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Abstract

Large pre-trained models such as CLIP or ALIGN offer con-
sistent accuracy across a range of data distributions when
performing zero-shot inference (i.e., without fine-tuning on
a specific dataset). Although existing fine-tuning methods
substantially improve accuracy on a given target distribu-
tion, they often reduce robustness to distribution shifts. We
address this tension by introducing a simple and effective
method for improving robustness while fine-tuning: ensem-
bling the weights of the zero-shot and fine-tuned models
(WiSE-FT). Compared to standard fine-tuning, WiSE-FT pro-
vides large accuracy improvements under distribution shift,
while preserving high accuracy on the target distribution.
On ImageNet and five derived distribution shifts, WiSE-FT
improves accuracy under distribution shift by 4 to 6 percent-
age points (pp) over prior work while increasing ImageNet
accuracy by 1.6 pp. WiSE-FT achieves similarly large ro-
bustness gains (2 to 23 pp) on a diverse set of six further
distribution shifts, and accuracy gains of 0.8 to 3.3 pp com-
pared to standard fine-tuning on commonly used transfer
learning datasets. These improvements come at no addi-
tional computational cost during fine-tuning or inference.

1. Introduction

A foundational goal of machine learning is to develop mod-
els that work reliably across a broad range of data distri-
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butions. Over the past few years, researchers have pro-
posed a variety of distribution shifts on which current al-
gorithmic approaches to enhance robustness yield little to
no gains [68,95]. While these negative results highlight the
difficulty of learning robust models, large pre-trained mod-
els such as CLIP [79], ALIGN [44] and BASIC [75] have
recently demonstrated unprecedented robustness to these
challenging distribution shifts. The success of these models
points towards pre-training on large, heterogeneous datasets
as a promising direction for increasing robustness. However,
an important caveat is that these robustness improvements
are largest in the zero-shot setting, i.e., when the model per-
forms inference without fine-tuning on a target distribution.

In a concrete application, a zero-shot model can be fine-tuned
on extra application-specific data, which often yields large
performance gains on the target distribution. However, in the
experiments of Radford ef al. [79] and Pham et al. [75], fine-
tuning comes at the cost of robustness: across several natural
distribution shifts, the accuracy of their fine-tuned models is
lower than that of the original zero-shot model. This leads
to a natural question: Can zero-shot models be fine-tuned
without reducing accuracy under distribution shift?

As pre-trained models are becoming a cornerstone of ma-
chine learning, techniques for fine-tuning them on down-
stream applications are increasingly important. Indeed, the
question of robustly fine-tuning pre-trained models has re-
cently also been raised as an open problem by several au-
thors [3,9,75,79]. Andreassen et al. [3] explored several
fine-tuning approaches but found that none yielded models
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Schematic: fine-tuning CLIP on the reference distribution leads to
higher accuracy on the reference distribution but less robustness

Schematic: our method, WIiSE-FT leads to
better accuracy on the distribution shifts without
decreasing accuracy on the reference distribution
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Figure 1. (Top left) Zero-shot CLIP models exhibit moderate accuracy on the reference distribution (z-axis, the target for fine-tuning)
and high effective robustness (accuracy on the distribution shifts beyond the baseline models). In contrast, standard fine-tuning—either
end-to-end or with a linear classifier (final layer)—attains higher accuracy on the reference distribution but less effective robustness. (Top
right) Our method linearly interpolates between the zero-shot and fine-tuned models with a mixing coefficient « € [0, 1]. (Bottom) On five
distribution shifts derived from ImageNet (ImageNetV2, ImageNet-R, ImageNet Sketch, ObjectNet, and ImageNet-A), WiSE-FT improves
average accuracy relative to both the zero-shot and fine-tuned models while maintaining or improving accuracy on ImageNet.

with improved robustness at high accuracy. Furthermore,
Taorio et al. [95] demonstrated that no current algorithmic
robustness interventions provide consistent gains across the
distribution shifts where zero-shot models excel.

In this paper, we conduct an empirical investigation to un-
derstand and improve fine-tuning of zero-shot models from
a distributional robustness perspective. We begin by mea-
suring how different fine-tuning approaches (last-layer vs.
end-to-end fine-tuning, hyperparameter changes, etc.) af-
fect the accuracy under distribution shift of the resulting
fine-tuned models. Our empirical analysis uncovers two
key issues in the standard fine-tuning process. First, the
robustness of fine-tuned models varies substantially under
even small changes in hyperparameters, but the best hyper-
parameters cannot be inferred from accuracy on the target
distribution alone. Second, more aggressive fine-tuning (e.g.,
using a larger learning rate) yields larger accuracy improve-
ments on the target distribution, but can also reduce accuracy
under distribution shift by a large amount.

Motivated by the above concerns, we propose a robust way
of fine-tuning zero-shot models that addresses the afore-
mentioned trade-off and achieves the best of both worlds:
increased performance under distribution shift while main-
taining or even improving accuracy on the target distribution
relative to standard fine-tuning. In addition, our method
simplifies the choice of hyperparameters in the fine-tuning
process.

Our method (Figure 1) has two steps: first, we fine-tune the
zero-shot model on the target distribution. Second, we com-
bine the original zero-shot and fine-tuned models by linearly
interpolating between their weights, which we refer to as
weight-space ensembling. Interpolating model parameters is
a classical idea in convex optimization dating back decades
(e.g., see [76,82]). Here, we empirically study model in-
terpolation for non-convex models from the perspective of
distributional robustness. Interestingly, linear interpolation
in weight-space still succeeds despite the non-linearity in the
activation functions of the neural networks.
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Weight-space ensembles for fine-tuning (WiSE-FT) substan-
tially improve accuracy under distribution shift compared to
prior work while maintaining high performance on the target
distribution. Concretely, on ImageNet [ 7] and five of the
natural distribution shifts studied by Radford et al. [79],
WISE-FT applied to standard end-to-end fine-tuning im-
proves accuracy under distribution shift by 4 to 6 percentage
points (pp) over prior work while maintaining or improving
the ImageNet accuracy of the fine-tuned CLIP model. Rel-
ative to the zero-shot model, WiSE-FT improves accuracy
under distribution shift by 1 to 9 pp. Moreover, WiSE-FT
improves over a range of alternative approaches such as
regularization and evaluating at various points throughout
fine-tuning. These robustness gains come at no additional
computational cost during fine-tuning or inference.

While our investigation centers around CLIP, we observe sim-
ilar trends for other zero-shot models including ALIGN [44],
BASIC [75], and a ViT model pre-trained on JFT [21]. For
instance, WiSE-FT improves the ImageNet accuracy of a
fine-tuned BASIC-L model by 0.4 pp, while improving aver-
age accuracy under distribution shift by 2 to 11 pp.

To understand the robustness gains of WiSE-FT, we first
study WiSE-FT when fine-tuning a linear classifier (last
layer) as it is more amenable to analysis. In this linear case,
our procedure is equivalent to ensembling the outputs of two
models, and experiments point towards the complementarity
of model predictions as a key property. For end-to-end fine-
tuning, we connect our observations to earlier work on the
phenomenology of deep learning. Neyshabur ef al. [71]
found that end-to-end fine-tuning the same model twice
yielded two different solutions that were connected via a
linear path in weight-space along which error remains low,
known as linear mode connectivity [25]. Our observations
suggest a similar phenomenon along the path generated by
WiSE-FT, but the exact shape of the loss landscape and con-
nection between error on the target and shifted distributions
are still open problems (analysis in Appendix A).

In addition to the aforementioned ImageNet distribution
shifts, WiSE-FT consistently improves robustness on a di-
verse set of six additional distribution shifts including: (i)
geographic shifts in satellite imagery and wildlife recogni-
tion (WILDS-FMoW, WILDS-iWildCam) [6, 13, 47], (ii)
reproductions of the popular image classification dataset
CIFAR-10 with a distribution shift (CIFAR-10.1 and CIFAR-
10.2) [60,81], and (iii) datasets with distribution shift induced
by temporal perturbations in videos (ImageNet-Vid-Robust
and YTBB-Robust) [86]. Beyond the robustness perspective,
WIiSE-FT also improves accuracy compared to standard fine-
tuning, reducing the relative error rate by 4-49% on a range
of seven datasets: ImageNet, CIFAR-10, CIFAR-100 [52],
Describable Textures [14], Food-101 [10], SUN397 [101],
and Stanford Cars [51]. Even when fine-tuning data is scarce,

reflecting many application scenarios, we find that WiSE-FT
improves performance.

Overall, WiSE-FT is simple, universally applicable in the
problems we studied, and can be implemented in a few lines
of code. Hence we encourage its adoption for fine-tuning
zero-shot models.

2. Background and experimental setup

Our experiments compare the performance of zero-shot mod-
els, corresponding fine-tuned models, and models produced
by WiSE-FT. To measure robustness, we contrast model
accuracy on two related but different distributions, a refer-
ence distribution D;¢ which is the target for fine-tuning, and
shifted distribution Dgpir;.! We assume both distributions
have test sets for evaluation, and D,.; has an associated train-
ing set S which is typically used for training or fine-tuning.
The goal for a model is to achieve both high accuracy and
consistent performance on the two distributions D;..¢ and
Denigs- This is a natural goal as humans often achieve similar
accuracy across the distribution shifts in our study [87].

For a model f, we let Accer(f) and Accgpies(f) refer to
classification accuracy on the reference and shifted test sets,
respectively. We consider k-way image classification, where
a; is an image with corresponding label y; € {1, ..., k}. The
outputs of f are k-dimensional vectors of non-normalized
class scores.

Distribution shifts. Taori er al. [95] categorized distribu-
tion shifts into two broad categories: (i) synthetic, e.g., {oo-
adversarial examples or artificial changes in image contrast,
brightness, etc. [2,7,8,29,36]; and (ii) natural, where sam-
ples are not perturbed after acquisition and changes in data
distributions arise through naturally occurring variations in
lighting, geographic location, crowdsourcing process, im-
age styles, etc. [35,38,47,81,95]. Following Radford et
al. [80], our focus here is on natural distribution shifts as
they are more representative of the real world when no active
adversary is present. Specifically, we present our key results
for five natural distribution shifts derived from ImageNet
(i.e., S is ImageNet): (a) ImageNet-V2 (IN-V2) [81], a
reproduction of the ImageNet test set with distribution shift
(b) ImageNet-R (IN-R) [35], renditions (e.g., sculptures,
paintings) for 200 ImageNet classes (c) ImageNet Sketch
(IN-Sketch) [98], which contains sketches instead of natu-
ral images (d) ObjectNet [4], a test set of objects in vari-
ous scenes with 113 classes overlapping with ImageNet (e)
ImageNet-A (IN-A) [38], a test set of natural images mis-

I'D,.of and Dgpf are sometimes referred to as in-distribution (ID) and
out-of-distribution (OOD). In this work, we include evaluations of zero-shot
models, which are not trained on data from the reference distribution, so
referring to D, would be imprecise. For clarity, we avoid the ID/OOD
terminology.
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Figure 2. Samples of the class lemon, from the reference distribution ImageNet [
], ImageNet Sketch [

main experiments: ImageNet-V2 [81], ImageNet-R [

classified by a ResNet-50 [34] for 200 ImageNet classes.
Figure 2 illustrates the five distribution shifts.

Effective robustness and scatter plots. To compare the ro-
bustness of models with different accuracies on the reference
distribution, we follow the effective robustness framework in-
troduced by Taori et al. [95]. Effective robustness quantifies
robustness as accuracy beyond a baseline trained only on the
reference distribution. A useful tool for studying (effective)
robustness are scatter plots that illustrate model performance
under distribution shift [81,95]. These scatter plots display
accuracy on the reference distribution on the x-axis and ac-
curacy under distribution shift on the y-axis, i.e., a model
f is shown as a point (Accret(f), Accsnist(f)). Figure 1
exemplifies these scatter plots with both schematics and real
data. For the distribution shifts we study, accuracy on the ref-
erence distribution is a reliable predictor of accuracy under
distribution shift [68,95]. In other words, there exists a func-
tion /3 : [0,1] — [0, 1] such that Accghist (f) approximately
equals B(Accet(f)) for models f trained on the train set

tr .. Effective robustness [95] is accuracy beyond this base-

ref*

line, defined formally as p(f) = Accspitt (f) — B(AcCret (f))-

In the corresponding scatter plots, effective robustness is ver-
tical movement above expected accuracy under distribution
shift (Figure 1, top). Effective robustness thereby disentan-
gles accuracy changes on the reference distribution from
the effect of robustness interventions. When we say that
a model is robust to distribution shift, we mean that effec-
tive robustness is positive. Taori et al. [95] observed that
no algorithmic robustness intervention consistently achieves
substantial effective robustness across the distribution shifts
in Figure 2—the first method to do so was zero-shot CLIP.
Empirically, when applying logit (or probit) axis scaling,
models trained on the reference distribution approximately
lie on a linear trend [68,95]. As in Taori et al. [95], we apply
logit axis scaling and show 95% Clopper-Pearson confidence
intervals for the accuracies of select points.

Zero-shot models and CLIP. We primarily explore CLIP
models [79], although we also investigate other zero-shot
models including ALIGN [44], BASIC [75] and a ViT model
pre-trained on JFT [21]. Zero-shot models exhibit effec-
tive robustness and lie on a qualitatively different linear
trend (Figure 1). CLIP-like models are pre-trained using

ImageNet Sketch

ObjectNet ImageNet-A
(Wang et al.) (Barbu et al.) (Hendrycks et al.)

.

] and the derived distribution shifts considered in our
], ObjectNet [4], and ImageNet-A [38].

image-caption pairs from the web. Given a set of image-
caption pairs {(z1, $1)..., (B, sg) }, CLIP-like models train
an image-encoder ¢ and text-encoder h such that the similar-
ity (g(x;), h(s;)) is maximized relative to unaligned pairs.
CLIP-like models perform zero-shot k-way classification
given an image = and class names C' = {cj,...,c;} by
matching x with potential captions. For instance, using cap-
tion s, = “a photo of a {¢;}” for each class 4, the zero-shot
model predicts the class via arg max; (g(x), h(s;)).” Equiv-
alently, one can construct W ,eroshor € RX* with columns
h(s;) and compute outputs f(z) = 9(2) "Weroshor. Un-
less explicitly mentioned, our experiments use the CLIP
model ViT-L/14@336px, although all CLIP models are
displayed in our scatter plots (additional details provided in
Appendix F.1).

3. Weight-space ensembles for fine-tuning

This section describes and motivates our proposed method,
WiSE-FT, which consists of two simple steps. First, we
fine-tune the zero-shot model on application-specific data.
Second, we combine the original zero-shot and fine-tuned
models by linearly interpolating between their weights, also
referred to as weight-space ensembling. WiSE-FT can be
implemented in a few lines of PyTorch, and we provide
example code in Appendix C.

The zero-shot model excels under distribution shift while
standard fine-tuning achieves high accuracy on the reference
distribution. Our motivation is to combine these two models
into one that achieves the best of both worlds. Weight-space
ensembles are a natural choice as they ensemble without
extra computational cost. Moreover, previous work has
suggested that interpolation in weight space may improve
performance when models share part of their optimization
trajectory [42,71].

Step 1: Standard fine-tuning. As in Section 2, we let
SY, denote the dataset used for fine-tuning and g de-
note the image encoder used by CLIP. We are now ex-
plicit in writing g(z, Vene) where z is an input image and

2For improved accuracy, the embedding of a few candidate captions are
averaged, e.g., sgl) =*“aphoto of a {¢;}” and 552):“;1 picture of a {¢; }”

(referred to as prompt ensembling [79]).
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Vene are the parameters of the encoder g. Standard fine-
tuning considers the model f(z,0) = g (z, Venc)T W dlassifier
where Weeirer € R%%F is the classification head and
0 = [Venc, Welassifier] are the parameters of f. We then solve
arg min, {Z(%yi)esgcf O f(xi,0), yi) + AR(G)} where ¢
is the cross-entropy loss and R is a regularization term (e.g.,
weight decay). We consider the two most common variants
of fine-tuning: end-to-end, where all values of # are modified,
and fine-tuning only a linear classifier, where V. is fixed
at the value learned during pre-training. Appendices F.2 and
F.3 provide additional details.

Step 2: Weight-space ensembling. For a mixing coefficient
a € [0, 1], we consider the weight-space ensemble between
the zero-shot model with parameters 6 and the model ob-
tained via standard fine-tuning with parameters ;. The
predictions of the weight-space ensemble wse are given by

wse(z,a) = f(z, (1 —a) -0y +a-0), (1)

i.e., we use the element-wise weighted average of the zero-
shot and fined-tuned parameters. When fine-tuning only
the linear classifier, weight-space ensembling is equivalent
to the traditional output-space ensemble [11,20,26] (1 —
a) - f(x,00) + a- f(x,0;) since Equation 1 decomposes as
(1 - O‘) : g(x, Venc)Terro-shot +a- g($, Venc)TWClassiﬁer-

As neural networks are non-linear with respect to their pa-
rameters, ensembling all layers—as we do when end-to-end
fine-tuning—typically fails, achieving no better accuracy
than a randomly initialized neural network [25]. However,
as similarly observed by previous work where part of the
optimization trajectory is shared [25,42,71], we find that the
zero-shot and fine-tuned models are connected by a linear
path in weight-space along which accuracy remains high
(explored further in Section A.2).

Remarkably, as we show in Section 4, WiSE-FT improves
accuracy under distribution shift while maintaining high per-
formance on the reference distribution relative to fine-tuned
models. These improvements come without any additional
computational cost as a single set of weights is used.

4. Results

This section presents our key experimental findings. First,
we show that WiSE-FT boosts the accuracy of a fine-tuned
CLIP model on five ImageNet distribution shifts studied by
Radford et al. [79], while maintaining or improving Ima-
geNet accuracy. Next, we present additional experiments,
including more distribution shifts, the effect of hyperpa-
rameters, accuracy improvements on the reference distribu-
tion, and experiments in the low-data regime. Finally, we
demonstrate that our findings are more broadly applicable

by exploring WiSE-FT for BASIC [75], ALIGN [44], and a
ViT-H/14 [21] model pre-trained on JFT-300M [91].

Main results: ImageNet and associated distribution
shifts. As illustrated in Figure 1, when the mixing coef-
ficient «v varies from 0 to 1, wse(+, «) is able to simultane-
ously improve accuracy on both the reference and shifted
distributions. A breakdown for each dataset is shown in
Appendix E.1. Table | presents our main results on Ima-
geNet and five derived distribution shifts. WiSE-FT (end-to-
end, a=0.5) outperforms numerous strong models in both
average accuracy under distribution shift and the average
accuracy on the reference and shifted distributions. While
future work may lead to more sophisticated strategies for
choosing the mixing coefficient a, a=0.5 yields close to
optimal performance across a range of experiments. Hence,
we recommend a=0.5 when no domain knowledge is avail-
able. Appendix D further explores the effect of a.. Moreover,
results for 12 other backbones are shown in Appendix E.

Robustness on additional distribution shifts. Beyond the
five distribution shifts derived from ImageNet, WiSE-FT
consistently improves robustness on a diverse set of further
distributions shifts including geographic shifts in satellite
imagery and wildlife recognition (WILDS-FMoW [13,47],
WILDS-iWildCam [6,47]), reproductions of the popular im-
age classification dataset CIFAR-10 [52] with a distribution
shift (CIFAR-10.1 [81] and CIFAR-10.2 [60]), and datasets
with distribution shift induced by temporal perturbations
in videos (ImageNet-Vid-Robust and YTBB-Robust [87]).
Concretely, WiSE-FT (a=0.5) improves performance under
distribution shift by 3.5, 6.2, 1.7, 2.1, 9.0 and 23.2 pp relative
to the fine-tuned solution while decreasing performance on
the reference distribution by at most 0.3 pp (accuracy on
the reference distribution often improves). In contrast to the
ImageNet distribution shifts, the zero-shot model initially
achieves less than 30% accuracy on the WILDS distribution
shifts, and WiSE-FT provides improvements regardless. Ap-
pendix E.2 (Figure 9 and Table 6) includes more detailed
results.

Hyperparameter variation and alternatives. As illus-
trated by Figure 3, moderate changes in standard hyper-
parameters such as the learning rate or the number of epochs
can substantially affect performance under distribution shift.
Moreover, these performance differences cannot be detected
reliably from model performance on reference data alone.
For instance, while training for 10 epochs with learning rate
3-1075 and 3 - 106 lead to a small accuracy difference on
ImageNet (0.3 pp), accuracy under distribution shift varies
by as much as 8 pp.

Furthermore, tuning hyperparameters on ImageNet data can
also reduce robustness. For instance, while moving from
small to moderate learning rates (10~7 to 3 - 10~°) improves
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Distribution shifts Avg Avg
IN (reference) | IN-V2 IN-R IN-Sketch ObjectNet* IN-A | shifts ref., shifts
CLIP ViT-L/14@336px

Zero-shot [79] 76.2 70.1 88.9 60.2 70.0 772 | 73.3 74.8
Fine-tuned LC [79] 85.4 75.9 84.2 57.4 66.2 753 | 71.8 78.6
Zero-shot (PyTorch) 76.6 70.5 89.0 60.9 69.1 717 | 73.4 75.0
Fine-tuned LC (ours) 85.2 75.8 85.3 58.7 67.2 76.1 | 72.6 78.9
Fine-tuned E2E (ours) 86.2 76.8  79.8 57.9 63.3 654 | 68.6 77.4

WiSE-FT (ours)
LC, a=0.5 83.7 76.3 89.6 63.0 70.7 79.7 | 759 79.8
LC, optimal « 85.3 76.9 89.8 63.0 70.7 79.7 | 759 80.2
E2E, a=0.5 86.8 79.5 89.4 64.7 71.1 799 | 76.9 81.8
E2E, optimal o 87.1 79.5  90.3 65.0 72.1 81.0 | 774 81.9

Table 1. Accuracy of various methods on ImageNet and derived distribution shifts for CLIP ViT-1L/14@336px [79]. E2E: end-to-end;
LC: linear classifier. Avg shifts displays the mean performance among the five distribution shifts, while Avg reference, shifts shows the
average of ImageNet (reference) and Avg shifts. For optimal «, we choose the single mixing coefficient that maximizes the column. Results

for additional models are provided in Appendix E.7.

Hyperparameter: Hyperparameter:
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Figure 3. The robustness of fine-tuned models varies substantially under even small changes in hyperparameters. Applying WiSE-FT
addresses this brittleness and can remove the trade-off between accuracy on the reference and shifted distributions. Results shown for
CLIP viT-B/16 fine-tuned with cosine-annealing learning rate schedule and all models in the top left and top middle plots are fine-tuned
with AdamW [59]. Moreover, regularize to zero-shot appends the regularizer A||0 — 6 Hg to the fine-tuning objective, where 6, are the

parameters of the zero-shot model.

performance on ImageNet by 5 pp, it also deteriorates accu-
racy under distribution shift by 8 pp.

WIiSE-FT addresses this brittleness of hyperparameter tun-
ing: even when using a learning rate 3 - 10~ where standard
fine-tuning leads to low robustness, applying WiSE-FT re-

moves the trade-off between accuracy on the reference and
shifted distributions. The models which can be achieved by
varying « are as good or better than those achievable by other
hyperparameter configurations. Then, instead of searching
over a wide range of hyperparameters, only « needs to be
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considered. Moreover, evaluating different values of a does
not require training new models.

There is no hyperparameter in Figure 3 which can be varied
to match or exceed the optimal curve produced by WiSE-FT.
In our experiments, this frontier is reached only through
methods that average model weights, either using WiSE-
FT or with a more sophisticated averaging scheme: keep-
ing an exponential moving average of all model iterates
(EMA, [93]). Comparisons with EMA are detailed in Ap-
pendix E.3.2.

Additional comparisons are also presented in Appendix E.3,
including distillation, additional regularization, and CoOp
[110]. Finally, Appendix E.4 recreates Figure 3 with stronger
data augmentation and finds similar trends.

Accuracy gains on reference distributions. Beyond ro-
bustness to distribution shift, Table 2 demonstrates that
WiSE-FT also improves accuracy after fine-tuning on seven
datasets. When fine-tuning end-to-end on ImageNet, CIFAR-
10, CIFAR-100, Describable Textures, Food-101, SUN397,
and Stanford Cars, WiSE-FT reduces relative error by 4 to
49%. Even though standard fine-tuning directly optimizes
for high accuracy on the reference distribution, WiSE-FT
achieves better performance. Appendix E.5 includes more
details, including explorations in the low-data regime.

Beyond CLIP. Figure 4 illustrates that WiSE-FT is gener-
ally applicable to zero-shot models beyond CLIP, and be-
yond models pre-trained contrastively with image-text pairs.
First, we interpolate between the weights of the zero-shot
and fine-tuned BASIC-L model [75], finding that «=0.5 im-
proves average accuracy on five distribution shifts derived
from ImageNet by over 7 pp while improving ImageNet
accuracy by 0.4 pp relative to the fine-tuned BASIC-L model
(a per-dataset breakdown is provided in Figure 23 and Ta-
ble 12 of the Appendix). As in Pham et al. [75], the model is
fine-tuned using a contrastive loss and half of the ImageNet
training data. WiSE-FT provides improvements on both ref-
erence and shifted distributions, despite these experimental
differences.

Next, we consider the application of WiSE-FT to a ViT-H/14
model [21] pre-trained on JFT-300M [91], where the zero-
shot classifier is constructed by manually identifying a class
correspondence (details provided in Section E.7.2). WiSE-
FT improves performance under distribution shift over both
the zero-shot and fine-tuned models. When a=0.8, WiSE-
FT outperforms the fine-tuned model by 2.2 pp on distribu-
tion shifts, while maintaining ImageNet performance within
0.2 pp of the fine-tuned model. This result demonstrates that

* Although this table considers ImageNet class names, ObjectNet pro-
vides alternative class names which can improve the performance of zero-
shot CLIP by 2.3 percentage points (Appendix F.4).

WIiSE-FT can be successfully applied even to models which
do not use contrastive image-text pre-training.

Finally, we apply WiSE-FT to the ALIGN model of Jia et
al. [44], which is similar to CLIP but is pre-trained with a
different dataset, finding similar trends.

5. Related work

Concurrent and subsequent related work is in Appendix B.

Robustness. Understanding how models perform under dis-
tribution shift remains an important goal, as real world mod-
els may encounter data from new environments [78, 96].
Previous work has studied model behavior under syn-
thetic [2, 23, 29, 36, 63, 97] and natural distribution shift
[4,35,38,47,98]. Interventions used for synthetic shifts
do not typically provide robustness to many natural distri-
bution shifts [95]. In contrast, accuracy on the reference
distribution is often a reliable predictor for accuracy under
distribution shift [67, 68,92, 95, ]. On the other hand,
D’ Amour et al. [16] show that accuracy under certain distri-
bution shifts cannot be reliably inferred from accuracy on
the reference distribution. We observe a similar phenomenon
when fine-tuning with different hyperparameters (Section 4,
Figure 3).

Pre-training and transfer learning. Pre-training on large
amounts of data is a powerful technique for building high-
performing machine learning systems [12,21,48,80,88, 105].
One increasingly popular class of vision models are those
pre-trained with auxiliary language supervision, which can
be used for zero-shot inference [18,44,75,79, 84, s ].
When pre-trained models are adapted to a specific distri-
bution through standard fine-tuning, effective robustness
deteriorates at convergence [3]. In natural language process-
ing, previous work proposed stable fine-tuning methods that
incur computational overhead [45, 111], alleviating prob-
lems such as representational collapse [|]. More generally, a
variety of methods have attempted to mitigate catastrophic
forgetting [65]. Kirkpatrick et al. [46]; Zenke et al. [106]
explored weighted quadratic regularization for sequential
learning. Xuhonget al. [103] showed that, for fine-tuning,
the simple quadratic regularization explored in Section 4
performs best, while Lubana et al. [61] explored the con-
nection between quadratic regularization and interpolation.
Andreassen et al. [3] found that many approaches from con-
tinual learning do not provide robustness to multiple natural
distribution shifts. Finally, Li et al. [57] investigate the effect
of fine-tuning hyperparameters on performance.

Traditional (output-space) ensembles. Traditional ensem-
ble methods, which we refer to as output-space ensem-
bles, combine the predictions (outputs) of many classifiers
[5,11,20,26,27,56]. Typically, output-space ensembles
outperform individual classifiers and provide uncertainty es-
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ImageNet  CIFAR10 CIFAR100 Cars DTD SUN397 Food101
Standard fine-tuning 86.2 98.6 92.2 91.6 81.9 80.7 94.4
WiSE-FT (a=0.5) 86.8 99.3 93.3 93.3 84.6 83.2 96.1
WiSE-FT (opt. ) 87.1 99.5 934 93.6 85.2 83.3 96.2

Table 2. Beyond robustness, WiSE-FT can improve accuracy after fine-tuning on several datasets.

ImageNet (top-1, %)

@® BASIC-L zero-shot
BASIC-L fine-tuned end-to-end

Weight-space ensemble (end-to-end)
W Weight-space ensemble with o = 0.5

Figure 4. WiSE-FT applied to BASIC-L [

timates under distribution shift that are more callibrated than
baselines [56,73,90]. In contrast to these works, we consider
the ensemble of two models which have observed different
data. Output-space ensembles require more computational
resources as they require a separate pass through each model.
Compared to an ensemble of 15 models trained on the same
dataset, Mustafa et al. [70] find an improvement of 0.8—1.6
pp under distribution shift (on ImageNetV2, ImageNet-R,
ObjectNet, and ImageNet-A) by ensembling a similar num-
ber of models pre-trained on different datasets. In contrast,
we see an improvement of 2—15 pp from ensembling two
models. Moreover, as we ensemble in weight-space, no extra
compute is required compared to a single model.

Weight-space ensembles. Weight-space ensembles lin-
early interpolate between the weights of different mod-
els [25,32,62,93]. For example, Izmailov et al. [42] average
checkpoints saved throughout training for improved perfor-
mance. Indeed, averaging the weights along the training
trajectory is a central method in optimization [72, 77, 82].
For instance, Zhang et al. [108] propose optimizing with
a set of fast and slow weights, where every k steps, these
two sets of weights are averaged and a new trajectory begins.
Here, we revisit these techniques from a distributional robust-
ness perspective and consider the weight-space ensemble of
models which have observed different data.

6. Limitations, impact, and conclusion

Limitations. While we expect our findings to be more
broadly applicable to other domains such as natural lan-

ImageNet (top-1, %)
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1, a ViT-H/14 [21] model pre-trained on JFT-300M [91] and ALIGN [44].

guage processing, our investigation here is limited to image
classification. Exploring fine-tuning for object detection and
natural language processing are interesting directions for
future work. Moreover, although the interpolation param-
eter setting a=0.5 provides good overall performance, we
leave the question of finding the optimal « for specific target
distributions to future work.

Impact. Radford ef al. [79] and Brown et al. [12] extensively
discuss the broader impact of large zero-shot models and
identify potential causes of harm including model biases
and potential malicious uses such as surveillance systems.
WiSE-FT is a fine-tuning method that builds on such models,
and thus may perpetuate their negative impact.

Conclusion. We view WiSE-FT as a first step towards more
sophisticated fine-tuning schemes and anticipate that future
work will continue to leverage the robustness of zero-shot
models for building more reliable neural networks.
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