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Abstract

We present Masked Feature Prediction (MaskFeat) for
self-supervised pre-training of video models. Our approach
first randomly masks out a portion of the input sequence and
then predicts the feature of the masked regions. We study
five different types of features and find Histograms of Ori-
ented Gradients (HOG), a hand-crafted feature descriptor,
works particularly well in terms of both performance and
efficiency. We observe that the local contrast normaliza-
tion in HOG is essential for good results, which is in line
with earlier work using HOG for visual recognition. Our
approach can learn abundant visual knowledge and drive
large-scale Transformer-based models. Without using ex-
tra model weights or supervision, MaskFeat pre-trained on
unlabeled videos achieves unprecedented results of 86.7%
with MViTv2-L on Kinetics-400, 88.3% on Kinetics-600,
80.4% on Kinetics-700, 38.8 mAP on AVA, and 75.0% on
SSv2. MaskFeat further generalizes to image input, which
can be interpreted as a video with a single frame and ob-
tains competitive results on ImageNet.

1. Introduction

Self-supervised pre-training has been phenomenally suc-
cessful in natural language processing powering large-scale
Transformers [66] with billion-scale data [6, 21]. The un-
derlying idea is an astonishingly simple mask-and-predict
task, that is, first masking out some tokens within a text and
then predicting the invisible content given the visible text.

Humans have a remarkable ability to predict how the
world appears and moves when observing it as a contin-
uous stream of spatiotemporal information. Consider the
examples in the 1st column of Fig. 1. Even without seeing
the masked content, we are able to understand the object
structure and draw a rough outline or silhouette of imagined
information (up to some details), by using visual knowl-
edge about the visible structures. In this work, we show
that predicting certain masked features (e.g. gradient his-
tograms in the 2nd column) can be a powerful objective for
self-supervised visual pre-training, especially in the video
domain which contains rich visual information.

masked input HOG prediction original image

Figure 1. Example HOG predictions on unseen validation input.
Our model is learned by predicting features (middle) given masked
inputs (left). Original images (right) are not used for prediction.
More qualitative examples are in the Appendix.

One essential difference between vision and language is
that vision has no pre-existing vocabulary to shape the pre-
diction task into a well-defined classification problem. In
contrast, the raw spatiotemporal visual signal is continuous
and dense posing a major challenge to masked visual pre-
diction. One immediate solution is to imitate the language
vocabulary by building a visual vocabulary that discretizes
frame patches into tokens, as explored in BEiT [2, 58].
However, this requires an external tokenizer which can be
limited in compute-intensive video understanding scenario.

We present Masked Feature Prediction (MaskFeat), a
pre-training objective that directly regresses features of the
masked content. Specifically, our approach ingests the
masked space-time input with a vision Transformer back-
bone [23, 46] and predicts a certain feature representation
of the masked content. In this way, the pre-trained model
acquires an adequate understanding of the complex space-
time structures within dense visual signals.
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We study a broad spectrum of feature types, from pixel
colors and hand-crafted feature descriptors, to discrete vi-
sual tokens, activations of deep networks, and pseudo-labels
from network predictions. Our study reveals:

(i) Simple histogram of oriented gradients (center col-
umn in Fig. 1), as in the popular HOG [18] and SIFT [49]
descriptors which dominated visual recognition for over a
decade, is a particularly effective target for MaskFeat in
terms of both performance and efficiency.

(ii) The discretization (tokenization) of visual signals is
not necessary for masked visual prediction, and continuous
feature regression (i.e. MaskFeat) can work well.

(iii) Semantic knowledge from human annotations is not
always helpful for MaskFeat, but characterizing local pat-
terns seems important. For example, predicting supervised
features from CNNs or ViTs trained on labeled data leads
to degraded performance.

Our approach is conceptually and practically simple.
Compared to contrastive methods that require a siamese
structure and two or more views of each training sample
(e.g., [16, 29, 37]), MaskFeat uses a single network with a
single view of each sample; and unlike contrastive methods
that strongly rely on carefully designed data augmentation,
MaskFeat works fairly well with minimal augmentation.

Compared to previous masked visual prediction meth-
ods [2, 62], MaskFeat with HOG does not involve any ex-
ternal model, such as a dVAE tokenizer [58] that introduces
not only an extra pre-training stage on 250M images, but
also non-negligible training overhead in masked modeling.

We show that MaskFeat can pre-train large-scale video
models that generalize well. Transformer-based video mod-
els, though powerful, are previously known to be prone to
over-fitting and heavily rely on supervised pre-training [1,
46] on large-scale image datasets, e.g., ImageNet-21K (IN-
21K) [20]. While MaskFeat opens the door for directly pre-
training on unlabeled videos which shows enormous bene-
fits for video understanding.

Our results on standard video benchmarks are ground-
breaking: MaskFeat pre-trained MViTv2-L [46] gets 86.7%
top-1 accuracy on Kinetics-400 [43] without using any ex-
ternal data, greatly surpassing the best prior number of this
kind by +5.2%, and also methods using large-scale image
datasets, e.g., IN-21K and JFT-300M [61]. When trans-
ferring to downstream tasks, MaskFeat gets unprecedented
results of 38.8 mAP on action detection (AVA [35]) and
75.0% top-1 accuracy on human-object interaction classifi-
cation (SSv2 [33]). When generalized to the image domain,
MaskFeat also obtains competitive 84.0% top-1 with ViT-B
and 85.7% with ViT-L using only ImageNet-1K [20].

Our code will be available in PyTorchVideo1,2 [25, 26].

1https://github.com/facebookresearch/pytorchvideo
2https://github.com/facebookresearch/mvit
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Figure 2. MaskFeat pre-training. We randomly replace the in-
put space-time cubes of a video with a [MASK] token and di-
rectly regress features (e.g. HOG) of the masked regions. After
pre-training, the Transformer is fine-tuned on end tasks.

2. Method
We start by describing MaskFeat and its instantiations

for video and image understanding in §2.1. We then intro-
duce and discuss five candidates for target features in §2.2.

2.1. Masked Feature Prediction

Our method performs a masked visual prediction task,
motivated by humans’ ability to inpaint masked visual con-
tent up to some details. The task first randomly masks
out a few space-time cubes of a video, and then predicts
the masked ones given the remaining ones. By modeling
masked samples, the model attains video understanding in
the sense of recognizing parts and motion of objects. For in-
stance, to solve the examples in Fig. 1, a model has to first
recognize the objects based on the visible area, and also
know what the objects typically appear and how they usu-
ally move to inpaint the missing area.

One key component of the task is the prediction target.
Masked language modeling tokenizes the corpus with a vo-
cabulary to serve as the target [21]. In contrast, the raw
visual signal is continuous and high-dimensional and there
is no natural vocabulary available. In MaskFeat, we pro-
pose to predict features of the masked area. And the super-
vision is provided by features extracted from the original,
intact sample. We use a wide interpretation of features [12],
from hand-crafted feature descriptors, to activations of deep
networks. The choice of the target feature largely defines
the task and impacts the property of the pre-trained model,
which we discuss in §2.2.

Instantiations. We first describe MaskFeat for video input.
A video is first divided into space-time cubes as in typi-

cal video Vision Transformers [26, 46]. The cubes are then
projected (i.e. convolved) to a sequence of tokens. To per-
form masking, some of the tokens in the sequence are ran-
domly masked out by being replaced with a [MASK] token.
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This is a learnable embedding indicating masked patches. A
block of tokens is masked together which we detail in §4.3.
To make a prediction, the token sequence after [MASK] to-
ken replacement, with positional embedding added, is pro-
cessed by the Transformer. Output tokens corresponding to
the masked cubes are projected to the prediction by a linear
layer. The prediction is simply the feature of the 2-D spatial
patch temporally centered in each masked cube (see discus-
sions in Appx. Tab. 11). The number of output channels is
adjusted to the specific target feature (e.g., 3×16×16 if pre-
dicting RGB colors of pixels in a 16×16 patch). The loss
is only operated on the masked cubes. Our instantiation is
inspired by BERT [21] and BEiT [2], illustrated in Fig. 2.

MaskFeat can be easily instantiated in the image domain,
which can be interpreted as a video with one single frame.
Most operations are shared, except that there is no tempo-
ral dimension and each token now represents only a spatial
patch instead of a space-time cube.

2.2. Target Features

We consider five different types of target features. The
targets are categorized into two groups: 1) one-stage tar-
gets that can be directly obtained including pixel colors and
HOG, and 2) other two-stage targets extracted by a trained
deep network or teacher. As predicting two-stage targets is
effectively learning from a trained deep network teacher, it
resembles a form of model distillation [40]; thereby, an ex-
tra computational cost of pre-training and inference of the
teacher model is inevitable. The five feature types are:

Pixel colors. The most straightforward target is arguably
the colors of video pixels. Specifically, we use RGB values
that are normalized by the mean and the standard devia-
tion of the dataset. We minimize the ℓ2 distance between
the model’s prediction and the ground-truth RGB values. A
similar idea has been explored in [55] as a image inpainting
task and in [2, 23] for masked image prediction. Though
simple, pixels as target have a potential downside of over-
fitting to local statistics (e.g. illumination and contrast vari-
ations) and high-frequency details, which are presumably
insignificant [60] for interpretation of visual content.

HOG. Histograms of Oriented Gradients (HOG) [18] is a
feature descriptor that describes the distribution of gradient
orientations or edge directions within a local subregion. A
HOG descriptor is implemented by a simple gradient filter-
ing (i.e. subtracting neighboring pixels) to compute magni-
tudes and orientations of gradients at each pixel. The gradi-
ents within each small local subregion or cell are then accu-
mulated into orientation histogram vectors of several bins,
voted by gradient magnitudes. The histogram is normalized
to unit length. These features are also used in well-known
SIFT [49] descriptors for detected keypoints or in a dense
fashion for classification [12]. Similarly, we extract HOG

on a dense grid for the whole image, which suits the predic-
tion target for randomly masked patches.

HOG is characteristic of capturing local shapes and
appearances while being partially invariant to geometric
changes as long as translations are within the spatial cell
and rotations are smaller than orientation bin size. Fur-
ther, it provides invariance to photometric changes as image
gradients and local contrast normalization absorb bright-
ness (e.g. illumination) and foreground-background con-
trast variation. These invariances are vital for good re-
sults when using HOG for pedestrian detection in both im-
age [18] and video [19] domains. In accordance to this, our
studies (§5.2) reveal local-contrast normalization in HOG is
also essential for MaskFeat pre-training.

Finally, HOG computation is cheap and introduces neg-
ligible overhead. It can be implemented as a two-channel
convolution to generate gradients in x and y axis (or by
subtracting neighboring horizontal and vertical pixels) , fol-
lowed by histogramming and normalization.

Our method then simply predicts the histograms sum-
marizing masked patches. Instead of computing HOG only
on masked patches, we first obtain a HOG feature map on
the whole image and then split the map into patches. In
this way, we reduce padding on boundaries of each masked
patch. The histograms of masked patches are then flattened
and concatenated into a 1-D vector as the target feature. Our
loss minimizes the ℓ2 distance between the predicted and
original HOG feature. We collect HOG in each RGB chan-
nel to include color information which can slightly improve
its performance (§5.2).

Discrete variational autoencoder (dVAE). To address
the continuous high-dimensional nature of visual signals,
DALL-E [58] proposes to compress an image with a dVAE
codebook. In particular, each patch is encoded into a token
which can assume 8192 possible values using a pre-trained
dVAE model. Now the task is to predict the categorical dis-
tribution of the masked token by optimizing a cross-entropy
loss, as explored in BEiT [2]. However, there is an extra
computational cost induced by pre-training the dVAE and
tokenizing images alongside masked feature prediction.

Deep features. In comparison to discretized tokens, we
consider directly using continuous deep network features
as the prediction target. We use a pre-trained model to pro-
duce features as a teacher, either a CNN or ViT, and our
loss minimizes the cosine distance (i.e. mean squared error
of ℓ2-normalized features).

For CNN teachers, we use the last layers’ features cor-
responding to the masked patches and for ViT we use the
respective output patch tokens. We mainly compare fea-
tures from self-supervised models, which are considered to
contain more diverse scene layout [9] and preserve more
visual details [74] than features from supervised models.
(Though, the usage of human annotations makes the pre-
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training technically not self-supervised.) Supervised fea-
tures are expected to be more semantic as they are trained
through human annotations. Similar to dVAE, a non-trivial
amount of extra computation is involved when using extra
model weights for masked feature generation.
Pseudo-label. To explore an even more high-level seman-
tic prediction target, we consider predicting class labels
of masked patches. We utilize labels provided by Token
Labeling [42], where each patch is assigned an individual
location-specific IN-1K pseudo-label. This class label map
is generated by a pre-trained high-performance supervised
deep network [5] teacher. The masked feature prediction
stage is optimized by a cross-entropy loss.

We next study the features discussed in this section.

3. Study: Target Features for MaskFeat
Settings. We use a pre-training and fine-tuning protocol,
following BEiT [2]. We pre-train MViTv2-S, 16×4 [46]
with MaskFeat on Kinetics-400 (K400) [43] training set for
300 epochs. We also apply MaskFeat on images, where
we pre-train ViT-B [23] on the ImageNet-1K (IN-1K) [20]
training set for 300 epochs. We report top-1 fine-tuning ac-
curacy (%) on both datasets. We pre-train and fine-tune all
targets with the same recipe which we find generally good
in practice. For targets that involve a teacher model, we use
official models released by the authors.

Most features are compared on both video and image do-
mains except pseudo-label for which the pseudo-label map

feature type one-stage variant top-1
scratch - MViTv2-S [46] 81.1
pixel ✓ RGB 80.7
image descriptor ✓ HOG [18] 82.2
dVAE ✗ DALL-E [58] 81.7
unsupervised feature ✗ DINO [9], ViT-B 82.5
supervised feature ✗ MViT-B [26] 81.9

Table 1. Comparing target features for MaskFeat (video). All
variants are pre-trained for 300 epochs on MViTv2-S, 16×4 with
MaskFeat. We report fine-tuning top-1 on K400. Default is gray .

is only available on IN-1K [42]. Results are summarized in
Tables 1 (video) and 2 (image), analyzed next:

One-stage methods. The fine-tuning accuracy for pixel
color prediction in Tables 1 & 2 shows, that compared to the
from-scratch baselines, regressing RGB colors produces a
slight drop of -0.4% for video classification and a relatively
small gain of +0.7% for image. Even though our predicting
pixel colors result on IN-1K (82.5%) is better than that re-
ported in BEiT [2] (81.0%), we similarly observe that pixel
values are not ideal direct targets, presumably because they
are considered to be too explicit [58]. In comparison, HOG,
by summarizing the local gradient distribution, contributes
to large improvements of +1.1% on K400 and +1.8% on IN-
1K over the from-scratch baselines without any extra model
which is typical in two-stage methods.

Two-stage methods. First, dVAE improves by +0.6% for
K400 and +1.0% for IN-1K over their from-scratch base-
lines. This is better than pixel colors, but outperformed by
HOG which does not use an external model.

Next, compared to dVAE, we study MaskFeat to predict
continuous, unsupervised features: We compare DINO [9]
(with ViT-B) and MoCo [15, 17] (with ResNet50 [38] and
ViT-B), all pre-trained on IN-1K, even for the video pre-
training. Unsupervised features contribute a notable gain
for both video and image classification: The DINO variant
achieves a gain of +1.4% on K400 and +2.2% on IN-1K
compared to their baselines. However, this approach has
two main drawbacks, (i) the unsupervised feature extractor
needs to be pre-trained e.g. worth over thousand epochs in
the case of DINO, (ii) the unsupervised features need to be
computed on the target data. Still, MaskFeat w/ DINO and
MoCo v3 features boosts their original accuracy [9, 17].

Finally, supervised features (from ResNet50 or ViT-B)
as well as token labels, though utilizing human annotations,
lag behind unsupervised features and HOG. In fact, we no-
tice significant over-fitting during fine-tuning for supervised
features and token labels, suggesting that predicting fea-
tures learned from class labels is not suitable in MaskFeat.
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feature type one-stage variant arch. param. epoch† top-1
scratch - DeiT [63] - - - 81.8
pixel colors ✓ RGB - - - 82.5
image descriptor ✓ HOG [18] - - - 83.6
dVAE token ✗ DALL-E [58] dVAE 54 1199 82.8
unsupervised feature ✗ MoCo v2 [15] ResNet50 23 800 83.6
unsupervised feature ✗ MoCo v3 [17] ViT-B 85 600 83.9
unsupervised feature ✗ DINO [9] ViT-B 85 1535 84.0
supervised feature ✗ pytorch [53] ResNet50 23 90 82.6
supervised feature ✗ DeiT [63] ViT-B 85 300 81.9
pseudo-label ✗ Token Labeling [42] NFNet-F6 438 360 78.8

Table 2. Comparing target features for MaskFeat (image). For all targets, ViT-B is pre-trained with MaskFeat for 300 epochs on IN-1K.
We report 100-epoch fine-tuning accuracy on IN-1K. For two-stage targets, we report the teacher architecture, number of parameters (M),
and effective epoch† on IN-1K. The default entry is marked in gray . The plot on the left visualizes the acc/epoch trade-off of the table.
† Different teachers use different training strategies. dVAE is pre-trained on an external 250M dataset, while self-supervised methods require multi-view
training. To measure the cost in a unified way, we normalize the number of epochs by the cost of one epoch on IN-1K training set with one 2242 view.

14671



We hypothesize that class label being invariant to local
shapes and textures of the same object disables the ability
of MaskFeat to model object’s internal structure.

Discussion. Our results suggest that a broad spectrum of
image features can serve as targets in masked visual predic-
tion, and provide gains over the train-from-scratch baseline.
We find that although masked language modeling [21] orig-
inally predicts the categorical distribution over a pre-defined
vocabulary, discretization as in BEiT [2] is not required for
vision. We find that continuous unsupervised features and
image descriptors can be strong prediction targets, while the
latter come without cost compared to the former which also
entail a form of model distillation [41, 63]. An interest-
ing observation is that supervisedly trained target features
produce poor results, which might relate to class-level spe-
cific information being present in features [3, 75] that is too
global for local mask modeling. Overall, considering the
trade-off between performance and computational cost, pre-
dicting HOG holds a good balance and therefore we use it
as default feature for MaskFeat in the following sections.

4. Experiments: Video Recognition
Settings. We evaluated with both base and large models of
MViTv2 [46]. The models are pre-trained only on video
clips in the training set of K400 [20] without labels. Our
augmentation includes random resized cropping and hori-
zontal flipping. Our models are pre-trained and fine-tuned
at 2242 resolution if not specified. We randomly mask out
40% of total space-time cubes with cube masking detailed
in §4.3. More implementation details are in Appx. C.1.

4.1. Main Results on Kinetics

Kinetics-400. Table 3 compares MaskFeat with prior work
on K400 dataset. From top to bottom, it has three sections.

The first section presents prior work using CNNs, which
commonly do not use any pre-training. The second section
presents representative Transformer-based methods, most
of which are heavily dependent on supervised pre-training
on large-scale image datasets.

The third section shows direct comparisons on MViTv2
models. Note that these models are strong baselines and
are state-of-the-art for training-from-scratch on their own.
Still, 300 epochs of MaskFeat pre-training improve the
scratch MViTv2-S, 16×4 [46] with 81.1% top-1 accuracy
by +1.1%. The suffix 16×4 represents that the model takes
16 frames with a temporal stride of 4 as input for training.

Next, we explore larger models for which supervised
IN-21K pre-training is popular. Pre-trained with MaskFeat
for 800 epochs on K400, the large model MViTv2-L, 16×4
reaches 84.3% top-1, outperforming its scratch baseline by
a large margin of +3.8% and its IN-21K supervised coun-
terpart by +0.8%. Similar to the image domain, MaskFeat

model pre-train top-1 top-5 FLOPs×views Param

Two-Stream I3D [11] - 71.6 90.0 216 × NA 25
SlowFast 16×8 +NL [28] - 79.8 93.9 234×3×10 60
X3D-XL [27] - 79.1 93.9 48×3×10 11
MoViNet-A6 [44] - 81.5 95.3 386×1×1 31
MViT-B, 64×3 [26] - 81.2 95.1 455×3×3 37
ViT-B-TimeSformer [4] Sup., IN-21K 80.7 94.7 2380×3×1 121
Swin-L, 32×2 [48] Sup., IN-21K 83.1 95.9 604×3×4 197
ViViT-L [1] Sup., JFT-300M 83.5 94.3 3980×3×1 308
Swin-L↑384, 32×2 [48] Sup., IN-21K 84.9 96.7 2107×5×10 200
ViViT-H [1] Sup., JFT-300M 84.9 95.8 3981×3×4 654
TokenLearner [59] Sup., JFT-300M 85.4 N/A 4076×3×4 450
Florence↑384 [72] Text, FLD-900M 86.5 97.3 N/A×3×4 647

SwinV2-G↑384 [47]
MIM + Sup.

86.8 N/A N/A×5×4 3000
IN-21K+Ext-70M

MViTv2-S, 16×4 [46] - 81.1 94.9 71×1×10 36
MViTv2-S, 16×4 [46] Sup., IN-21K 82.6 95.3 71×1×10 36
MViTv2-S, 16×4 [46] MaskFeat, K400 82.2 95.1 71×1×10 36
MViTv2-L, 16×4 [46] - 80.5 94.1 377×1×10 218
MViTv2-L, 16×4 [46] Sup., IN-21K 83.5 95.9 377×1×10 218
MViTv2-L, 16×4 [46] MaskFeat, K400 84.3 96.3 377×1×10 218
MViTv2-L, 16×4 [46] MaskFeat, K600 85.1 96.6 377×1×10 218
MViTv2-L↑312, 32×3 [46] - 82.2 94.7 2063×3×5 218
MViTv2-L↑312, 32×3 [46] Sup., IN-21K 85.3 96.6 2063×3×5 218
MViTv2-L↑312, 32×3 [46] MaskFeat, K400 86.3 97.1 2063×3×5 218
MViTv2-L↑312, 40×3 [46] MaskFeat, K400 86.4 97.1 2828×3×4 218
MViTv2-L↑352, 40×3 [46] MaskFeat, K400 86.7 97.3 3790×3×4 218
MViTv2-L↑352, 40×3 [46] MaskFeat, K600 87.0 97.4 3790×3×4 218
Table 3. Comparison with previous work on Kinetics-400. We
report the inference cost with a single “view” (temporal clip with
spatial crop) × the number of views (FLOPs×viewspace×viewtime).
Each “view” consists of T frames with τ temporal stride, T × τ .
Magnitudes are Giga (109) for FLOPs and Mega (106) for Param.
Accuracy of models trained with external data is de-emphasized.

is more significant with larger models, showing that our ap-
proach is salable to model capacity. The result also suggests
that MaskFeat adapts to different model types, as MViTv2
is a Transformer model with convolutions.

We further explore the data scalability of MaskFeat. In
particular, we pre-train MViTv2-L, 16×4 with Kinetics-
600 (K600) [10] containing ~387K training videos,
1.6× more than K400. We pre-train for 300 epochs on K600
to use a slightly smaller training budget as the 800 epochs
on K400. We again fine-tune on K400 and observe that pre-
training on K600, without any labels, contributes to another
+0.8% gain over K400 pre-training to reach 85.1% top-1.

Next, we fine-tune the 84.3% top-1 MViTv2-L, 16×4
MaskFeat model for 30 epochs to larger spatial sizes of
3122 and 3522, as well as longer temporal durations of 32
and 40 frames with a temporal stride of three. The resulting
extra large model MViTv2-L↑352, 40×3, without using any
external data, achieves a top accuracy of 86.7%. Previously,
Transformer-based video models heavily rely on supervised
pre-training on large image datasets to reach high accuracy.
For example, 84.9% top-1 Swin-L↑384 [48] with IN-21K
and 84.9% ViViT-H [1] with JFT-300M [61]. MaskFeat
opens the door for directly pre-training on unlabeled videos
which shows enormous benefits for video understanding, as
we can boost the previous best accuracy without external
data on K400 (81.5% MoViNet-A6 [44]) by +5.2%.
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model pre-train center full FLOPs Param

SlowFast R101, 8×8 [28]
K400

23.8 - 138 53
MViT-B, 64×3 [26] 27.3 - 455 36
SlowFast 16×8 +NL [28]

K600

27.5 - 296 59
X3D-XL [27] 27.4 - 48 11
MViT-B-24, 32×3 [26] 28.7 - 236 53
Object Transformer [70] 31.0 - 244 86
ACAR R101, 8×8 +NL [52] - 31.4 N/A N/A
ACAR R101, 8×8 +NL [52] K700 - 33.3 N/A N/A
MViTv2-L↑312, 40×3 [46], Sup. IN-21K+K400 31.6 - 2828 218
MViTv2-L↑312, 40×3 [46], MaskFeat K400 36.3 37.5 2828 218
MViTv2-L↑312, 40×3 [46], MaskFeat K600 37.8 38.8 2828 218

Table 4. Transferring to AVA v2.2 [35]. We use single center
crop inference (center) following MViT [26] and full resolution
inference (full) to compare to the 2020 AVA Challenge winner
ACAR [52]. Inference cost is with the center strategy.

Our best 87.0% top-1 accuracy is achieved by fine-tuning
the 85.1% MViTv2-L, 16×4 pre-trained with MaskFeat on
387K training videos in K600 using no labels.

Our results with just K400 (86.7%) is already similar
to recent 86.5% Florence [72] and 86.8% SwinV2-G [47].
Florence uses 900M curated text-image pairs. SwinV2-G
utilizes a giant model with three billion parameters, and
is first self-supervisedly then supervisedly pre-trained on a
large dataset of IN-21K plus 70M in-house images. The ef-
ficiency of our approach in terms of parameter count, com-
pute cost, data, and annotation suggests again the advantage
of MaskFeat directly pre-training on unlabeled videos.

4.2. Transfer Learning

We evaluate downstream transfer learning with the Ki-
netics MViTv2-L↑312, 40×3 in Table 3 and Appx. 9a.
Action detection. AVA v2.2 [35] is a benchmark for spa-
tiotemporal localization of human actions. We fine-tune the
MViTv2-L↑312, 40×3 Kinetics models on AVA v2.2. De-
tails are in Appx. C.2. Table 4 reports mean Average Preci-
sion (mAP) of our MaskFeat models compared with prior
state-of-the-art. MaskFeat only using K400 contributes
to a significant gain of +4.7 mAP over its IN-21K pre-
trained counterpart using identical architectures. By uti-
lizing a larger video dataset, K600, the model reaches an
unprecedented accuracy of 38.8 mAP with full resolution
testing, greatly surpassing all previous methods, including
ActivityNet challenge winners. The strong performance of
MaskFeat on AVA suggests a clear advantage of masked
modeling on video over supervised classification on image
pre-training for this localization-sensitive recognition task.
Human-object interaction classification. We fine-tune
the MViTv2-L↑312, 40×3 Kinetics models in Table 3 and
Appx. 9a to Something-Something v2 (SSv2) [33] which
focuses on human-object interaction classification. Table 5
presents the results and details are in Appx C.3. In contrast
to Kinetics, SSv2 requires fine-grained motion distinctions
and temporal modeling to distinguish interactions like pick-
ing something up and putting something down.

model pre-train top-1 top-5 FLOPs Param

SlowFast, R101, 8×8 [28]
K400

63.1 87.6 106 53
MViT-B, 64×3 [26] 67.7 90.9 455 37
MViT-B-24, 32×3 [26] K600 68.7 91.5 236 53.2
Mformer-L [56]

IN-21K+K400
68.1 91.2 1185 109

ORViT Mformer-L [39] 69.5 91.5 1259 148
Swin-B, 32×3 [48] 69.6 92.7 321 89
MViTv2-L↑312, 40×3 [46], Sup. IN-21K+K400 73.3 94.1 2828 218
MViTv2-L↑312, 40×3 [46], MaskFeat K400 74.4 94.6 2828 218
MViTv2-L↑312, 40×3 [46], MaskFeat K600 75.0 95.0 2828 218

Table 5. Transferring to Something-Something v2 [33]. We
report FLOPs with a single “view”. All entries use one temporal
clip and three spatial crops (inference cost is FLOPs×3×1).

Despite the differences between the supervised tasks of
Kinetics and SSv2, pre-training on Kinetics without super-
vised labels using MaskFeat still contributes to a large gain
on fine-tuning accuracy of SSv2. Specifically, MaskFeat
with only K400 data contributes to +1.1% top-1 over its IN-
21K+K400 pre-trained counterpart. By utilizing the larger
K600, the model reaches an unprecedented 75.0% top-1 ac-
curacy, surpassing all previous methods. This suggests that
MaskFeat can learn spatiotemporal representations from
unlabeled Kinetics data which is known as appearance-
biased, through self-supervised masked feature prediction.

4.3. Ablations for Video Recognition

The ablations are with MViTv2-S, 16×4 pre-trained for
300 epochs and fine-tuned for 200 epochs on K400. More
ablations (e.g. on masking ratio) are in Appx. A.
Masking strategy. We study the masking strategy for spa-
tiotemporal video data. In video, tokens sharing the same
spatial position usually also share visual patterns. There-
fore, we explore how to handle this redundancy brought by
the addition of the temporal dimension. We consider three
different ways of masking and present the results in Table 6.
All entries share the same 40% masking ratio.

masking frame tube cube
top-1 81.0 (-1.2) 81.9 (-0.3) 82.2

Table 6. Masking strategy. Varying the strategy of masking in
spatiotemporal data. The default entry is highlighted in gray .

First, we consider “frame” masking, which indepen-
dently masks out consecutive frames. This strategy mostly
masks different spatial blocks in consecutive frames, but
the model could temporally “interpolate” between frames
to solve the task. This strategy only obtains 81.0% top-1.

Second, we consider “tube” masking. Namely, we first
sample a 2-D mask map by block-wise masking as for im-
ages, and then extend the 2-D map by repeating it in the
temporal dimension. Thus, the masked area is a straight
tube in a video clip, in which the spatially masked area is
the same for every frame. Tube masking refrains from rely-
ing on the temporal repetition to predict the masked content
in static video. It leads to 81.9% accuracy.

Third, we consider “cube” masking, which includes both
spatial and temporal blocks that are masked out together.
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pre-train extra data extra model ViT-B ViT-L
scratch [63] - - 81.8 81.5
supervised384 [23] IN-21K - 84.0 85.2
MoCo v3 [17] - momentum ViT 83.2 84.1
DINO [9] - momentum ViT 82.8 -
BEiT [2] DALL-E dVAE 83.2 85.2
MaskFeat (w/ HOG) - - 84.0 85.7

Table 7. Comparison with previous work on IN-1K. All entries
are pre-trained on IN-1K train split, except supervised384 using
IN-21K. MoCo v3 and DINO use momentum encoder. BEiT uses
250M DALL-E data to pre-train dVAE. All entries are trained and
evaluated at image size 2242 except supervised384 at 3842.

This is achieved by sampling random “cubes” of tokens un-
til a certain masking ratio is reached. Cubes are sampled
by first creating a 2-D block at a random time step, then
extending in the temporal dimension with a random num-
ber of consecutive frames. Therefore, cube masking can be
considered as an generalization of tube and frame masking.
It produces 82.2% accuracy when used for pre-training.

Overall, the results in Table 6 show that cube masking
performs best, suggesting both spatial and temporal cues
are helpful in masked spatiotemporal prediction.

5. Experiments: Image Recognition
Settings. The evaluation protocol is pre-training followed
by end-to-end fine-tuning. We use vanilla base and large
models in ViT [23] without modification. Our models are
pre-trained at 2242 resolution on IN-1K [20] training set
without labels. We use minimal data augmentation: ran-
dom resized cropping and horizontal flipping. We randomly
mask out 40% of total image patches with block-wise mask-
ing following BEiT [2]. More details are in Appx. C.1.

5.1. Main Results on ImageNet-1K

In Table 7 we compare MaskFeat to previous work in-
cluding from-scratch, IN-21K supervised pre-training, and
previous self-supervised methods. We pre-train MaskFeat
for 1600 epochs here while for 300 epochs in Table 2.
The fine-tuning schedule is the same everywhere and rather
short, 100 epochs for ViT-B and 50 epochs for ViT-L.

We observe that MaskFeat pre-training significantly
boosts the scratch baselines for both ViT-B and ViT-L. Our
approach at image size 2242 is on par with (ViT-B), or even
outperforms (ViT-L) supervised pre-training on IN-21K that
has 10×more images and labels at image size 3842. It has
been shown [23] that ViT models are data-hungry and re-
quire large-scale supervised pre-training, possibly due to
the lack of typical CNN inductive biases. Our results sug-
gest that MaskFeat pre-training can overcome this without
external labeled data by solving our feature inpainting task.
Interestingly, more gains are observed on ViT-L compared
with ViT-B, suggesting that it is scalable to larger models.

Compared to self-supervised pre-training approaches,
MaskFeat is more accurate and simpler. DINO [9] and

norm. none ℓ1 ℓ2

top-1 82.2 82.8 83.6
(a) Contrast normalization.

channel gray rgb opp.
top-1 83.2 83.6 83.5

(b) Color channel.

#bins 6 9 12
top-1 83.4 83.6 83.5

(c) Orientation bins.

cell size 4×4 8×8 16×16
top-1 83.2 83.6 83.2

(d) Spatial cell size.

Table 8. HOG implementation. (a) Local contrast normaliza-
tion plays a key role, and (b) MaskFeat benefits from color infor-
mation; this is in line with HOG/SIFT studies on image recogni-
tion [12,18]. HOG as target is (c) robust to the number of orienta-
tion bins, and (d) benefits from 8× 8 spatial cell. Opp. represents
opponent color space [64]. Default entries are marked as gray .

MoCo v3 [17] are contrastive methods that require multi-
view training and carefully designed augmentation, while
MaskFeat only uses single-views and minimal augmenta-
tion. See Tab. 15 in Appx. for ablation on data augmen-
tation of MaskFeat. Compared with BEiT [2], MaskFeat
gets rid of the dVAE tokenizer, which introduces both an
extra pre-training stage on the 250M DALL-E dataset, and
a non-negligible inference overhead during masked predic-
tion. While MaskFeat simply calculates HOG features.

MaskFeat in Table 7 is pre-trained for 1600 epochs with
a single 2242 view. DINO uses multiple global-local views
and an extra momentum encoder, leading to 1535 effective
epochs† (Table 2). MoCo v3 saturates after 600 effective
epochs [17]. BEiT is pre-trained for 800 epochs on IN-1K
but requires another 1199 effective epochs for dVAE.

We also train the best model in Table 2, MaskFeat w/
DINO, for 1600 epochs and it reaches 84.2%; however, this
uses a separate ViT-B model that is trained with another
~1535 effective epochs using DINO. MaskFeat w/ HOG
can reach 84.0% without extra model.

5.2. Ablations for Image Recognition

We ablate the design choices of MaskFeat in the image
domain first. We use ViT-B pre-trained for 300 epochs by
default and report fine-tuning top-1 accuracy (%) on IN-1K.
More ablations (e.g. on training epochs) are in Appx. B.

HOG implementation. We ablate HOG implementation
details in Table 8. We first investigate the local contrast
normalization in HOG, which is key to its performance in
image recognition [18]. It is applied by normalizing each
histogrammed vector of local 8×8 pixel cells, which leads
e.g. to local invariance in illumination change. We show
in Table 8a that normalization is essential for MaskFeat.
Compared with default ℓ2 normalization, using ℓ1 normal-
ization results in a 0.8% drop and not using any normaliza-
tion causes a large -1.4% drop. Similar results are reported
in [18] for directly using HOG for image recognition.

We next investigate the effectiveness of color informa-
tion in Table 8b. Gray refers to extracting HOG on gray-
scale images, which only contains intensity information.
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masked input pixel prediction HOG prediction original image

Both two predictions make good sense given a small visible region at the bird’s head.

Pixel with color ambiguity: Though pixel prediction makes a sensible guess on the
balloon, the loss penalty is large because of unmatched color (red vs. black).

Pixel with texture ambiguity: Pixel prediction is blurry in texture-rich area because
of ambiguity, while HOG successfully characterizes major edge directions.

Figure 3. Pixel vs. HOG predictions on IN-1K validation
images†. Pixel targets can have large errors for ambiguous prob-
lems, and HOG is more robust to ambiguity by histogramming and
normalizing local gradients. Best viewed in color and zoomed in.
† The unmasked regions are not used for loss and thus qualitatively poor.

To include color information in HOG, rbg calculates sep-
arate gradients for each color channel and concatenates the
three histograms. Opp. is an affine transformation of RGB
to an opponent color space [64]. Results show that color in-
formation provides a small gain of around +0.4% compared
with only using gray-scaled intensity information.

We vary the number of orientation and spatial bins in Ta-
ble 8c and Table 8d, which provides geometric invariance in
HOG descriptors. Following HOG [18], we use 9 orienta-
tion bins that are evenly spaced from 0° to 180° (unsigned),
and use 8×8 pixel cells (SIFT [49] uses 8 bins in 8×8 cells).
We observe that these default settings in [18] are good for
MaskFeat and that it is robust to different numbers of orien-
tation bins, but a specific size of 8×8 in a cell is the best.
Pixel vs. HOG. We qualitatively compare HOG to pixel
colors as the feature target of MaskFeat in Fig. 3. Both
pixel and HOG predictions look reasonable in close prox-
imity to the unmasked input. However, compared to HOG,
pixel color targets come with more ambiguity. In the bal-
loon (second) example, the model makes a sensible guess
predicting a red balloon, which is black in the original im-
age, resulting in a high loss penalty. In the sea urchin (third)
example, the model is just able to make a blurry color-
wise guess on the object, which is a natural consequence
of minimizing a pixel-wise MSE loss in texture-rich, high-
frequency regions [45]. In both cases, HOG reduces the risk
of ambiguity: normalizing gradients handles the color am-
biguity and spatial binning of gradients texture ambiguity.

6. Related Work
Masked visual prediction was pioneered with autoen-
coders [67] and inpainting tasks [55] using ConvNets. Since
ViT [23], masked prediction has re-attracted attention of
the vision community, partially inspired by the success of
BERT [21] in NLP. BERT performs masked language mod-
eling where some input tokens are masked at random and
the task it to predict those. BERT pre-trained models scale
well and generalize to many different downstream tasks.

For vision, different masked prediction objectives have
been proposed. iGPT [13] predicts the next pixels of a se-
quence. ViT [23] predicts mean colors of masked patches.
BEiT [2] and VIMPAC [62] encode masked patches with
discrete variational autoencoder (dVAE) [58, 65]. Com-
pared to BEiT and VIMPAC, our method does not rely on
dVAEs but directly regresses specific features of the input.
Self-supervised learning aims to learn from unlabeled vi-
sual data by a pre-text task that is constructed by im-
age/patch operations (e.g., [7, 22, 31, 51, 69, 73]) and spa-
tiotemporal operations (e.g., [30, 32, 50, 54, 68]). Recently,
contrastive learning [24] capitalizes on augmentation invari-
ance. The invariance is achieved by enforcing similarity
over distorted views of one image while avoiding model
collapse [8,9,14,16,29,34,37,57,71]. Contrastive methods
learns linearly separable representations, evaluated by lin-
ear probing. While in this work we focus on optimizing for
the end tasks with an end-to-end fine-tuning protocol [2,62].

7. Conclusion
We present Masked Feature Prediction (MaskFeat), a

simple visual pre-training approach that regresses features
of masked regions. In particular, HOG, a hand-designed
feature that was driving visual recognition before the deep
learning era, works surprisingly well as the prediction tar-
get. MaskFeat is efficient, generalizes well, and scales to
large models for both video and image domains.

Our results are especially groundbreaking for video un-
derstanding: There has been a large gap of over 5% ac-
curacy between supervised pre-training on large-scale im-
age datasets and training-from-scratch methods. MaskFeat
has closed this gap by directly pre-training on unlabeled
videos. Transfer learning performance is even more impres-
sive where an MaskFeat model surpasses its IN-21K coun-
terpart, which uses 60× more labels, by +4.7 mAP on action
detection (AVA) and +1.1% top-1 on human-object interac-
tion recognition (SSv2). These results suggest a clear ben-
efit of masked prediction in the visually richer space-time
domain to explore in future work.
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