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Figure 1. Our method can produce plausible video prediction results in diverse scenarios without external training, such as driving scenes,
human motion, animation, and natural scenes. We use red arrows to indicate the motions from input frames. Video results are presented in
the supplementary material.

Abstract

Video prediction is an extrapolation task that predicts
future frames given past frames, and video frame interpo-
lation is an interpolation task that estimates intermediate
frames between two frames. We have witnessed the tremen-
dous advancement of video frame interpolation, but the gen-
eral video prediction in the wild is still an open question.
Inspired by the photo-realistic results of video frame in-
terpolation, we present a new optimization framework for
video prediction via video frame interpolation, in which we
solve an extrapolation problem based on an interpolation
model. Our video prediction framework is based on opti-
mization with a pretrained differentiable video frame inter-
polation module without the need for a training dataset, and
thus there is no domain gap issue between training and test
data. Also, our approach does not need any additional in-
formation such as semantic or instance maps, which makes
our framework applicable to any video. Extensive exper-

iments on the Cityscapes, KITTI, DAVIS, Middlebury, and
Vimeo90K datasets show that our video prediction results
are robust in general scenarios, and our approach outper-
forms other video prediction methods that require a large
amount of training data or extra semantic information.

1. Introduction

Video prediction is an extrapolation task to predict future
video frames given some past frames. Video prediction has
broad applications including robotics planning, autonomous
driving and video manipulations [6,23,39,41]. For instance,
predicted videos can help autonomous robots to better plan
future actions with future visual information. Video pre-
diction is also a fundamental task for unconditional video
synthesis that can be decomposed into image synthesis and
future video prediction.

Video prediction is a challenging extrapolation problem.
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Figure 2. Overview of our method. We optimize optical flow f̃t+1→t by a video frame interpolation G [11]. Our optimization objective is
image-level distance Limg and a consistency constraint between our predicted flow f̃t+1→t and the flow fG

t→t+1 generated by G.

Several studies [18, 20, 22, 42] only take RGB frames as in-
put for video prediction and find that the video prediction
problem is difficult to solve, because of the inherent high
complexity of video prediction and the uncertainty of future
states. Thus, recently, a lot of constraints and assumptions
about the modeling scene have been employed to simplify
the problem. However, these assumptions reduce the gener-
alization ability of these video prediction models. FVS [45]
and Lee et al. [15] require semantic maps to decompose
the scene. Bei et al. [4] first predict semantic maps and
then synthesize future frames. Qi et al. [35] require depth
maps to reconstruct 3D point clouds. However, such addi-
tional information is often hard to obtain or estimate cor-
rectly in general scenarios. These strong assumptions limit
these methods to be only applicable to data when these as-
sumptions hold. For example, failing to detect some objects
(including unseen objects) will lead to performance degra-
dation. When this extra information is unavailable or of
poor quality, these methods suffer from performance degra-
dation and cannot be even applied in diverse videos in the
real world.

Moreover, these external methods usually need to train
one model for each specific scenario, making them difficult
generalize to other scenarios. For example, it is hard to ap-
ply a video prediction model trained on a driving scene to a
human moving dataset, as the motion difference is huge.

To address these issues, we propose an optimization-
based video prediction method, without the requirement of
external training (no external dataset is needed for training),

and can produce state-of-the-art results. Our insight is that
we can cast the video prediction problem as a video frame
interpolation (VFI) based optimization problem. Inspired
by the recent success of VFI, we connect these two prob-
lems to solve the video prediction problem in a new way.
Our method does not require any assumption such as se-
mantic segmentation and can be applied to any video. We
evaluate our method on multiple datasets, and our method
can outperform the state of the arts. Our contributions can
be summarized as follows:

• We present the first optimization framework for video
prediction. We cast the extrapolation problem of video
prediction as an optimization problem with VFI.

• Our framework is highly flexible as it does not require
any semantic or instance maps, prior knowledge about
the scene, or external training. Our method is applica-
ble to video prediction in any scene at any resolution.

• Our method obtains outstanding performance on var-
ious datasets and outperforms state-of-the-art video
prediction approaches that require additional informa-
tion. Our method surpasses external learning methods
taking only RGB frames as input by a large margin.

2. Related work
2.1. Video Prediction

Early works, taking RGB frames as input, employ sev-
eral mechanisms to improve video prediction. MCNet [42]
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decomposes a scene into content and motion components.
DVF [20] proposes deep voxel flow to synthesize future
frames. However, video prediction in the wild is still quite
hard due to its inherent high complexity and uncertainty.
Thus, explicit modeling, constraints, and assumptions about
the scene are introduced. Qi et al. [35] utilize depth maps
to reconstruct 3D point clouds. Gao et al. [7] use semantic
maps to enforce layout consistency. FVS [45] needs seman-
tic segmentation and instance segmentation to decompose
a scene into background and foreground identities. Bei et
al. [4] and Lee et al. [15] also require semantic maps.

Although the performance of video prediction has been
gradually improved, the generalization ability of these ap-
proaches is arguably reduced. It is hard to apply these
methods to data without these extra annotations. More-
over, these methods may suffer from performance degra-
dation when the test data is from a different domain than
the train data. For example, it is hard to apply a model
trained on robot scenarios to driving scenes because the mo-
tion in these two domains is quite different. Thus, we pro-
pose an optimization-based video prediction method, which
can produce state-of-the-art results without external training
(thus no domain gap).

2.2. Video Frame Interpolation

Contrary to the challenges of video prediction problems,
VFI has gained great success recently, which motivates our
model design. VFI aims to interpolate intermediate frames
between successive input frames. There are three cate-
gories of algorithms: kernel-based [2,3,29,30], phase-based
[24, 25], and motion-based [2, 3, 10, 13, 19, 21, 27, 28, 32,
33]. These motion-based methods use bi-directional optical
flows to warp two consecutive frames forward and back-
ward to obtain an intermediate frame. Our method adopts a
motion-based framework. Super SloMo [13] linearly com-
bines bi-directional flows as an initial approximation of the
intermediate flows for further refinement. Park et al. [33]
conduct asymmetric bilateral motion estimation. Sim et
al. [37] first handle the VFI for 4K videos with large mo-
tion. RIFE [11] is a real-time interpolation algorithm that
estimates the intermediate flows in a coarse-to-fine fashion.
Different from the domain gap problem in video predic-
tion, there are much fewer domain constraints in VFI. These
methods do not require additional information, such as se-
mantic maps and depth maps, and can produce outstanding
interpolation performance even with complex motion. In-
spired by the success of VFI, we cast video prediction as an
optimization problem based on VFI.

2.3. Optimization-based Methods

Since learning-based methods suffer from the domain
gap between training data and test data, optimization-based
methods on test data are still competitive nowadays. Gatys

et al. [8] propose the first optimization-based method for
neural style transfer. Shaham et al. [36] optimize a gener-
ative model on a single image and can generate high qual-
ity and diverse samples from the image. Lei et al. [16, 17]
optimize a network to improve the temporal consistency.
Mildenhall et al. [26] optimize a fully-connected network
on a sparse set of input views from a scene for novel view
synthesis. These optimization-based methods inspire us to
propose a framework that not only tackles the domain gap
problem but also provides an on-the-fly control for users
during optimization.

3. Method
3.1. Problem Formulation

Let xt be the video frame at time step t. The input to our
framework includes two recent RGB frames xt−1 and xt.
Our goal is to predict the future frames {x̃t+1, x̃t+2, . . .}.
We adopt a pretrained video interpolation network [11] de-
noted as G. We will focus on predicting the next frame
x̃t+1 first as we can predict future frames one by one se-
quentially. During the optimization process, the parameters
of G are unchanged. Our primary objective is

x̃∗
t+1 = argmin

x̃t+1

E(G(xt−1, x̃t+1), xt), (1)

where E is an objective function that measures image sim-
ilarity. Here we utilize a VFI network G to constrain the
relationship among xt−1, x̃t+1, and xt.

To ease the optimization process, we choose to optimize
optical flow f̃t+1→t between the predicted frame x̃t+1 and
the last observed frame xt instead of directly optimize x̃t+1.
x̃t+1 is computed using backward warping [12]:

x̃t+1 = warp(xt, f̃t+1→t). (2)

Then Eq. 1 can be rewritten as

f̃∗
t+1→t = argmin

f̃t+1→t

E(G(xt−1, warp(xt, f̃t+1→t)), xt). (3)

Flow initialization. To ease the optimization of Eq. 3, it
is a good practice to start with a flow f̃t+1→t that produces
an approximate motion. Therefore, we initialize it utilizing
the negative flow of ft→t−1:

f̃t+1→t = δ(−ft→t−1). (4)

We first compute −ft→t−1 as a rough approximation of
ft−>t+1. Then we initialize f̃t+1→t as the inversion of
−ft→t−1. δ represents the operation similar to the flow re-
versal layer [46] to convert a forward flow to a backward
flow (details in the supplement).

However, directly optimizing Eq. 3 is still difficult, be-
cause the constraint towards f̃t+1→t is indirect, and the op-
timization process is difficult to converge.
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3.2. Video Frame Interpolation Network

Thus, we propose to utilize the intermediate results of
network G. Given xt−1 and x̃t+1 as input, G generates op-
tical flows of two directions fG

t→t−1, fG
t→t+1, and a mask

mG. The superscript G denotes that it is the output of net-
work G. The video interpolation network warps xt−1 and
x̃t+1 towards time step t:

IGt−1 = warp(xt−1, f
G
t→t−1), (5)

IGt+1 = warp(x̃t+1, f
G
t→t+1), (6)

IGt = IGt−1 ×mG + IGt+1 × (1−mG), (7)

where IGt−1 is the intermediate interpolation frame by warp-
ing xt−1 using fG

t→t−1. IGt+1 is the intermediate interpola-
tion frame by warping x̃t+1 using fG

t→t+1. The final inter-
polation result is a weighted sum of IGt−1 and IGt−1.

We utilize IGt+1 instead of IGt since IGt+1 has a closer rela-
tion with x̃t+1 and can dismiss the effect of mG. We employ
a L1 distance between IGt+1 and xt:

Limg =
∥∥IGt+1 − xt

∥∥
1
. (8)

We also argue that there is a forward-backward consistency
relationship between fG

t→t+1 and f̃t+1→t. This constraint
means that after the forward and backward propagation, the
pixels should go back to the original locations:

Lcons =
∑
p

∥∥∥∆f̃t+1→t(p)
∥∥∥
1
, (9)

where ∆f̃t+1→t(p) is the discrepancy obtained from for-
ward and backward flow check at pixel location p:

∆f̃t+1→t(p) = p−
(
p′ + fG

t→t+1(p
′)
)
, (10)

p′ = p+ f̃t+1→t(p). (11)

Our overall objective function is Ltotal = ω1Limg +
ω2Lcons, where ω1 and ω2 are the loss weights.

3.3. Flow Inpainting

There always exist occlusion areas in optical flow:
some pixels do not have corresponding pixels in successive
frames. The estimated optical flow in occlusion areas is un-
reliable. Thus, we set a threshold α to mask out these areas,
and using flow inpainting to fill in the holes:

ϕ(p) =

{
1 if

∥∥∥∆f̃t+1→t(p)
∥∥∥
1
> α,

0 otherwise.
(12)

If ϕ(p) is 1, its optical flow is treated unreliable, and is in-
painted by a linear combination of neighboring valid flow
values, whose weights are inversely proportional to the dis-
tance between the invalid pixel and the valid pixels.

External learning methods

External training Semantic Instance Depth

PredNet [22] ✓ × × ×
MCNET [42] ✓ × × ×
DVF [20] ✓ × × ×
Vid2vid [43] ✓ ✓ × ×
Qi et al. [35] ✓ ✓ × ✓
Seg2vid [31] ✓ ✓ × ×
FVS [45] ✓ ✓ ✓ ×
HVP [15] ✓ ✓ × ×
SADM [4] ✓ ✓ × ×

Optimization methods
Ours × × × ×

Table 1. Comparison with other video prediction methods in terms
of methods’ requirements.

We try to use adaptive weights like Softmax Splat-
ting [28] to resolve the occlusions and find it unsuitable for
our framework. Detailed analysis is described in the sup-
plement.

3.4. Implementation

Multi-frame prediction. For multi-frame prediction, we
choose to optimize the next frame recurrently. We try to set
the optimization target as multiple optical flows and opti-
mize multiple future frames together. The result turns out
recurrently optimizing the next frame is more stable.

The input frame length for all datasets is set to 2. The hy-
perparameters ω1, ω2, α are set to 1.0, 3.0, 1.5 empirically.
We adopt RAFT [40] to estimate optical flow used for op-
timization target initialization. The Adam optimizer [14] is
used with a learning rate of 0.1 for 3000 iterations for each
future frame. We adopt the VFI method RIFE [11], which is
pretrained only on Vimeo90K [47], for all the experiments.
During the process of optimization, the network weight of
RIFE [11] is fixed.

4. Experiments
We compare our method with state-of-the-art methods

as shown in Table 1 in terms of methods’ requirements.
Due to the complexity of future video prediction, many re-
cent methods add some extra assumptions for video predic-
tion, such as semantic maps [4, 15, 31, 35, 43, 45], instance
maps [45], and depth maps [35]. These assumptions may
improve prediction performance but vastly decrease their
generalization capability. Furthermore, these methods de-
mand a training dataset to train a neural network. However,
our method can avoid these restrictions by casting the video
prediction problem as optimization. We do not require ex-
ternal training and do not have any assumptions about the
data. Our method is very general and outperforms previous
external RGB-based methods and methods using additional
assumptions [31, 43, 45]. Statistical analysis for long-term
prediction and more visual comparisons are provided in the
supplement.
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Cityscapes KITTI

MS-SSIM (×1e−2)↑ LPIPS (×1e−2)↓ MS-SSIM (×1e−2)↑ LPIPS (×1e−2)↓
Input t+1 t+3 t+5 t+1 t+3 t+5 t+1 t+3 t+5 t+1 t+3 t+5

External learning methods

PredNet [22] RGB 84.03 79.25 75.21 25.99 29.99 36.03 56.26 51.47 47.56 55.35 58.66 62.95
MCNET [42] RGB 89.69 78.07 70.58 18.88 31.34 37.34 75.35 63.52 55.48 24.05 31.71 37.39

DVF [20] RGB 83.85 76.23 71.11 17.37 24.05 28.79 53.93 46.99 42.62 32.47 37.43 41.59
Vid2vid [43] RGB+S. 88.16 80.55 75.13 10.58 15.92 20.14 N/A N/A N/A N/A N/A N/A
Seg2vid [31] RGB+S. 88.32 N/A 61.63 9.69 N/A 25.99 N/A N/A N/A N/A N/A N/A

FVS [45] RGB+S.+I. 89.10 81.13 75.68 8.50 12.98 16.50 79.28 67.65 60.77 18.48 24.61 30.49
Optimization methods

Ours No external training 94.54 86.89 80.40 6.46 12.50 17.83 82.71 69.50 61.09 12.34 20.29 26.35

Table 2. Comparison with state-of-the-art methods on the Cityscapes and KITTI datasets. S. and I. denote that the method requires semantic
maps or instance maps as input. Our method can outperform previous video prediction methods by a large margin.

Figure 3. Multi-frame prediction comparison on KITTI. As the pink boxes show, DVF [20] fails to separate the motion of the blue car from
the background and produces a “zooming-in” effect, which is the major motion exhibited in the dataset, caused by the forward movement
of the running car. FVS [45] wrongly predicts the motion of the blue car at t+ 3 and t+ 5, resulting in incorrect frame prediction results.
Our model can correctly capture the motion of the blue car without external training.

4.1. Evaluation on Driving Datasets

We first evaluate our approach and relevant baselines on
driving datasets, where semantic information is available,
because some baselines require additional semantic maps.

Datasets. Cityscapes [5] and KITTI datasets [9] contain
driving sequences. Our evaluation setting follows [45].

Baselines. All baselines are trained on the corresponding
training set in Cityscapes and KITTI. We categorize base-
lines into two types. One type is the methods that take only
RGB frames as input, such as PredNet [22], MCNet [42],
and DVF [20]. Another type is the methods that require
some additional information, such as semantic maps, in-
stance maps, including Vid2vid [43], Seg2vid [31], and
FVS [45]. However, these assumptions restrict these meth-
ods to be only applicable when this additional context is ac-

cessible, degrading their potential generalization ability. We
use Multi-scale Structural Similarity Index Measure (MS-
SSIM) [44] and LPIPS [48] as evaluation metrics. Higher
MS-SSIM and lower LPIPS indicate better performance.

Quantitative results. Although our method does not
use the training set in Cityscapes and KITTI, our method
can still produce outstanding results. As shown in Ta-
ble 2, our method can outperform RGB-based methods
by a large margin in both short-term and long-term video
prediction. Our method improves DVF [20] by 12.75%,
13.98%, 13.06% in MS-SSIM, 62.81%, 48.02%, 38.07%
in of LPIPS on the t+1, t+3, t+5 predictions. Moreover,
compared with the methods utilizing semantic or instance
segmentation, our method can still outperform FVS [45]
by 6.11%, 7.09%, 6.24% in MS-SSIM on Cityscapes, and
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DAVIS Middlebury Vimeo90K

MS-SSIM (×1e−2)↑ LPIPS (×1e−2)↓ MS-SSIM (×1e−2)↑ LPIPS (×1e−2)↓ MS-SSIM (×1e−2)↑ LPIPS (×1e−2)↓
t+1 t+3 t+1 t+3 t+1 t+3 t+1 t+3 t+1 t+1

External learning methods

DVF [20] 68.61 55.47 23.23 34.22 83.98 65.54 13.57 25.70 92.11 7.73
DYAN [18] 78.96 70.41 13.09 21.43 92.96 83.91 7.98 15.03 N/A N/A

Optimization methods
Ours 83.26 73.85 11.40 18.21 94.49 87.96 6.07 10.82 96.75 3.59

Table 3. Evaluation on diverse datasets. Comparison with state-of-the-art methods on DAVIS, Middlebury, and Vimeo90K.

GT DVF [20] DYAN [18] Ours

Figure 4. Visual comparison on DAVIS and Middlebury datasets.

Ground Truth DVF [20] Ours

t+ 1 t+ 1 t+ 3 t+ 1 t+ 3

Figure 5. Multi-frame prediction on Vimeo90K. Since Vimeo90K contains triplets and we use two frames as input, there is no ground-truth
corresponding to t+ 3.

33.21%, 17.55%, 13.58% in LPIPS on KITTI, for the t+1,
t+ 3, t+ 5 predictions.

The quantitative results demonstrate that our method
without external training on the training set of Cityscapes
and KITTI, can achieve better performance in both short-

term and long-term video prediction. This is because our
method is based on the powerful constraints from VFI: re-
cent VFI models can produce superior interpolation results
that can be arguably treated as ground truth. While other
methods use handcrafted loss functions, these methods may
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Input Ours Input Ours
Figure 6. The next frame prediction performance on diverse data. The left image is the last observed frame, and we use red arrows to
indicate the motion from the input frames. The right image is the predicted next frame by our method.

overfit to the major motion exhibited in the training set, the
”zooming-in” effect, which is caused by the moving of the
forwarding car, instead of learning the real motion.

Qualitative Results. In Fig. 3, our method is compared
to recent video prediction methods, DVF [20] (RGB) and
FVS [45] (RGB + semantic + instance). DVF [20] tends to
be dominated by “zooming-in” motion without predicting
the true motion, since the driving datasets are captured by
a forward moving camera. FVS [45] uses a handcrafted 2D
affine transformation to approximate the motion of moving
cars. However, complex motion, including nonrigid defor-
mation and 3D rotation, can not be captured by 2D affine
transformation. Moreover, DVF and FVS rely on semantic
and instance segmentation, and their performance degrades
when these assumptions do not hold. Visual comparisons
on Cityscapes are presented in the supplement.

4.2. Evaluation on Diverse Datasets

Since our optimization framework does not need external
training, our method can be generalized to any video at any
resolution. Meanwhile, previous external methods trained
on dataset A may have performance degradation when ap-
plied to dataset B, caused by the domain gap between A and
B. To demonstrate the generality of our method, we conduct
a cross-dataset evaluation on diverse datasets.

Datasets. We evaluate our methods on multiple
datasets, including DAVIS [34], Middlebury-Other [1], and
Vimeo90K [47] datasets. DAVIS [34]: there are 30 se-

Components SSIM↑ PSNR↑ LPIPS↓
Zero 0.7719 23.79 0.1230
Noise 0.7669 23.64 0.1228

Without Limg 0.8939 28.86 0.0660
Without Lcons 0.8732 28.43 0.1221
Limg with MSE 0.8877 28.97 0.1232
With Linterp 0.8963 28.87 0.0693
Long-term Limg 0.6978 21.75 0.1657

W/o flow inpainting 0.8882 28.94 0.1139

Full Model 0.8975 29.10 0.0646

Table 4. The ablation study.

quences in the validation set with resolutions around 854×
480 . Middlebury [1]: there are 10 videos with resolutions
around 640× 480. Vimeo90K [47]: there are 3782 triplets
in the test set with a resolution of 448× 256. By taking one
clip every ten clips, we form the test set.

Baselines. We compare our method with two latest ex-
ternal methods, DVF [20] and DYAN [18], which take only
RGB frames as input, since they can be applied to these
datasets. Other methods that require additional assumptions
cannot be compared because their assumptions do not hold.
We test these two models on these datasets using their pre-
trained model on UCF101 [38].

Quantitative results. As exhibited in Table 3, our
method outperforms DYAN [18] by 12.90%, 15.0% in
DAVIS, and by 23.97%, 28.00% on Middlebury in LPIPS
for t + 1, t + 3 predictions. Note that our method is still
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robust in long-term prediction. On the Vimeo90K dataset,
our method outperforms DVF [20] by 53.56% in LPIPS for
next-frame prediction. Although these two baselines may
perform well on UCF-101, there is a domain gap problem
between UCF-101 and these test videos. This domain gap
phenomenon commonly exists in video prediction tasks, so
most video prediction methods [4,18,20,22,31,42,45] usu-
ally train a separate model for each dataset and even employ
different assumptions for each dataset. Differently, the do-
main gap in the VFI task does not appear to be an issue.
VFI methods [11, 33] can use one dataset for training and
can produce excellent results on various datasets. With the
powerful constraints provided by VFI, our method does not
have the domain gap problem (no external training): each
sequence is independently optimized by employing the FVI
network as a constraint.

Qualitative results. As shown in Fig. 4 and Fig. 5, our
method yields better prediction results than baselines. The
baselines produce distortion artifacts around object bound-
ary or fail at prediction when motion is complicated. Mean-
while, our method can robustly predict future frames. As
the Vimeo90K dataset only provides three frames, we take
the first two frames as input for future frame prediction
(there is only ground truth for the t + 1 prediction). Our
method can produce high-quality prediction results in the
long term, as shown in Fig. 5. The intricate details, such as
the hair of the woman, remain clear in our results.

To demonstrate the generality of our method, we collect
some real videos from YouTube, such as the movie clips
as shown in Fig. 6. We also present some visual results on
the BAIR Pushing [6] and Penn Action [49] datasets. Our
method can produce strong results on diverse data.

4.3. Ablation Study

We conduct an ablation study to demonstrate the impor-
tance of each component, as shown in Table 4. Our ablation
study is conducted on Cityscapes. We use the performance
of the next-frame prediction to evaluate different compo-
nents. Visual comparisons are presented in the supplement.

Initialization. If we set the optimization target as the
prediction frame, then the optimization cannot converge.
Thus, we choose to optimize optical flow, which eases the
optimization process since pixels can be copied from ob-
served frames. If we initialize optical flow as zeros or Gaus-
sian noise, then our performance becomes worse. If we
initialize the optical flow as the copy of ft→t−1, then the
performance is similar to our full model. This demonstrates
that good initialization helps the optimization to converge.

Loss functions. We conduct experiments with loss func-
tions with several variants. Without Limg: supervised only
by Lcons. Without Lcons: supervised only by Limg . Limg

with MSE: using MSE loss rather than L1 loss in Eq. 8.
With Linterp: use the interpolation result of VFI IGt rather

Figure 7. Our model with different optimization iterations.

than the intermediate output IGt+1 in Eq. 8. Long-term Limg:
setting the input frame length as 4 and add a long-term con-
straint between xt−3, x̃t+1 and xt−1. The results show that
the combination of Limg and Lcons performs best. Limg

provides a more direct constraint than Linterp. Long-term
Limg has performance degradation because when the mo-
tion is too large, the accuracy of VFI decreases .

Flow inpainting. If we remove the optical flow inpaint-
ing procedure, then our performance also drops because op-
tical flow inpainting effectively corrects invalid flow values.

Other pretrained VFI models. We also try utilizing Su-
per SloMo [13] as our VFI backbone and find this method
also works for our framework. For the next frame predic-
tion on Cityscapes, the MS-SSIM for Super SloMo [13]
and RIFE [11] is 0.9199 and 0.9454. Thus, we choose
RIFE [11] as our VFI backbone.

4.4. Convergence Analysis

As shown in Fig. 7, we conduct the convergence analysis
on Cityscapes with a resolution of 256 × 512 . In the first
400 iterations, the optimization converges fast. After 400 it-
erations, the prediction result gradually improves. The pre-
diction result is still slowly improving after 3000 iterations.

5. Conclusion
We propose the first video prediction optimization

method by casting the video prediction problem as a VFI
based optimization problem, which addresses the domain
gap issue in most video prediction methods. Our method
can outperform state-of-the-art methods and can be adapted
to any video at any resolution. Although our method re-
lieves domain gap problem and presents impressive perfor-
mance, optimizing every frame by our method costs more
time than other external learning-based methods. The com-
parison between our and other methods in terms of the
model size and inference time is presented in the supple-
ment. As we observe, most run time in our model is spent
on the gradient propagation inside the VFI network [11],
which inspires us to design a more efficient backbone for
acceleration in the future.
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