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Abstract

Multi-agent trajectory prediction is critical for planning
and decision-making in human-interactive autonomous sys-
tems, such as self-driving cars. However, most prediction
models are developed separately from their upstream per-
ception (detection and tracking) modules, assuming ground
truth past trajectories as inputs. As a result, their perfor-
mance degrades significantly when using real-world noisy
tracking results as inputs. This is typically caused by the
propagation of errors from tracking to prediction, such as
noisy tracks, fragments and identity switches. To allevi-
ate this propagation of errors, we propose a new predic-
tion paradigm that uses detections and their affinity matri-
ces across frames as inputs, removing the need for error-
prone data association during tracking. Since affinity ma-
trices contain “soft” information about the similarity and
identity of detections across frames, making prediction di-
rectly from affinity matrices retains strictly more informa-
tion than making prediction from the tracklets generated by
data association. Experiments on large-scale, real-world
autonomous driving datasets show that our affinity-based
prediction scheme' reduces overall prediction errors by up
to 57.9%, in comparison to standard prediction pipelines
that use tracklets as inputs, with even more significant er-
ror reduction (up to 88.6%) if restricting the evaluation to
challenging scenarios with tracking errors.

1. Introduction

Tightly integrating multi-object tracking and trajectory
prediction methods within an autonomy stack is a signifi-
cant challenge due to the fact the most prior works develop
multi-object tracking [5, 14,17,28,38,39,41,42,49] and tra-
jectory prediction [8, 12, 15, 16, 20, 32, 43, 46] approaches
in isolation. Recently, [40,45] showed that feeding the out-

'Our project website is at https://www.xinshuoweng.com/
projects/Affinipred.
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Figure 1. In contrast to standard tracking-prediction pipelines,
our affinity-based prediction (Affinipred) skips data association,
directly using detections and affinity matrices as prediction inputs.

puts of a modern tracking method directly into a predic-
tion model can significantly degrade performance (e.g., up
to 28 x higher prediction error) in comparison to the com-
mon idealized prediction setting using perfect inputs (i.e.,
ground truth trajectories). Unfortunately, this challenge of
integration with an explicit consideration of robustness to
tracking errors is still largely under-explored in the field.

Why does prediction accuracy significantly drop when
using tracking results as inputs? Prior work [40, 45] has
shown that tracking errors such as identity switches and
fragments, which induce velocity or orientation estimation
errors, are to blame. Typically, identity switches occur from
mistakes in data association when two different objects are
marked as the same due to ambiguity, e.g., their appear-
ance or geometric features are similar or they are very close.
Fragments occur when data association fails to find a detec-
tion to match with an existing tracklet.

Now, is there an effective way to avoid these tracking er-
rors from propagating to prediction? In this work, we argue
that there is: skip data association altogether as shown in
Fig. 1, since it may cause identity switches and fragments.
Our key insight can be summarized as follows: Broadly,
data association converts a “soft” affinity matrix (comprised
of scalars between 0 and 1) to a boolean matrix (containing
only O or 1) through a “hard” matching. By removing the
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data association step, we aim to preserve this “soft” infor-
mation that is otherwise thrown away when “hard” match-
ing is performed during data association. Because we skip
the data association step, our method can be more accu-
rate in the case where the affinity values are similar between
two pairs of objects and it is ambiguous to perform correct
matching and easy to make data association errors.
Contributions. We propose to directly use raw detec-
tions and intermediate tracking results, i.e., affinity matri-
ces, as inputs to prediction. To fully exploit the raw detec-
tions and affinity matrices for prediction, we propose:
(1) An Affinity-based prediction (Affinipred) framework
that removes the need for input past trajectories and
also the error-prone data association step.

(2) A transformer architecture that models joint attention
between all detections at all input frames and can deal
with a variable size of detections across frames.

(3) An affinity-based attention mechanism that directly in-
corporates full object affinity information across time.

In addition to the above contributions, Affinipred also
leverages advancements from prior work by using a con-
ditional variational autoencoder (CVAE) [18] to produce
multi-modal predictions [21, 32], performing joint interac-
tion modeling in the decoder to produce scene-consistent
predictions [ 1,35], and incorporating maps in the inputs to
capture environmental information [47,48].

2. Related Work

Trajectory Prediction. Significant advancements in trajec-
tory prediction [4, 15, 16, 19-21, ] have been made
in recent years. Yet, almost invariably, these works ad-
dress trajectory prediction in an idealized setting, i.e., using
ground truth past trajectories as inputs for training and eval-
uation, with no direct accounting of perception errors. As a
result, it is non-trivial to transfer models trained in this ide-
alized setting to the real world, where we typically use noisy
tracking results as inputs to prediction. Therefore, mitigat-
ing the propagation of errors from tracking to prediction is
of critical importance, and serves as the motivation of this
work. Different from prior work, our affinity-based predic-
tion does not assume ground truth trajectories as inputs and
provides significantly higher robustness to tracking errors.

Tracking-Prediction Integration. Although the majority
of prior work focuses on trajectory prediction separately
from tracking, there have been a few works which address
the integration of tracking and prediction. For example, [23]
proposed an end-to-end cascading detection, tracking and
prediction network that is jointly optimized for these three
tasks. Similarly, [43] proposed a parallelized tracking and
prediction framework that can also be jointly optimized.
Although these end-to-end methods yield increased perfor-
mance, they do not explicitly account for tracking errors

during prediction. Thus, if tracking results accumulated
over frames contain errors, these errors will have a detri-
mental impact on prediction, as shown in [40,45].

The closest, albeit concurrent, works to ours are [40,45],
which have both identified the impact of tracking errors on
prediction and are seeking solutions. [45] propose enforcing
prediction consistency at every frame to fix tracking errors,
in turn improving prediction accuracy. Since data associa-
tion is prone to errors, [40] propose to use multi-hypothesis
data association (MHDA) [10, 25] for prediction. Similar
to our idea, the use of MHDA also aims to preserve more
information in the affinity matrices by generating multiple
sets of tracking results, thereby increasing the likelihood of
passing accurate tracking results as inputs to prediction. In
short, both [40,45] improve prediction robustness by raising
the quality of its inputs, i.e., the tracklets generated by track-
ing, but make no modifications to the prediction model.
In contrast, we present a novel prediction framework that
uses affinity matrices rather than tracklets as inputs, thereby
completely removing the chances of errors occurring in data
association and passing more information to prediction.

Joint Social-Temporal Modeling. In scenarios with many
interacting agents, an agent’s future behavior depends
highly on its belief of other agents’ behaviors. As a re-
sult, an important aspect of trajectory prediction is agent-
agent interaction modeling, also known as social-temporal
modeling. The most popular approach in prior work is to
model social-temporal interactions in a cascaded order, i.e.,
first temporal modeling followed by social modeling, ex-
emplified by RNNs and Graph Neural Networks (GNN5s)
[20,32,43], or Transformers and RNNs [6]. However, since
social and temporal modeling are not performed jointly, so-
cial modeling loses access to agent information in previous
frames (this information has already been compressed in
temporal modeling). Accordingly, there are recent works
which argue that it is beneficial to jointly model social-
temporal interactions, e.g., interleaving social and temporal
transformers [24,44,46] or GNNs [26] in an iterative man-
ner. We use a similar joint social-temporal modeling mech-
anism by allowing agent features at any frame to directly
attend over features of other agents at any frame. Unlike
prior work, we do not have access to agent identity infor-
mation during joint social-temporal modeling so we use the
joint affinity matrix to inject the “soft” identity information.

3D Multi-Object Tracking. The goal of online tracking is
to match previously-computed tracklets with current detec-
tions to form new tracklets up to the current frame, and then
incrementally obtain trajectories over the entire sequence.
During this process, an intermediate affinity matrix is often
computed where each entry represents the pairwise similar-
ity between a past tracklet and current detection. A match-
ing algorithm, such as the Hungarian algorithm [37], can
then be used to perform “hard” matching, assigning de-
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tections to tracklets. Compared to the standard tracking-
prediction pipeline that uses tracklets as inputs to predic-
tion, we use the intermediate affinity matrices as inputs, pre-
serving strictly more “soft” information for prediction.

3. Problem Formulation

The goal of multi-agent trajectory prediction is to learn
a function F that can predict a sequence of future locations
for every agent in the scene. Let Y = (1,2, ,VN) €
RN *KX2 denote N frames of K agents’ future trajectories.
Atframet, Y, = (yi,vy?, - ,yK) € RE*2 denotes the K
agents’ ground positions, where each position is represented
as a tuple y¥ = (uf,vF) € R2.

In prior work, the inputs to the function F are typically
the past trajectories of the same K agents from the previous
M frames X = (X1_p, -+, Ap) and an optional map M
of the scene. However, obtaining perfect past trajectories
through tracking is challenging and data association errors
can easily be propagated to prediction. Accordingly, we
seek a different solution that instead uses a list of raw (unas-
sociated) detections D = (Dy_py, -+, Dg) (Sec. 4.1) and
their affinity matrices A = (A;"37%, -+, Ay") between
pairs of frames (Sec. 4.2), as shown in Fig. 2 (top left) and
(bottom left). Since the future is uncertain and can evolve
in many different ways, predictions for each agent should
also be multi-modal. Thus, we aim to learn a function F
that can map (D, .A) (and optionally M) and sampled la-
tent variables Z = (z1,--- ,zk) to future trajectories Y:

Y=FD,AM,Z). ey
4. Affinity-based Prediction (Affinipred)

The network of our approach is illustrated in Fig. 2, it
is comprised of five key components: (1) A past embed-
ding layer that encodes features of all flattened detections
and optionally a map in past frames; (2) An affinity con-
struction module that converts individual affinity matrices
between two frames into one joint affinity matrix between
all detections from all frames; (3) A transformer encoder
with affinity-based attention for interaction modeling be-
tween all detections that outputs context features, which can
then be used to generate the prior pg; (4) A transformer de-
coder that predicts future trajectories autoregressively from
embeddings, context and sampled latent variables; (5) An-
other transformer decoder that generates the posterior gg
from ground truth (GT) future trajectories and context.

4.1. Input Representation: Detections

To avoid using potentially erroneous tracking results to
perform prediction, we operate directly from raw detec-
tions. While this removes the need for data association, it
poses two challenges: incompleteness and loss of identity.

ZA%:% denotes the affinity matrix between frame 2 — M and 1 — M.

Incompleteness. Due to a variety of reasons (occlusion,
large distances, sensor failures, small object sizes, etc),
state-of-the-art detectors often struggle to provide stable de-
tections across all frames. This means that some objects,
although present in the scene, may be not detected in some
frames. For example, in Fig. 2 (top left), the blue object is
detected in frames ¢ = —2 and ¢t = 0, but not in frame
t = —1. Note that the object colors (denoting identity)
in Fig. 2 are only used for illustration, and there is actu-
ally no identity information in the detections used by our
method. Here, we denote raw detections at frame ¢ as
D, = (d},d?,---,dX"), where K, is the number of ob-
jects detected at time ¢ (which can change across frames).

Loss of Identity. Since detections across frames are unas-
sociated, we do not have a sequence of data for each object.
As a result, standard sequence modeling techniques, e.g.,
RNN:s, cannot be applied to extract trajectory-level features.
Further, detections with the same index across frames (i.e.,
df and dfﬁl) do not necessarily have the same identity.

Our Solution. To appropriately process detection inputs
while accounting for the above challenges, we propose a
joint social-temporal transformer architecture (Sec. 4.3 and
4.5) with affinity-based attention (Sec. 4.4). First, the joint
social-temporal transformer models interactions between
all detections across all frames so it can operate with a vari-
able number of objects in each frame. Second, we inject
affinity matrices into our affinity-based attention module
(Sec. 4.4) as separate inputs that preserve “soft” similarity
and identity information between all detections.

4.2. Input Representation: Affinity Matrices

Since affinity matrices provide strictly more information
than the identity estimations produced by “hard” matching,
affinity is a core facet of our method’s input representation.
Given K;_; detections at frame ¢ — 1 and K; detections
at frame ¢, an affinity matrix A?l € RE+—1xKt hag en-
tries a;; € R that represent the similarity (or probability of
corresponding to the same identity, if normalized) between
d;_, and dJ, where i € [1,K;_1] and j € [1, K;] denote
the row and column index of AL, respectively.

Affinity matrices are typically obtained as intermediate
results from online multi-object tracking methods [4 1, 49].
However, there are two challenges in using them for predic-
tion: (1) Since online tracking methods aim to solve data
association incrementally over frames, affinity matrices are
only computed between consecutive frames, e.g., A:? and
Ay L as shown in Fig. 2 (bottom left). As a result, we do
not have direct affinity matrices between detections in non-
consecutive frames; (2) Affinity matrices are typically com-
puted between tracklets in the last frame and detections in
the current frame, since tracklets are already associated up
to the last frame. As a result, the estimated affinity matrix
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also used to trains the network. For illustration purposes, we only show M = 3 past frames (t = —2,¢ = —1, and ¢t = 0) in the figure.

might be inaccurate at a frame if the tracklet construction in
the previous frame is inaccurate. We will discuss potential
solutions to these challenges in Sec. 6.

4.3. Transformer Encoder

Past Embedding. We use a transformer encoder to model
the joint social-temporal attentions between all detections
in all frames. As transformers operate on sequences of data,
we first flatten detections into a sequence D/ € RFwn*2 —
(d}—M’ e 7d{(—1X/IM’dé—M’ e 7d(1J7 e ’dé(o)’
Kom = Z?zl_ K¢ is the number of detections in all past
frames. Then, a past embedding (fully-connected) layer

is used to convert Df into a list of feature embeddings
O =(0}_p,0°) € REwmxds,

Map Encoding. If available, a map can also (optionally)
be included as an input to our model. Specifically, given an
object’s position d¥ = (uF,vF), we crop a local map M¥
around the object from the global map M. Then, a con-
volutional neural network (CNN) encodes the local map as
a vector m¥ that is concatenated with the object’s position
before feeding into the past embedding layer.

where

Time Encoding. After flattening detections along the time
dimension, the timestamp of each object is lost. To recover
the order of time information for embeddings, we apply po-
sitional encoding as in [36], modified to instead encode time
so that objects present at the same timestamp have the same
time encoding. This time encoding TF is added to the fea-
ture embedding o for each object to form the overall input
embedding e to the transformer encoder.

Joint Social-Temporal Modeling. Inspired by the original
transformer [36], we apply a series of self-attention blocks
to the input embeddings & = (e%_M, e ,eé(o), where
each block contains a multi-head attention, layer normal-
ization, feed-forward network, and another layer normal-
ization. Each input embedding ef is also projected into
key, query, and value, which are used to compute atten-
tion (Sec. 4.4). After B attention blocks, the transformer
encoder outputs context features C = (¢ _,,,--- , ;).

Overall, our transformer encoder has two key character-
istics: (1) Since the inputs are objects from all past frames,
our transformer encoder allows an object at any frame to
directly attend to any another object in any frame, enabling
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Figure 3. Joint Affinity Construction. To construct A°™, used
in affinity-based attention, we first fill its diagonal with identity
matrices I, since object identities are fixed in the same timestamp.
We then fill the off-diagonal blocks of 4™ with individual two-
frame affinity matrices when available, otherwise they are left as
zeros. In this example with M = 3 past frames, we can fill in
affinity matrices A, ! (between frame -1 and 0) and A:f (between
frame -2 and -1).

social attention across time, i.e., joint social-temporal mod-
eling. This differs from prior works which use a two-stage
approach (e.g., social then temporal or vice versa); (2) Since
the inputs are flattened, our transformer encoder can operate
on a variable number of objects across frames.

4.4. Affinity-based Attention

Joint Affinity Construction. To enable joint attention be-
tween all detections in all past frames, we first need to con-
struct the joint affinity matrix A € REwmXKaun from in-
dividual two-frame affinity matrices A. As an example, let
M = 3 (three past frames). In this case, there are two in-
dividual affinity matrices, A = (A3, Ay"). As shown in
Fig. 3, the joint affinity A" is a (tridiagonal) block matrix
composed of the affinity matrices A:%, Ay ! identity ma-
trix I, and zeros. The diagonal of A°" is identity because
the same object k at the same timestamp ¢ must have the
same identity to itself. The off-diagonal blocks of A°™ are
filled with individual two-frame affinity matrices (for con-
secutive frames) and zeros otherwise.

Affinity-based Attention. Since an object’s future tra-
jectory depends on both its past motion and the motion
of other objects, our affinity-based attention models both
types of dependency. In general, these types of dependency
may have different effects on prediction, so we use sepa-
rate attention weights to model them by projecting the key
K € REsm>ds and query Q € RFsm>ds into two sets:

’Cself = ’nglf’ Qself = QWS%f, (2)
Komer = KWh oo, Qother = QWS ., 3)

where K, Qserr € R X4 are used to compute the atten-
tion of the object to itself (or to objects that have a high
affinity value with it), and Koher, Qotner are used to compute
the attention of the object to others. We then combine these
attention weights in an affinity-aware manner by using the
joint affinity matrix A°™ as a mask:

W = A (QueirKger) + (1= A™) O (QotherKoher)s (4)

where © is an element-wise product and the combined at-
tention weight W € REwm X Kam i a matrix. Finally, we can
compute the attended output as in [36]:

w

V' = softmax [ —— | V, 5)
Vdy

where the output embeddings V' € Rfwn*ds are used as

inputs to the rest of the operations in the attention block.

4.5. Transformer Decoder

Different from the transformer encoder that computes
the self-attention between all detections, our transformer
decoder computes the cross-attention between detections
and future positions. As shown in Fig. 2, our transformer
decoder is used in two places: (1) to model attention be-
tween detections and predicted trajectories in an autore-
gressive manner, and (2) to model attention between detec-
tions and GT future trajectories to compute the posterior.
In both places, the only difference is that the query embed-
dings are projected from the predicted positions via the pre-
diction embedding layer or from the GT future trajectories
via the future embedding layer. Both embedding layers are
fully-connected, similar to the past embedding layer as in-
troduced in Sec. 4.3. Affinity-based attention and time en-
coding are also used in both transformer decoders, and the
key and value embeddings are projected from the context
feature C from the transformer encoder.

4.6. Multi-Modal Prediction

To produce multi-modal predictions, we apply the stan-
dard CVAE framework, sampling latent values Z at runtime
and conditioning the model with them to produce multiple
plausible joint realizations of agent futures.

CVAE Posterior. Following standard CVAE trajectory pre-
diction works [9,43], the posterior q¢(zf |D, M, ) is com-
puted with a two-layer Multi-Layer Perceptron followed by
two separate fully-connected layers to compute the mean
p¥ and variance o of a Gaussian for each input detection
dy. Latent variables Z = (z1_,,,---,25°) € RFwmxd:
can then be sampled for all detected objects during train-
ing, which are concatenated with the raw detections D/ and
(optionally) map features to compute the input embeddings
during autoregressive prediction. Finally, the posterior is
computed using the outputs from the transformer encoder C
and GT future transformer decoder, incorporating informa-
tion about both the future (), M) and the past (D, M).

CVAE Prior. The network for computing the prior is sim-
ilar to the network for computing posterior, except that
its inputs are the context feature C that do not contain
any information from the future GT trajectories. Dur-
ing testing, we can sample multiple latent variables Z =
(2} oo, 289) from the prior py(z¥|D, M) to predict
multiple samples of object future trajectories.

6577



4.7. Training Details

Which agents to predict? Since raw detections are differ-
ent from trajectory inputs in standard trajectory prediction,
a key question is for which objects should we predict? For
example, one can predict future locations for all K, ob-
jects detected in past frames. However, some detections in
past frames may belong to the same object (although this
is unknown in advance), so predicted trajectories may be
duplicated, requiring subsequent matching and filtering.
Another way is to predict trajectories only for the K
objects detected in the current frame (¢ = 0). In this way,
no duplicate predictions are made for objects with the same
identity, however, some objects might not have predictions
if they are not detected in frame ¢ = 0 due to detector fail-
ure. In this work, we choose to make KX = K| rather than
Kqm, matching standard data processing procedures used
in prior works, e.g., [15,40], and challenges (nuScenes [7],
ETH/UCY [22,27]), to enable a fair comparison.

Detection Matching with GT. To train Affinipred, we use
GT future trajectories as supervision signals for each detec-
tion that needs to be predicted. Accordingly, this requires
matching the K detections at frame ¢ = 0 with GT future
trajectories. Following the standard matching scheme used
for official evaluation in the nuScenes challenge [7], we
use a distance threshold dyes and Hungarian matching [37].
During training, we filter out detections at frame ¢ = 0 that
are not successfully matched with GT (a small percentage),
i.e., objects that are most likely false positives.

Autoregressive Prediction. During both training and test-
ing, we perform autoregressive prediction. Object positions
are predicted sequentially, with predictions at ¢ serving as
inputs when predicting the next timestamp ¢ 4+ 1. Using
Fig. 2 as an example, we begin with detections at frame
t = 0 as inputs (blue, gray and red objects). Then, our
output layer converts the transformer decoder output to pre-
dicted positions Yy = (gi,--- ,5~°) at frame ¢ = 1. By
iteratively applying this process, we can obtain predictions
in all N future frames Y = (Q,- - , YN)-

Training Objectives. We optimize our Affinipred network
by minimizing two loss functions: (1) A reconstruction loss
between the K predicted ) and GT trajectories Y; and (2)
a KL divergence loss between the CVAE prior and posterior
for each object being predicted:

L= ales + BLxL :04|D7_y||2

Ko (6)
+8Y KL(g4(26D, M, V) || po(2§|D, M)),

k=1

where «, 8 € R+ are loss function weights. Here, only the
prior and posterior of the K|, objects are used because we
only predict these objects detected at frame ¢ = 0.

5. Experiments

Our affinity-based prediction scheme has two core goals:
(1) Improve overall prediction performance in a realistic
setting when using tracking results as inputs, and (2) In-
crease robustness to upstream tracking errors. To evaluate
our method’s efficacy in addressing these, we make use of
standard prediction datasets, but use detection and tracking
results as inputs rather than GT past trajectories. In addition
to evaluating prediction accuracy for all detected objects
(“global evaluation”), we follow [40] and evaluate predic-
tion performance for objects with certain types of tracking
errors (“targeted evaluation”), to evaluate our method’s ro-
bustness to tracking errors. At a high level, we find that our
affinity-based prediction significantly improves real-world
prediction performance and robustness to tracking errors,
compared to standard tracklet-based prediction.

5.1. Implementation Details

Hyper-parameters. We use « = [ = 1 in Eq. (6),
dy = 256 for embeddings, d. = 32 for latent variables, and
dinres = 2 when matching detections with GT trajectories.

Network Architecture. We use a 4-layer CNN to extract
32-dimensional map features. We use one fully-connected
layer in all four embedding layers (past, future, prediction
embedding, and output). We use B = 2 attention blocks in
both the transformer encoder and decoder, and 8 heads in
the affinity-based multi-head attention.

Data Pre-processing. We apply linear interpolation and ex-
trapolation to impute missing data in any of the past M and
future NV frames. We also apply three types of data augmen-
tation to increase the robustness of prediction with respect
to tracking errors. In particular, we inject identity switches
(IDS), fragments (FRAG), and noise. For IDS, we swap the
identity of two objects in the current frame with 30% prob-
ability if they are within 5 meters. For FRAG, we randomly
drop data in past frames with 30% probability. Finally, we
perturb the u, v positions of each object with a maximum
magnitude of 0.4 of its width and length in previous frames.

5.2. Evaluation Methodology

Baselines. In all experiments, we compare against a stan-
dard tracking-prediction pipeline that is composed of a de-
tector, tracker, and prediction model. On KITTI, these are
PointRCNN [34], AB3DMOT [41], and PTP [43], respec-
tively. On nuScenes, these are Megvii [50], AB3DMOT
[41], and PTP [43], respectively. We also compare against
MTP [40], a strong, recent work that tackles the same prob-
lem of improving prediction robustness to upstream track-
ing errors. Specifically, MTP [40] explicitly accounts for
tracking errors in prediction via multi-hypothesis data asso-
ciation. To fairly compare with these baselines, we use the
same detection and tracking methods to obtain the inputs.
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Datasets. We use the standard KITTI [13] and nuScenes [7]
autonomous driving datasets for evaluation. Since there is
no official prediction evaluation server for KITTI, we eval-
uate on the KITTTI tracking [ 1] validation set, using the stan-
dard train/val splits from [33]. We consider three main ob-
ject categories during evaluation: cars, pedestrians and cy-
clists. To fairly compare against [40], we use M = 10 past
frames and predict N = 10 future frames. To match objects
with their GT trajectories, we compute 3D Intersection over
Union (IoU) and use a standard threshold of 0.5 [41].

For nuScenes, we follow official prediction challenge
guidelines [2]: (1) using the official train, val, test splits [3];
(2) evaluating only on vehicle classes; (3) using M = 4
past frames to predict N = 12 future frames; and (4) us-
ing a threshold distance of 2 meters when matching predic-
tions with GT trajectories to compute metrics. Although we
follow official nuScenes evaluation guidelines, it is impor-
tant to note that the minADEg, minFDEg values in Tables
1 through 4 are not comparable to values on the nuScenes
leaderboard (which use GT past trajectories for evaluation).

Metrics. To evaluate prediction accuracy, we use the stan-
dard Minimum Average and Final Displacement Error met-
rics over S predicted samples (minADEg, minFDEg):

. 1 Ko 1 N~k k
ADEg = — — F, - )
min § =min Xy Zk:l NE thl mllUse — Uiy

. . 1 Ko ~ k k
minFDEg = min Ky Zk:l ||y5Tk - kaHQ,

where K is the number of objects detected in the current
frame, g’jsf is the predicted position of object k at frame ¢
in the s sample. Since not all objects have complete GT
future trajectories (e.g., they may leave the scene early), a
frame-wise mask F¥ is used for object k to compute errors
only on the frames where GT exists. As a result, the number
of total evaluated frames for object k is NX., < N. Simi-
larly, when computing minFDEg, T}, < N is the last frame
of object k. Lastly, we evaluate with S = 20 on KITTI and

S = 10 on nuScenes to have a fair comparison with [40].

Tracking Evaluation. In order to analyze prediction per-
formance on objects with tracking errors, it is necessary
to determine which objects have tracking errors. Follow-
ing [40], we consider two common tracking errors: identity
switches (IDS) and fragments (FRAG). We use the stan-
dard 3D tracking evaluation code released in [4 1] to identify
which objects have IDS/FRAG errors per frame.

5.3. Results and Analysis

Targeted Evaluation. Table | summarizes the performance
of all methods for objects with tracking errors. We can
see that our method significantly outperforms all others on
every dataset and tracking error type. For instance, on
nuScenes objects with IDS, we reduce minADEg by 71.8%
(from 3.923 to 1.106), and reduce minFDEg by 74.5%

Datasets ~ Targets Methods | minADEs  minFDEg

KITTI DS PointRCNN+AB3DMOT+PTP, S=20 ‘ 2.820 4514
MTP [40], S=20 0.747 1.173
MTP [40], S=400 0.707 1.093
Affinipred (Ours), S=20 0.516 0.792
KITTI FRAG  PointRCNN+AB3DMOT+PTP, S=20 ‘ 1.621 2.155
MTP [40], S=20 1.335 1.688
MTP [40], S=400 1.305 1.627
Affinipred (Ours), S=20 1.063 1.381
nuScenes IDS Megvii+AB3DMOT+PTP, S=10 ‘ 8.345 13.892
MTP [40], S=10 3.923 6.210
MTP [40], S=200 3.321 5.052
Affinipred (Ours), S=10 1.106 1.584
nuScenes FRAG  Megvii+AB3DMOT+PTP, S=10 ‘ 14.520 21.815
MTP [40], S=10 8.476 12.105
MTP [40], S=200 7.697 10.606
Affinipred (Ours), S=10 4.486 5.600

Table 1. Prediction performance for objects with IDS/FRAG.

(from 6.210 to 1.584). Importantly, we can directly com-
pare to MTP [40] because our method uses the same de-
tection and tracking outputs (including intermediate affin-
ity matrices) as MTP [40]. Thus, the set of considered
IDS/FRAG objects is exactly the same for both methods.

Our method’s performance is further highlighted when
comparing against a standard detection-tracking-prediction
system that uses the same detection [34, 50] and tracking
[41] methods. For example, on nuScenes objects with IDS,
we reduce minADEg by 86.7% (from 8.345 to 1.106), and
reduce minFDEg by 88.6% (from 13.892 to 1.584). All
these results confirm that our affinity-based prediction has
significantly improved the robustness of prediction with re-
spect to IDS and FRAG, which is reasonable as the standard
detection-tracking-prediction system does not explicitly ac-
count for tracking errors.

Global Evaluation. Table 3 summarizes the performance
of methods for all detected objects. Similar to the trend in
targeted evaluation, our method significantly outperforms a
standard detection-tracking-prediction pipeline. For exam-
ple, we reduce minADEg by 57.9% (from 2.320 to 0.977)
on nuScenes. Also, our method significantly outperforms
MTP [40], even when allowing it 20x more samples. The
magnitude of error reduction our method achieves in Table 3
is less drastic than in Table 1 because global evaluation also
includes objects whose future trajectories are easier to pre-
dict, i.e., without any upstream detection or tracking errors.

Ablation Study. Table 2 summarizes the results, where the
last row corresponds to our full method. In the second-last
row, we replace our method’s core advancement (the use
of affinity and detection inputs) with tracklets, and observe
a significant drop in both targeted and global performance.
This signifies that our core contribution is effective at both
improving overall prediction performance and improving
model robustness to tracking errors.

We then disable GT matching, meaning future tracklets
from tracking are used in place of GT future trajectories
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Methods IDS FRAG Global
Extra/Inter. Augmentation GT matching Affinity | minADEs minFDEg | minADEg minFDEg | minADEg minFDEg
3.408 5.124 8.085 10.246 1.625 2.960
v 2.705 4.067 6.892 8.227 1.264 2.136
v v 2.464 3.531 6.622 8.058 1.215 1.963
v v v 1.792 2.642 4.988 6.193 1.143 1.882
v v v v 1.106 1.584 4.486 5.600 0.977 1.628

Table 2. Ablation experiments on the nuScenes prediction test set. S = 10 samples are used to predict N = 12 future frames.

Datasets ~ Methods | minADEg  minFDEg
KITTI PointRCNN+AB3DMOT+PTP, S=20 ‘ 0.185 0.278
MTP [40], S=20 0.162 0.238
MTP [40], S=400 0.146 0.203
Affinipred (Ours), S=20 0.129 0.194
nuScenes Megvii+AB3DMOT+PTP, S=10 ‘ 2.320 3.819
MTP [40], S=10 1.585 2.512
MTP [40], S=200 1.325 1.979
Affinipred (Ours), S=10 0.977 1.628

Table 3. Prediction performance for all detected objects.

during training. Since tracklets are noisy, performance sen-
sibly decreases in all settings. Finally, we disable data aug-
mentation and imputation (linear extrapolation and interpo-
lation), and the resulting decrease in performance confirms
that these pre-processing steps are also important to im-
prove prediction robustness, especially so for objects with
IDS and FRAG errors. Interestingly, even without these
data pre-processing steps and affinity-based inputs, our base
prediction network performs similarly to MTP [40].

Training with Augmented GT. As we have seen in Table 2,
augmenting the inputs with IDS, FRAG, and noises dur-
ing training improves prediction accuracy and robustness
to tracking errors. Seeing this, one may wonder if we can
apply the same augmentations to a standard tracklet-based
prediction method that is trained with GT trajectories. How
would this compare to our Affinipred?

To answer this question, we train a tracklet-based ver-
sion of our base prediction network (i.e., the second row
of Table 2) on nuScenes with different tracking error aug-
mentations applied to GT trajectories (as described in Sec-
tion 5.1). Table 4 summarizes the results and shows that,
even with the combination of all three input data augmenta-
tions, a tracklet-based method trained with GT trajectories
is also outperformed by our Affinipred, which is the case
for both objects with ID switches and fragments.

Runtime Speed. The speed of our method depends on the
number of objects present per input frame. On a single
GeForce RTX 2080, our method can run at 4.7 FPS with an
average of 30 detections per input frame. There are a num-
ber of ways to make our method faster beyond this, such
as switching from autoregressive to batch predictions, opti-
mizing the network architecture to reuse computation, and
generally optimizing our (currently unoptimized PyTorch)
codebase for performance.

| Augmentation | DS | FRAG
Inputs
| IDS FRAG Noises | minADEs  minFDEs | minADEs  minFDEg
GT traj. 2.878 4.136 7314 9.136
v 1.383 1.906 5.160 6.264
v 2577 3.695 6.610 7.830
v 1.897 2557 6.060 7.460
v v v 1314 1.824 4773 5.959
Affi. + Det. | v v v o 1.106 1584 | 4486 5.600

Table 4. Performance of a tracklet-based variant of our method
trained with augmented GT trajectories compared to our affinity-
based prediction scheme on nuScenes. Data imputation with extra-
/interpolation is used for both methods.

6. Limitations and Conclusions

There are two main limitations (and thus areas of future
work) in our affinity-based prediction method (Affinipred).
First, how can one obtain affinity matrices between non-
consecutive frames? Further, how can one obtain affin-
ity matrices between two frames of detections rather than
between past tracklets and current detections (Sec. 4.2)?
Along these lines, an interesting area of future work is to de-
sign an affinity estimation network that can directly output
the joint affinity matrix A”™, Second, is there an elegant
way to predict the futures of all objects present in any past
frame, rather than only those detected in the current frame?
Such a capability would be useful for handling occlusions,
being able to predict for objects that were in a past frame
but are occluded in the current frame.

In conclusion, we present a novel affinity-based predic-
tion scheme that only requires detections and their affin-
ity matrices across frames as inputs, entirely removing the
need for error-prone data association. Since affinity matri-
ces contain “soft” information about the similarity and iden-
tity of detections across frames, making prediction using
affinity matrices retains strictly more information than mak-
ing prediction using tracklets generated by data association.
Experiments on the KITTI and nuScenes autonomous driv-
ing datasets show that our affinity-based prediction scheme
reduces overall prediction errors by up to 57.9% in com-
parison to standard tracklet-based prediction pipelines, with
even more significant error reductions (up to 88.6%) when
restricting evaluation to objects with tracking errors.
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