is the
number of feature channels of the previous layer output, and
N represents the number of meta-knowledge pairs.

Given an instance feature fb ∈ RC×H×W from the S,
with C,H , and W denoting the dimension of the chan-
nel, height and width of the corresponding feature, respec-
tively. We first calculate mean µb and variance vb within

bu bv
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Figure 3. The specific implementation of the memory module. (a)
Update the memory domain distribution during source training.
(b) Use historical knowledge in the memory module to reconstruct
and enhance features.

each channel of each instance as follows:

µb =
1

HW

H∑
h=1

W∑
w=1

fc,h,w,

vb =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(fc,h,w − µb)2

(1)

Where c ∈ C, notice that µb and vb perform the channel
normalization of each instance with µb, vb ∈ R1×C . Ac-
cording this, we can obtain the normalized instance feature
fnorm
b :

fnorm
b =

fb − µb

vb
(2)

To achieve the collection of source information, we first
calculate the similarity between (µb, vb) and each meta-
knowledge in memory (mj , ej), respectively:

sjbM =
sim(mj , µb)∑B
b=1 sim(mj , µb)

, sjbE =
sim(ej , vb)∑B
b=1 sim(ej , vb)

(3)

where B denotes the number of batch size during training.
Then, M and E are updated by aggregating the mean

and variance information in the whole batch as below:

mj = λmj + (1− λ)

B∑
b=1

sjbMµb

ej = λej + (1− λ)

B∑
b=1

sjbE vb

(4)
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λ is the aggregation weight and we set it to 0.9 in all experi-
ments. From Eq. 4, we can assign the style information ob-
tained from an instance to the most similar meta-memory.
Our memory bank represents all kinds of domain-specific
style information for the source domain.

We can observe that each meta-knowledge pairs in our
memory bank represents a style pattern for the source do-
main. To characterize the distribution of source domains,
we hope that each meta in the memory bank is as indepen-
dent as possible from each other. Therefore, we develop
an orthogonal loss to constrain our memory module during
training as follows:

Lorth =
1

2N2
(

N∑
i=1

N∑
j=1

hij
M +

N∑
i=1

N∑
j=1

hij
E ), (5)

where hi,j
M indicates the similarity of the mi and the mj and

hi,j
E indicates the similarity of the ei and the ej in Memory.

4.2. Memory-based Feature Enhancement

After constructing Meta-Memory on the source domain,
we can obtain a large range of style information of the
source data, which is feasible to enhance feature represen-
tation and improve the generalization of the segmentation
model. Although previous works [14, 29] achieve this goal
by adopting low-level data enhancement strategies, such
as cropping, rotation, and contrast enhancement, they only
provide low-level data transformations and lacks the aug-
mentation on high-level features. To tackle this, we pro-
pose the memory-based feature enhancement method for
both source data and target data.

Source Data Enhancement. The motivation of this pro-
cess is to generate various source features with different
styles, which can significantly improve the generalization of
the segmentation model. Specifically, for a given instance’s
feature fb, we first calculate the similarity sMb ∈ R1×N and
sEb ∈ R1×N between the corresponding (µb, vb) and each
meta pair in Memory. Then we use the meta element with
the lowest similarity to enhance the feature fb, because our
model utilizes the difference information among instance.
The enhance feature is obtained as below:

fenh
b = fnorm

b vmix
b + µmix

b , (6)

and

µmix
b = αµb+(1−α)µM

b , vmix
b = αvb+(1−α)vEb , (7)

where µM
b and vEb are the elements with the lowest simi-

larity selected from the Memory using sMb and sEb respec-
tively, α mainly controls the retention ratio of original fea-
tures, we set it to 0.1 referring to Mixstyle [53]. Finally, the
obtained enhanced support features fenh

b pass through the

whole backbone getting the category prototype pb follow-
ing [16].

Target Data Enhancement. The process of target data
enhancement is similar to source data enhancement. The
only difference is we select the highest similarity meta el-
ement (µM

b , vEb ) through (sMb , sEb ) in the Memory to cal-
culate the enhanced feature, due to the large gap between
target style and the source meta.

4.3. Memory Enhanced Contrastive Learning

Basically, the model is trained by the prototype-based
loss:

Lpro = − 1

HW

H∑
i=1

W∑
j=1

Y ij
q log(R(f ij

q , pb)), (8)

where R is the ASGNet [16] to achieve predicting, fq is
query features and Y i,j

q is the corresponding mask. To fur-
ther empower the representation of the model, we apply
the contrastive loss to prevent interference between cate-
gories, utilizing the enhanced features obtained from Sec
4.2. We first perform data enhancement and domain en-
hancement [14, 29] on input image (Xb, Yb) getting trans-
formed input (Xt, Yt). According to our memory-based
feature enhancement, we can get a transformed prototype
pt for a transformed image. Obviously, for all samples, the
initial prototype pb has the same semantic information as
the corresponding transformed prototype pt, while it should
be distinguished from other categories’ prototypes. There-
fore, we adopt contrastive losses to increase the distance
between different category prototypes. regarding the other
categories’ prototypes as negative pairs and the transformed
prototypes as positive pairs for each pb on batch.

Lcont =
1

2|B|

|B|∑
i=1

− log
pos(i)

pos(i) + neg(i)
(9)

where

pos(i) = exp(sim(pib, p
i
t)) (10)

neg(i) =

|B|∑
j=1,j ̸=i

[exp(sim(pib, p
j
b)) + exp(sim(pib, p

j
t ))],

(11)
where |B| is the categories in each batch, i,j are specific
categories.

Finally, the overall objective considers all constraints we
introduced above as:

Lall = Lorth + Lcont + Lpro (12)
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Table 1. Cross-domain few-shot semantic segmentation results on COCO-20i to PASCAL-5i task.

COCO-20i to PASCAL-5i

Backbone Method 1-shot 5-shot
split0 split1 split2 split3 Mean split0 split1 split2 split3 Mean

ResNet50

RPMMs [44](ECCV20) 36.3 55.0 52.5 54.6 49.6 40.2 58.0 55.2 61.8 53.8
RePRI [1](CVPR21) 52.4 64.3 65.3 71.5 63.3 57.0 68.0 70.4 76.2 67.9
ASGNet [16](CVPR21) 42.5 58.7 65.5 63.0 57.4 53.7 69.8 67.1 75.9 66.6
PFENet [33](TPAMI) - - - - 60.8 - - - - 61.9
CWT [22](ICCV21) 53.5 59.2 60.2 64.9 59.4 60.3 65.8 67.1 72.8 66.5
HSNet [24](ICCV21) 48.7 61.5 63.0 72.8 61.5 58.2 65.9 71.8 77.9 68.4
Ours 57.4 62.2 68.0 74.8 65.6 65.7 69.2 70.8 75.0 70.1

ResNet101
SCL [47](CVPR21) 43.1 60.3 66.1 68.1 59.4 43.3 61.2 66.5 70.4 60.3
HSNet [24](ICCV21) 46.3 64.7 67.7 74.2 63.2 59.1 69.0 73.4 78.7 70.0
Ours 59.4 64.3 70.8 72.0 66.6 67.2 72.7 72.0 78.9 72.7

5. Experiments

5.1. Datasets

COCO-20i [20] is the most extensive and challenging
few-shot segmentation dataset at present. It contains 82,081
training images and 40,137 validation images, covering 80
common categories in life. Following to [16], we divide
80 categories into four non-intersecting subsets. We se-
lect three subsets as the training set and the other subset
as the test set. Therefore, the model will get four sub-
datasets containing 60 categories, and we use these four
sub-datasets as the source domain training model to select
the non-intersecting categories in other datasets as the target
domain test.

PASCAL-5i [27] is an expanded version of PASCAL
VOC 2012 [8], with additional annotation enhancement in-
formation of the SDS dataset [10]. We refer [1] to di-
vide pascal-5i into four subsets, and each subset category
does not intersect with the corresponding subset category in
COCO-20i. We regard PASCAL-5i as a target domain for
testing.

FSS-1000 [41] contains 1000 categories, and each cate-
gory has ten images with annotations. The categories cover
daily necessities to cartoons and small parts. We divide it
into 20 subsets. Each subset contains nearly 50 categories,
and each COCO-20i split is tested on 5 FSS-1000 subsets.
And we regard FSS-1000 as a target domain for testing.

SUIM [13] acting as a benchmark dataset for underwater
image segmentation, is an exclusive segmentation dataset.
This dataset contains over 1500 images with pixel annota-
tions for eight object categories. SUIM can test the effect
of our model against typical cross-domain scenarios. We
regard SUIM as a target domain for testing.

5.2. Implementation Details

Source training We choose ASGNet [16] as the baseline
model, the corresponding backbone is selected as ResNet50
and ResNet101. For the source domain COCO-20i, we train
20 epochs with batch size 12. The image size is resized to
473×473. As for the optimizer, we choose SGD with a
momentum of 0.9 and weight decay of 1e-4. The initial
learning rate is set to 0.0025. During the training process,
we insert two memory modules into the first two layers of
ResNet respectively and initialize ten pairs of distributions
in each memory module.

Target testing For PASCAL-5i, we set 4 subsets, FSS-
1000 set 20 subsets, and SUIM one subset. We remove
all categories that intersect with COCO-split in all sub-
sets. During the testing process, we removed the domain
enhancement.

5.3. Comparisons with State-of-the-art

In Table 1, we compare our method with several state-of-
the-art few-shot semantic segmentation methods on COCO-
20i to PASCAL-5i task. Recent works CWT [22] and
RePRI [1] have revealed a domain discrepancy between
COCO-20i and PASCAL-5i datasets. Although these previ-
ous works provide promising results on few-shot segmenta-
tion for intra-domain, they usually ignore the bridging do-
main gap between source and target domains. The results
show that our approach significantly improves the perfor-
mance on cross-domain semantic segmentation for 1-shot
and 5-shot tasks. Specifically, we surpass traditional state-
of-the-art few-shot semantic segmentation method HSNet
[24] based on ResNet-50 by 4.1% and 1.7% mIoU, respec-
tively. It also outperforms the method RPMMs [44] by a
large margin over 16.0 mIoU for 1-shot segmentation and
16.3 mIoU for 5-shot segmentation. Furthermore, for the
backbone of ResNet-101, our method performs mean re-
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Table 2. Cross-domain few-shot semantic segmentation results on
COCO-20i to FSS-1000 task with the ResNet50 as backbone.

COCO-20i to FSS-1000

Backbone Method split-0 split-1 split-2 split-3 mean

ResNet50

ASGNet [16](CVPR21) 76.2 72.2 72.7 71.6 73.2
HSNet [24](ICCV21) 79.9 80.5 81.1 82.1 80.8
SCL [47](CVPR21) 81.6 78.3 77.5 74.4 78
Ours 82.2 82.6 79.6 83.4 81.9

Table 3. Cross-domain few-shot semantic segmentation results
on COCO-20i to SUIM and PASCAL-5i to SUIM tasks with
ResNet50 as backbone.

COCO-20i to SUIM

Backbone Methods split-0 split-1 split-2 split-3 mean

ResNet50

ASGNet [16](CVPR21) 28.1 27.5 26.1 32.3 28.5
HSNet [24](ICCV21) 33.8 35.9 35.3 35.4 35.1
SCL [47](CVPR21) 27.3 28.8 26.5 25.3 27.0
Ours 30.5 38.6 42.5 36.6 37.1

PASCAL-5i to SUIM

Backbone Methods split-0 split-1 split-2 split-3 mean

ResNet50

ASGNet [16](CVPR21) 32.4 30.9 28.9 35.2 31.9
HSNet [24](ICCV21) 30.7 30.0 27.3 27.0 28.8
SCL [47](CVPR21) 31.3 31.2 32.2 32.5 31.8
Ours 35.2 33.4 34.3 36 34.7

sults of 66.6% and 72.7% for 1-shot and 5-shot tasks, sig-
nificantly improved by 7.2 and 12.4 mIoU compared to
SCL [47]. These results demonstrate the effectiveness of
our method and indicate the essential of bridging the do-
main gap across domains.

FSS-1000 [41] is another challenging cross-domain
dataset for COCO-20i, which contains abundant 1000 cate-
gories that can effectively test the model’s stability. There-
fore we conduct a cross-domain few-shot semantic segmen-
tation task on COCO-20i to FSS-1000 based on ResNet-
50, and the results are shown in Table 2. We compare our
method with previous state-of-the-art approaches, includ-
ing ASGNet [16], HSNet [24], and SCL [47]. The results
show that our method is stable when transferred to large-
scale new categories and achieves the best performance on
three COCO-20i splits to FSS-1000 tasks.

We also construct a cross-domain task with a large mar-
gin domain gap between source and target domains from
COCO-20i and PASCAL-5i to SUIM [13]. SUIM is col-
lected from underwater scenario, which is completely dif-
ferent from COCO-20i and PASCAL-5i. The segmentation
results in Table 3 indicate that conventional few-shot meth-
ods perform poorly due to the large domain gap, with SCL
[47] achieving 27.0% mIoU and 31.8% mIoU on COCO-

Table 4. Comparison to domain generalization approaches
on COCO-20i to PASCAL-5i, “BS” denotes the ASGNet
[16](CVPR21) baseline.

BS MixUp [48](ICLR18) MixStyle [53](ICLR21) ours

mean-IoU 57.4 58.6 61.5 65.6

Support Query Baseline Ours

Figure 4. Visualization for predicted masks for COCO-20i to
SUIM task.

20i and PASCAL-5i to SUIM, respectively. Benefiting
from the our technique to eliminate domain discrepancy,
our method provides 37.1% and 34.7% mIoU results for
COCO-20i and PASCAL-5i to SUIM tasks, which outper-
forms SCL [47] by 10.1% and 2.9%.

Morever as shown in Table 4, our approach outperforms
previous SOTA domain generalization approaches MixUp
[48] and MixStyle [53]. We attribute the improvement to
our memory strategy that can explicitly transfer domain
information to novel categories, while previous DG ap-
proaches tend only to fit seen categories. We also com-
pare our method with state-of-the-art methods on the intra-
domain few-shot segmentation in our Supplementary Mate-
rial.

5.4. Ablation Study

Influence of Each Component. We provide analysis
of each proposed component on 1-shot semantic segmenta-
tion task from COCO-20i to PASCAL-5i in this subsection,
including the contrastive loss (Cons), memory-enhanced
source feature (MEnS), and memory-enhanced target fea-
ture (MEnT). The detailed results are shown in Table 5. The
baseline model is a naive method for few-shot semantic seg-
mentation following [16], without any domain alignment
techniques. From the results, we can observe that the model
(a) with the proposed contrastive loss can significantly im-
prove the performance by 5.4 mIoU compared to the base-
line model. After adding memory-enhanced source feature
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Table 5. Ablation study of our proposed components for 1-
shot semantic segmentation on COCO-20i to PASCAL-5i with
ResNet-50 backbone. “Cons” denotes the proposed contrastive
loss. “MEnS” and “MEnT” denote the memory-based feature en-
hancement for the source domain and target domain.“BS” denotes
the ASGNet [16](CVPR21) baseline.

COCO-20i to PASCAL-5i (1-shot)

Model Cons MEnS MEnT mean-IoU

BS 57.4
(a) ! 62.8
(b) ! ! 63.5
(c) ! ! 62.5
(d) ! ! ! 65.6

Table 6. Results of the memory module placed with ResNet50 on
1-shot COCO-20i to PASCAL-5i.

No memory layer-0 layer-1 layer-2 layer-3

mean-IoU 62.8 64.0 62.7 53.3 50.8

(MEnS) in model (b), the performance is further improved
with an increase of 0.7%. Furthermore, we analyze the ef-
fectiveness of the proposed meta-memory module by con-
ducting the model with the proposed memory on source fea-
ture and target feature (model (c)). The result demonstrates
the effectiveness of proposed memory module with 5.1%
improvement. It reveals our cross-domain memory can re-
duce domain gap and improve the generalization of the seg-
mentation model. The model (d) with both the proposed
memory module and contrastive loss can further provide
3.1% gains compared to model (c). We replaced the meta-
memory with random noise (same mean&var) on COCO-
20i to PASCAL-5i, which caused 6.1% performance de-
grades, demonstrating that meta-memory provides valuable
information learned from the source domain.

We also provide the visualization of category prototypes
for COCO-20i and PASCAL-5i obtained from our model
(d) and baseline model. The results is shown in Figure 5.
We can see that our method can provide more reliable dis-
criminative boundaries than the baseline model. It benefits
from the memory module to improve the generalization and
contrastive loss to enhance feature representation.

5.5. Parameters Analysis

We first analyze the influence of meta pairs N in the
memory module. We set different values of N in 1-shot
segmentation task from COCO-20i to PASCAL-5i, and re-
sults are shown in the Figure 5. As the model epoch grows,
the model with the N = 10 reaches the best result in our ex-
periments. We set N = 10 in all experiments in this work.

We also analyze the impact of memory placed in differ-
ent layers in Table 6. We observe that the memory module

Figure 5. Left: Visualization of prototypes for COCO-20i and
PASCAL-5i. Right: The influence of meta pairs N in the memory
module.

works most effectively at the shallow layers of the back-
bone. This phenomenon is also in line with our understand-
ing of deep networks, shallow features are easily transferred
and shared. The memory module in the high-level layer will
decrease the accuracy because of semantic noise.

5.6. Limitation

We use the lowest similarity and highest similarity to se-
lect meta-knowledge. A more reasonable solution is to learn
from the network adaptively. We hope to solve this problem
in subsequent research.

6. Conclusion
In this paper, we have presented a novel cross-domain

few-shot framework for semantic segmentation. It aims to
transfer the knowledge from the source domain to the novel
classes in the target domain. To achieve this goal, a meta-
memory module has been proposed to bridge the source and
target domains, including reducing the domain gap and en-
hancing semantic feature representation. Specifically, the
meta-memory stores the domain-specific information from
the source data during training and transfers them to the
target data to improve the generalization of the segmenta-
tion model. The memory-based feature enhancement also
contributes to discriminative feature learning for the novel
classes. We conduct extensive experiments and ablation
studies to validate the effectiveness of the proposed frame-
work on different cross-domain segmentation tasks.
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Lopez-Paz. mixup: Beyond empirical risk minimization. In
Proc. ICLR, volume abs/1710.09412, 2018. 7

[49] Junyi Zhang, Ziliang Chen, Junying Huang, Jingyu Zhuang,
and Dongyu Zhang. Few-shot domain adaptation for seman-
tic segmentation. Proceedings of the ACM Turing Celebra-
tion Conference - China, 2019. 2

[50] Yuyang Zhao, Zhun Zhong, Fengxiang Yang, Zhiming Luo,
Yaojin Lin, Shaozi Li, and N. Sebe. Learning to general-
ize unseen domains via memory-based multi-source meta-
learning for person re-identification. In Proc. CVPR, pages
6273–6282, 2021. 3

[51] Kaiyang Zhou, Yongxin Yang, Timothy M. Hospedales,
and Tao Xiang. Deep domain-adversarial image genera-
tion for domain generalisation. In Proc. AAAI, volume
abs/2003.06054, 2020. 3

[52] Kaiyang Zhou, Yongxin Yang, Timothy M. Hospedales, and
Tao Xiang. Learning to generate novel domains for domain
generalization. In Proc. ECCV, volume abs/2007.03304,
2020. 3

[53] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Do-
main generalization with mixstyle. In Proc. ICLR, volume
abs/2104.02008, 2021. 3, 4, 5, 7

7074


