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Abstract

In this paper, we are concerned with enhancing the gen-
eralization capability of object detectors. And we consider
a realistic yet challenging scenario, namely Single-Domain
Generalized Object Detection (Single-DGOD), which aims
to learn an object detector that performs well on many
unseen target domains with only one source domain for
training. Towards Single-DGOD, it is important to extract
domain-invariant representations (DIR) containing intrin-
sical object characteristics, which is beneficial for improv-
ing the robustness for unseen domains. Thus, we present
a method, i.e., cyclic-disentangled self-distillation, to dis-
entangle DIR from domain-specific representations without
the supervision of domain-related annotations (e.g., domain
labels). Concretely, a cyclic-disentangled module is first
proposed to cyclically extract DIR from the input visual fea-
tures. Through the cyclic operation, the disentangled ability
can be promoted without the reliance on domain-related an-
notations. Then, taking the DIR as the teacher, we design
a self-distillation module to further enhance the generaliza-
tion ability. In the experiments, our method is evaluated in
urban-scene object detection. Experimental results of five
weather conditions show that our method obtains a signifi-
cant performance gain over baseline methods. Particularly,
for the night-sunny scene, our method outperforms base-
lines by 3%, which indicates that our method is instrumen-
tal in enhancing generalization ability. Data and code are
available at https://github.com/AmingWu/Single-DGOD.

1. Introduction
Recent years have witnessed the rapid development of

deep learning based object detection [2,6,37,43,45], which
assumes that the training and test data are from the same do-
main. However, in real applications, when object detectors
trained on source domain data are applied to unseen target
domains, these detectors usually suffer from poor general-
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Figure 1. Illustration of Single-Domain Generalized Object Detec-
tion (Single-DGOD) with the urban-scene detection dataset. The
dataset contains five domains with different weather conditions:
daytime-sunny, night-sunny, dusk-rainy, night-rainy, and daytime-
foggy. Single-DGOD aims to train a detector on one source do-
main dataset (e.g., the daytime-sunny scene) and generalize well
to multiple target domains. Extracting domain-invariant represen-
tations is beneficial for generalizing a detector to unseen domains.

ization, due to the domain-shift impact [8, 34].
To alleviate the domain-shift impact, existing researches

mainly focus on domain adaptation and domain generaliza-
tion. In general, domain adaptation [4, 11, 36, 46] aims to
align the data distribution from one annotated source do-
main to that from one target domain without annotations.
During training, the aligned methods often need to access
both source and target domain data, which results in these
methods can not well adapt to other unseen target domains.
Besides, when the target domain is a compound of multiple
different data distributions [27], the generalization ability of
the aligned methods tends to be weak, which attenuates the
performance of object detection.

Domain generalization (DG) [24, 25, 39, 40, 52] aims to
generalize a model to an unseen target domain by learning
from multiple source domains, which is considered to be
more challenging than domain adaptation. Generally, most
DG methods [1, 12, 23, 25] try to learn a shared represen-
tation across multiple source domains. However, the per-
formance of these methods highly depends on the number
of source domains [9, 53]. And in the real world, collect-
ing multiple source datasets is time-consuming and labor-
intensive, which limits the application of DG methods.
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Figure 2. For Single-DGOD, to improve the disentangled ability
without using domain-related annotations, we propose a cyclic-
disentangled module. For the forward direction, given feature map
Fb, two extractors EDIR and EDSR are designed to extract Fdi and
Fds. For the backward direction, we separately take Fdi and Fds

as the input of the module and perform re-disentanglement. It is
worth noting that during the forward and backward direction, the
parameters in EDIR and EDSR are shared.

To further explore improving the generalization ability
of object detectors, we propose a realistic yet challenging
task, namely Single-Domain Generalized Object Detection
(Single-DGOD). As shown in Fig. 1, given one source do-
main dataset for training, e.g., the daytime-sunny scene, the
goal of Single-DGOD is to well generalize an object de-
tector to multiple unseen target domains, e.g., the night-
sunny, dusk-rainy, night-rainy, and daytime-foggy scenes.
Since multiple source domains and domain-related annota-
tions (e.g., domain labels) are not accessible, existing DG
methods can not be directly utilized to tackle this task.

Recent studies [7, 14, 18] have shown that extracting
domain-invariant representations (DIR) containing intrinsi-
cal object characteristics is helpful for improving the gen-
eralization ability. To this end, many methods [31, 42, 44]
directly utilize the domain-related annotations as the super-
vision to disentangle DIR from domain-specific represen-
tations (DSR). However, when domain-related annotations
are not available, how to well extract DIR from the input
visual features remains under-explored. Thus, in this pa-
per, we mainly focus on disentangling DIR without using
domain-related annotations. And we propose a method, i.e.,
cyclic-disentangled self-distillation, for Single-DGOD.

Specifically, we first present a cyclic-disentangled mod-
ule to obtain DIR. As shown in Fig. 2, for the forward direc-
tion of the cycle, we separately design a DIR and DSR ex-
tractor to disentangle DIR and DSR from the feature maps
extracted by a backbone network, e.g., ResNet [17]. The
backward direction takes the disentangled DIR and DSR as
the input of the DIR and DSR extractors and performs re-
disentanglement. We assume that when DIR and DSR ex-
tractors own well disentangled ability, inputting Fdi (DIR)
to the DIR extractor should output more domain-invariant
information. And the output of inputting Fds (DSR) to the
DSR extractor should contain more domain-specific infor-
mation. We design a contrastive loss to attain this assump-
tion. Next, to further enhance the generalization ability,

we explore employing self-distillation [21, 50] to distill the
knowledge of the current detector. Concretely, the disentan-
gled DIR is taken as teacher representations. By narrowing
the distance between the DIR and the feature maps gener-
ated by middle layers of the backbone network, the feature
maps could be promoted to contain more domain-invariant
information, which is beneficial for improving generaliza-
tion ability and detection performance. In the experiments,
our method is evaluated on urban-scene object detection.
Extensive experiments on five scenes with different weather
conditions demonstrate the superiorities of our method.

The contributions are summarized as follows:
(1) To improve the generalization ability of object detec-

tors, we propose a realistic yet challenging task, i.e., Single-
Domain Generalized Object Detection (Single-DGOD),
which aims to generalize a detector to multiple unseen tar-
get domains with only one source domain for training.

(2) To tackle Single-DGOD, we employ a method of
cyclic-disentangled self-distillation to disentangle domain-
invariant representations without the reliance on domain-
related annotations (e.g., domain labels).

(3) We build a Diverse-Weather Dataset of urban-scene
object detection to verify our method, which consists of
five scenes with different weather conditions, i.e., daytime-
sunny, night-sunny, dusk-rainy, night-rainy, and daytime-
foggy. The significant performance gain over baseline
methods shows the effectiveness of the proposed method.

2. Related Work
Domain Adaptive Object Detection. To alleviate the

domain-shift impact, most existing methods [26, 28] try to
align the feature-level distributions between the source and
target domain. Particularly, Chen et al. [8] proposed to use
the adversarial mechanism [14] to align both feature- and
instance-level distributions. Based on this work, Saito et
al. [34] proposed to align the local and global feature dis-
tributions to improve the generalization ability of detectors.
Besides, some methods [3, 22] employed generative adver-
sarial networks [54] to translate the style of the source do-
main to that of the target domain, which directly reduces the
domain gap. Meanwhile, there exist some methods [4, 42]
that explore to extract instance-invariant features to enhance
the generalization ability. Though these methods have been
shown to be effective, during training, they usually require
to access both the source and target domain data. Therefore,
these methods can not be used to solve Single-DGOD.

Single Domain Generalization. Recently, a new task of
single domain generalization [38] is proposed, which aims
to generalize a model trained on one source domain to many
unseen target domains. Most existing methods employ data
augmentation and feature normalization to solve this task.
Particularly, Volpi et al. [38] and Qiao et al. [32] explored to
utilize the adversarial mechanism to solve this task, which
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Figure 3. Illustration of Cyclic-Disentangled Self-Distillation. ‘RPN’ and ‘FC’ separately indicate region proposal network and fully-
connected layers. L2 is the L2-norm operation. This method mainly consists of cyclic disentanglement and self-distillation. Through a
contrastive loss, cyclic disentanglement aims to disentangle DIR (Fdi) from DSR (Fds) without using domain-related annotations. Next,
taking Fdi as the teacher, self-distillation is employed to promote the generated representations (i.e., F1, F2, and F3) to contain much
domain-invariant information, which is beneficial for further improving the generalization ability.

is helpful for encouraging large domain transportation in
the input space. Wang et al. [41] explored to improve the
generalization by alternating diverse sample generation and
discriminative style-invariant representation learning. Fan
et al. [13] proposed a generic normalization approach, i.e.,
adaptive standardization and rescaling normalization, to im-
prove the generalization. Though these methods are effec-
tive for image classification, as object detection contains lo-
calization and classification, these methods can not be di-
rectly applied to Single-DGOD.

Self-Distillation. The purpose of self-distillation mech-
anism [21, 47, 49] is to train an effective student network
by utilizing its own knowledge without a teacher network.
Data augmentation based approach and auxiliary network
based approach are two commonly used operations to per-
form self-distillation [20]. Specifically, the data augmenta-
tion based self-distillation [47] introduces a prediction con-
sistency loss between the original data and its augmented
data. The auxiliary network based method [21] employs
additional branches in the middle layer of the model. And
the additional branches are used to make similar outputs as
the predictions of the network. Though these methods have
been shown to be effective, they are rarely used to improve
the generalization ability of object detectors. In this paper,
based on the disentangled DIR, we utilize self-distillation to
further enhance the generalization ability, which has been
demonstrated to be effective in the experiments.

3. Cyclic-Disentangled Self-Distillation
As shown in Fig. 3, to tackle Single-DGOD, we propose

a method of cyclic-disentangled self-distillation to disen-
tangle DIR for object detection, which is conductive to im-
proving the generalization ability for unseen domains.

3.1. Cyclic Disentanglement

Recently, many methods [31, 42, 44] try to use domain-
related annotations, e.g., domain labels, to disentangle DIR,
which could not be used for Single-DGOD as there is only
one source domain for training. To disentangle DIR without
the reliance on domain-related annotations, we propose a
module of cyclic disentanglement.

Concretely, we adopt widely used Faster R-CNN [33] as
the base detection model. Firstly, a backbone network, e.g.,
ResNet101 [17], is divided into three sections (i.e., E1, E2,
and E3) according to its depth and original structure, whose
goal is to perform self-distillation. Given an input image,
we useE1,E2, andE3 to obtain feature map Fb ∈ Rw×h×c,
wherew, h, and c respectively denote width, height, and the
number of channels. Then, two extractors, i.e., EDIR and
EDSR, are designed to separately extract domain-invariant
features Fdi ∈ Rw×h×c and domain-specific features Fds ∈
Rw×h×c. The processes are shown as follows:

Fdi = EDIR(Fb), Fds = EDSR(Fb), (1)

where EDIR and EDSR consist of multiple convolutional
layers. The RPN module is performed on Fdi to extract a set
of object proposals O. After the Roi-Alignment operation,
the output is P ∈ Rn×s×s×c, where n and s separately
indicate the number of proposals and the size of proposals.
Next, as shown in the right part of Fig. 2, in the backward
direction, EDIR andEDSR separately take both Fdi and Fds

as the input to perform re-disentanglement.

Fi2i = EDIR(Fdi), Fi2s = EDSR(Fdi),

Fs2i = EDIR(Fds), Fs2s = EDSR(Fds).
(2)

We assume that when Fdi contains abundant domain-
invariant information, compared with Fi2s, Fi2i should in-
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volve more domain-invariant information that is related to
Fdi. Meanwhile, when Fds contains sufficient domain-
specific information, compared with the output Fs2i, Fs2s

should involve more domain-specific information that is re-
lated to Fds. We define a global- and instance-level con-
trastive loss [5, 15] to attain the assumption. Specifically,
let sim(a, b) denote the average of the cosine similarity be-
tween all corresponding elements of feature map a and b.
The global-level contrastive loss is calculated as follows:

Lgc =− (log
exp(sim(Fdi, Fi2i)/τ)∑1
j=0 exp(sim(Fdi, G[j])/τ)

+ log
exp(sim(Fds, Fs2s)/τ)∑1
j=0 exp(sim(Fds, D[j])/τ)

),

(3)

where G = [Fi2i, Fi2s], D = [Fs2s, Fs2i]. τ is a hyper-
parameter. In the experiments, τ is set to 1.0. By opti-
mizing Lgc, it is helpful for enlarging the gap between Fi2i

and Fi2s, between Fs2i and Fs2s, and between Fdi and Fds.
Meanwhile, this loss is beneficial for promoting Fdi and Fds

to separately contain domain-invariant and domain-specific
information, which improves the disentangled ability.

Next, to further facilitate EDIR to own the ability of
disentangling DIR, we define an instance-level contrastive
loss. Based on the object proposals O from Fdi, the Roi-
Alignment operation is separately performed on Fi2i and
Fi2s to obtain the output Pi2i ∈ Rn×s×s×c and Pi2s ∈
Rn×s×s×c. This loss is computed as follows:

Lic = − log
exp(sim(P, Pi2i)/τ)∑1

j=0 exp(sim(P,Q[j])/τ)
, (4)

where Q = [Pi2i, Pi2s]. By minimizing Lic, in addition to
enlarging the gap between the instance-level features from
Fi2i and Fi2s, it is beneficial for promoting the features P
extracted from Fdi to involve domain-invariant information,
which further enhances the generalization ability and im-
proves detection accuracy. Finally, the sum of the global-
level and instance-level contrastive loss is taken as the train-
ing loss of this module, i.e., Lcd = Lgc + Lic.

3.2. DIR-based Self-Distillation

By the cyclic-disentangled module, the disentangled Fdi

could be facilitated to involve more domain-invariant infor-
mation. Next, taking Fdi as the teacher representations, we
explore employing self-distillation mechanism to promote
the feature maps extracted by the backbone network to own
plentiful domain-invariant information, which further im-
proves the generalization ability of object detectors.

Given an input image, we respectively extract the feature
map Fe1 from E1, Fe2 from E2, and Fe3 from E3, where
the size and channel number of Fe1 and Fe2 are different
from Fdi. Instead, the size and channel number of Fe3 are

the same as Fdi. Then, we define three networks consisting
of multiple convolutional layers, i.e., T1, T2, and T3, to per-
form a transformation on Fe1, Fe2, and Fe3. The output is
F1 ∈ Rw×h×u, F2 ∈ Rw×h×v , and F3 ∈ Rw×h×c, where u
and v are the number of channels. Next, we respectively de-
fine a feature- and classification-level constraint to promote
the extracted feature maps to distill the knowledge from
Fdi. For the feature-level constraint, we separately employ
a convolutional layer Φ1 ∈ R1×1×u×c, Φ2 ∈ R1×1×v×c,
and Φ3 ∈ R1×1×c×c to project F1, F2, and F3 into the
teacher space. The constraint is calculated as follows:

Lfc = dist(Φ1(F1), Fdi) + dist(Φ2(F2), Fdi)

+ dist(Φ3(F3), Fdi),
(5)

where dist(·, ·) denotes a distance function, e.g., L2-norm.
By narrowing the distance, the teacher representation Fdi

could guide the representations extracted by the backbone
network to learn domain-invariant information, which en-
hances the generalization ability of object detectors.

For the classification-level constraint, as shown in Fig. 3,
based on the proposals O, the Roi-Alignment operation is
separately performed on F1, F2, and F3 to obtain the output
P1 ∈ Rn×s×s×u, P2 ∈ Rn×s×s×v , and P3 ∈ Rn×s×s×c.
Then, we define three classifiers, which take P1, P2, and P3

as the input and output the predicted probability y1, y2, and
y3. Next, the Kullback-Leibler (KL) divergence is used to
make the predicted probability approximate the classifica-
tion probability y that is computed based on P from Fdi.

Lcc = KL(y, y1) +KL(y, y2) +KL(y, y3). (6)

Minimizing the loss Lcc could further promote F1, F2,
and F3 to distill the category-related knowledge from Fdi,
which is helpful for improving the detection accuracy. Fi-
nally, the sum of the feature-level and classification-level
constraint is taken as the training loss of the self-distillation
module, i.e., Lsd = Lfc + Lcc.

During training, our method is trained end-to-end. The
joint training loss is defined as follows:

L = Lrpn + Lcls + Lloc + λ(Lcd + Lsd), (7)

where Lrpn is the RPN loss to distinguish foreground from
background and refine bounding-box anchors. Lcls and
Lloc separately denote the classification loss and bounding-
box regression loss. λ is a hyper-parameter, which is set
to 0.01 in the experiments. During inference, we take the
predictions calculated based on Fdi as the detection results.

3.3. Further Discussion

In this section, we will further discuss the fundamental
issue that our method can improve the generalization ability.

For Single-DGOD, disentangling DIR is a feasible solu-
tion to generalize an object detector trained on one source
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domain to multiple unseen target domains. However, most
existing methods [31, 42, 44] try to utilize domain-related
annotations (e.g., domain labels) to attain disentanglement.
When there is no domain-related annotations available, how
to extract DIR remains under-explored.

To this end, we present a cyclic-disentangled module to
extract DIR. By the cyclic operation, the gap between the
domain-invariant features (e.g., Fi2i and Fs2i) and domain-
specific features (e.g., Fi2s and Fs2s) could be enlarged,
which promotes EDIR and EDSR to own the disentangled
ability. Meanwhile, during the cyclic processes, since the
parameters in EDIR and EDSR are shared, the two extrac-
tors could facilitate the disentangled Fdi and Fds to keep
separable. Next, by minimizing the two contrastive losses
(Eq. (3) and (4)), the relevance between Fdi and Fi2i and
between Fds and Fs2s could be strengthened, which is help-
ful for guiding Fdi and Fds to respectively involve domain-
invariant and domain-specific information. Finally, taking
Fdi as the teacher representation, using self-distillation fur-
ther improves the generalization ability.

4. Experiments
To evaluate the generalization capability of our method,

we conduct experiments on the urban-scene object detection
with five weather conditions. Data and code are available at
https://github.com/AmingWu/Single-DGOD.

4.1. Experimental Setup

In the real scenario, e.g., autonomous driving, the data
in the daytime-sunny scene is easily collected and labeled.
Thus, we train our model on the daytime-sunny dataset and
show its performance on other datasets (e.g., night-sunny,
dusk-rainy, night-rainy, and daytime-foggy) to measure the
generalization ability on unseen domains. For all the quanti-
tative experiments, mean average precisions (mAP) is used
as the evaluation metric.

Datasets. Based on multiple existing datasets, we build
an urban-scene detection dataset (as shown in Fig. 1) that
consists of five different weather conditions. Particularly,
for the daytime-sunny scene, we select 27,708 daytime-
sunny images from the Barkeley Deep Drive 100k (BDD-
100k) dataset [48] that contains 100,000 driving videos.
And 19,395 images are chosen for training. 8,313 images
are utilized for testing. The model trained on the daytime-
sunny scene is used to perform evaluation on other unseen
domains. For the night-sunny scene, we also select 26,158
images from the BDD-100k dataset. For the dusk-rainy
and night-rainy scenes, we utilize the recently proposed
dataset [44], which renders the rainy images that are from
the BDD-100k dataset to enlarge the gap between the source
and target domain. The dusk-rainy and night-rainy scenes
separately include 3,501 and 2,494 images. Finally, for the
daytime-foggy scene, we collect foggy images from Fog-

Method bus bike car motor person rider truck mAP
Faster R-CNN 63.4 42.9 53.4 49.4 39.8 48.1 60.8 51.1
SW [30] 62.3 42.9 53.3 49.9 39.2 46.2 60.6 50.6
IBN-Net [29] 63.6 40.7 53.2 45.9 38.6 45.3 60.7 49.7
IterNorm [19] 58.4 34.2 42.4 44.1 31.6 40.8 55.5 43.9
ISW [9] 62.9 44.6 53.5 49.2 39.9 48.3 60.9 51.3

Ours 68.8 50.9 53.9 56.2 41.8 52.4 68.7 56.1

Table 1. Results (%) on the daytime-sunny scene. Here, ‘motor’
indicates the motorcycle category.

gyCityscapes [35] and Adverse-Weather [16] datasets. This
scene contains 3,775 images. We can see the built dataset
includes multiple challenging scenes, which is helpful for
evaluating the generalization ability of object detectors. Be-
sides, the BDD-100k and FoggyCityscapes datasets sepa-
rately contain ten and eight categories. Here, we choose
seven commonly used categories, which do not include the
category of light, sign, and train.

Implementation Details. We use Faster R-CNN [33] as
the base detector. RseNet101 [17] is taken as the backbone.
We use the weights pre-trained on ImageNet [10] in initial-
ization. We separately design a network consisting of three
convolutional layers as the DIR extractor EDIR and DSR
extractor EDSR. Meanwhile, T1, T2, and T3 all consist of
three convolutional layers with BatchNorm operation. All
parameters in these networks are randomly initialized. Dur-
ing training, our model is trained using SGD optimizer with
a momentum of 0.9 and a weight decay of 0.0001. The
learning rate is set to 0.001. And the batch size is set to 4.
More details can be seen in the supplementary material.

4.2. Performance Analysis of Single-DGOD

We compare our method with four baseline methods, i.e.,
SW [30], IBN-Net [29], IterNorm [19], and ISW [9]. These
approaches all use the idea of feature normalization to im-
prove the generalization ability of models. In order to com-
pare with these normalization methods fairly, we directly
plug these methods into Faster R-CNN [33].

Results on Daytime-Sunny Scene. Table 1 shows the
results of the daytime-sunny scene. We can see that our
method outperforms the compared methods significantly.
This shows that when the training and test sets are from
the same domain, the proposed method could improve the
performance of the current domain. Besides, we can also
see that the feature normalization methods [9, 19, 29, 30]
do not significantly improve the performance of Faster R-
CNN [33]. The reason may be that the discrimination abil-
ity is affected by feature normalization, which weakens the
detection performance. This further shows that compared
with feature normalization methods, our method is benefi-
cial for enhancing the discrimination ability.

Results on Night-Sunny Scene. Table 2 shows the de-
tection results on the night-sunny scene. Here, we directly
use the model trained on the daytime-sunny scene to per-
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Figure 4. Detection results on the night-sunny scene. The first and second rows separately show the results from Faster R-CNN [33] and
our method. We can see that compared with Faster R-CNN [33], our method could detect the objects accurately, e.g., the car, person, bus.

Method bus bike car motor person rider truck mAP
Faster R-CNN 37.7 30.6 49.5 15.4 31.5 28.6 40.8 33.5
SW [30] 38.7 29.2 49.8 16.6 31.5 28.0 40.2 33.4
IBN-Net [29] 37.8 27.3 49.6 15.1 29.2 27.1 38.9 32.1
IterNorm [19] 38.5 23.5 38.9 15.8 26.6 25.9 38.1 29.6
ISW [9] 38.5 28.5 49.6 15.4 31.9 27.5 41.3 33.2

Ours 40.6 35.1 50.7 19.7 34.7 32.1 43.4 36.6

Table 2. Results (%) on the night-sunny scene.

form the evaluation. We can see that when the training and
test data are from different domains, the model’s perfor-
mance degrades significantly. This indicates that improving
the generalization capability of object detectors is meaning-
ful. Compared with Faster R-CNN [33], our method is 3.1%
higher than its performance, which indicates the proposed
cyclic disentanglement is capable of disentangling DIR. By
taking the DIR as the teacher, self-distillation further im-
proves the generalization ability. Besides, we can see that
feature normalization methods [9, 19, 29, 30] do not lead to
the performance improvement. In addition to the factor of
the weak discrimination, the large gap between the daytime-
sunny and night-sunny scenes may be another reason that
weakens the performance. This further shows that Single-
DGOD is filled with challenges. Enhancing the generaliza-
tion ability is an effective solution.

In Fig. 4, we show some detection examples in the night-
sunny scene. Due to the impact of low light, the detections
in the night scene are very challenging. Compared with the
results from Faster R-CNN [33], our method could detect
the objects in the night images accurately, which further in-
dicates the effectiveness of our method.

Results on Dusk-Rainy and Night-Rainy Scenes. Ta-
ble 3 and 4 separately show the detection performance on
the dusk-rainy and night-rainy scenes. We can see that when
the scenario is full of challenges, e.g., the rainy weather and
low light, the detection performance degrades significantly.
This shows that the adverse weather enlarges the gap be-
tween the training and test set, which weakens the detec-

Method bus bike car motor person rider truck mAP
Faster R-CNN 36.8 15.8 50.1 12.8 18.9 12.4 39.5 26.6
SW [30] 35.2 16.7 50.1 10.4 20.1 13.0 38.8 26.3
IBN-Net [29] 37.0 14.8 50.3 11.4 17.3 13.3 38.4 26.1
IterNorm [19] 32.9 14.1 38.9 11.0 15.5 11.6 35.7 22.8
ISW [9] 34.7 16.0 50.0 11.1 17.8 12.6 38.8 25.9

Ours 37.1 19.6 50.9 13.4 19.7 16.3 40.7 28.2

Table 3. Results (%) on the dusk-rainy scene.

tion performance. Compared with Faster R-CNN [33], our
method is 1.6% and 2.1% higher than its performance. This
indicates that extracting domain-invariant features is indeed
helpful for alleviating the domain-shift impact on object de-
tection. Besides, the performance of our method still out-
performs the feature normalization methods [9, 19, 29, 30],
which further demonstrates that our method is beneficial for
enhancing the generalization capability of object detectors.

Results on Daytime-Foggy Scene. Table 5 shows the
results of the daytime-foggy scenario. Due to the foggy im-
pact, the images become very obscure, which affects the ac-
curacy of object localization and classification severely. We
can see that our method outperforms the compared meth-
ods [9, 19, 29, 30, 33] significantly. This demonstrates that
our method could well extract domain-invariant features
that lead to the performance improvement. Fig. 5 shows the
detection results. We can see that our method accurately de-
tects objects in the foggy images, which demonstrates that
our method owns the generalization ability.

4.3. Ablation Analysis

In this section, we use the model trained on the daytime-
sunny scene to make an ablation analysis of our method.
Here, the daytime-sunny and night-sunny scenes are used
to make evaluations. Table 6 shows the results. We can see
that the performance of only using the forward step to per-
form disentanglement (as shown in the left part of Fig. 2)
is very weak. This indicates that when there is no domain-
related annotations available, only using the forward step
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Figure 5. Detection results on the daytime-foggy scene. Compared with the results from Faster R-CNN [33] (as shown in the first row),
our method (as shown in the second row) accurately detects objects in the foggy images, e.g., the car, person, truck.

Method bus bike car motor person rider truck mAP
Faster R-CNN 22.6 11.5 27.7 0.4 10.0 10.5 19.0 14.5
SW [30] 22.3 7.8 27.6 0.2 10.3 10.0 17.7 13.7
IBN-Net [29] 24.6 10.0 28.4 0.9 8.3 9.8 18.1 14.3
IterNorm [19] 21.4 6.7 22.0 0.9 9.1 10.6 17.6 12.6
ISW [9] 22.5 11.4 26.9 0.4 9.9 9.8 17.5 14.1

Ours 24.4 11.6 29.5 9.8 10.5 11.4 19.2 16.6

Table 4. Results (%) on the night-rainy scene.

does not disentangle domain-invariant features. Meanwhile,
we can also see that only using the self-distillation mecha-
nism without domain-invariant features does not obtain bet-
ter detection results than Faster R-CNN [33]. This indi-
cates that for self-distillation, taking the domain-invariant
features as the teacher representations is beneficial for im-
proving the generalization ability of object detectors. Fi-
nally, we can see that utilizing the cyclic disentangled op-
eration improves the detection performance, which shows
that employing the cyclic operation and contrastive losses
(as shown in Eq. (3) and (4)) is indeed helpful for extracting
domain-invariant features. Next, with the help of the self-
distillation mechanism, the model’s generalization ability
could be further enhanced, which leads to the performance
improvement for Single-DGOD.

Analysis of contrastive losses in Eq. (3) and Eq. (4).
To disentangle domain-invariant features without the re-
liance on domain-related annotations, we propose a cyclic-
disentangled module and design two contrastive losses to
enhance the disentangled ability. Particularly,Lgc in Eq. (3)
andLic in Eq. (4) separately aim to enlarge the gap between
the domain-invariant and domain-specific features from the
global-level and instance-level perspectives. Here, we make
an ablation analysis. Based on the night-sunny scene, for
the case of only using Lgc and self-distillation, the perfor-
mance is 34.8%. Meanwhile, the performance of only using
Lic and self-distillation is 35.2%. This shows that utilizing
the two contrastive losses is helpful for improving disentan-
glement. And combining with self-distillation could further

Method bus bike car motor person rider truck mAP
Faster R-CNN 30.7 26.7 49.7 26.2 30.9 35.5 23.2 31.9
SW [30] 30.6 26.2 44.6 25.1 30.7 34.6 23.6 30.8
IBN-Net [29] 29.9 26.1 44.5 24.4 26.2 33.5 22.4 29.6
IterNorm [19] 29.7 21.8 42.4 24.4 26.0 33.3 21.6 28.4
ISW [9] 29.5 26.4 49.2 27.9 30.7 34.8 24.0 31.8

Ours 32.9 28.0 48.8 29.8 32.5 38.2 24.1 33.5

Table 5. Results (%) on the daytime-foggy scene.

enhance the generalization ability.
Analysis of the losses in Eq. (5) and Eq. (6). To further

enhance the generalization ability, we take the disentangled
domain-invariant features as the teacher and design a self-
distillation module with two losses. Specifically, the loss in
Eq. (5) aims to narrow the feature-level distance between
the teacher and the extracted middle-layer representations,
which is beneficial for promoting the middle-layer repre-
sentations to involve domain-invariant information. And the
goal of the loss in Eq. (6) is to distill the category-related
knowledge from the teacher, which is helpful for improv-
ing the detection accuracy. Here, based on the night-sunny
scene and the output of the cyclic-disentangled module, for
the case of only using Lfc in Eq. (5), the performance is
35.0%. Meanwhile, the performance of only using Lcc in
Eq. (6) is 35.4%. This indicates that using the two losses
is helpful for attaining self-distillation, which leads to the
generalization enhancement of the object detector.

4.4. Comparison with Domain Adaptation Methods

To further evaluate the generalization ability, based on
the night-sunny scene, we compare our method with some
domain adaptation methods [3,44,46] that require to access
the target domain during training. Table 7 shows the results.
Compared with the results of only using the source domain
data (i.e., Source Only), these domain adaptation methods
do not obtain superior performance. The reason may be that
the gap between the source and target domain is very large,
which makes the adaptation more difficult. We can see that
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Figure 6. Visualization analysis of our method based on the dusk-rainy scene. The first column is the detection results of our method. The
second, third, and fourth columns separately indicate the features Fb, Fdi, and Fi2i (as shown in Eq. (1) and (2)). For each feature map,
the channels corresponding to the maximum value are selected for visualization.

Method DT Cyc-D SD Daytime-Sunny Night-Sunny
CDSD X 48.7% 30.4%
CDSD X X 50.4% 31.3%
CDSD X 51.0% 33.3%
CDSD X 52.3% 34.2%
CDSD X X 56.1% 36.6%

Table 6. Ablation analysis of our proposed cyclic-disentangled
self-distillation (CDSD). Here, we use mAP as the metric. ‘DT’
indicates that we only use a forward step to perform disentangle-
ment (as shown in the left part of Fig. 2). ‘Cyc-D’ denotes the
cyclic disentanglement. ‘SD’ is the self-distillation. The model
trained on daytime-sunny scene is used to make the analysis.

though there is no target domain data available, our method
outperforms these adaptation methods significantly. Partic-
ularly, for each category, the performance of our method
is the best. This not only demonstrates that disentangling
DIR is helpful for enhancing the generalization capability
but also indicates that the proposed cyclic-disentangled self-
distillation could extract DIR effectively.

4.5. Visualization Analysis

In Fig. 6, we make a visualization analysis. The sec-
ond column is Fb that is used to perform disentanglement.
The third column indicates the disentangled feature map
Fdi (as shown in Eq. (1)). And the fourth column denotes
the cyclical output Fi2i that is based on Fdi (as shown in
Eq. (2)). We can see that compared with Fb, Fdi contains
much more object-related information and less background
that mainly reflects the domain-related information. More-
over, through the cyclic operation (as shown in Eq. (2)),
compared with Fdi, the background information in the out-
put Fi2i is further reduced. Finally, we can see that our
method accurately detects objects in the rainy images, e.g.,
the car, person, motorcycle. This indicates that without the
reliance on domain-related annotations, our method could
extract domain-invariant features containing intrinsical ob-
ject characteristics, which is beneficial for Single-DGOD.

Method target bus bike car motor person rider truck mAP
Source Only − 37.7 30.6 49.5 15.4 31.5 28.6 40.8 33.5
DAF [8] X 36.2 29.1 49.3 16.0 33.1 29.3 40.2 33.3
CT [51] X 34.1 22.1 46.4 12.8 26.5 19.8 31.5 27.6
SCL [36] X 27.1 18.6 45.9 11.6 24.0 19.0 32.3 25.5
SW [34] X 34.2 23.6 48.0 13.4 26.4 23.7 37.5 29.5
ICCR [46] X 36.1 23.2 48.9 15.5 29.1 23.8 39.4 30.9
HTCN [3] X 30.5 17.6 44.7 11.0 22.9 20.6 31.3 25.5
VDD [44] X 35.4 29.6 49.8 14.5 31.3 28.0 39.9 32.6

Ours − 40.6 35.1 50.7 19.7 34.7 32.1 43.4 36.6

Table 7. Results (%) on the adaptation from the daytime-sunny
scene to the night-sunny scene. ‘target’ indicates that during train-
ing, the model needs to access the target domain data (i.e., the
night-sunny data). ‘−’ denotes that during training, we do not use
the target domain data. Here, the released codes of the compared
methods are directly run to obtain the results.

5. Conclusion

In this paper, we frame a new paradigm of object de-
tection, Single-DGOD, which aims to generalize object de-
tectors to multiple unseen target domains with only one
source domain for training. Towards Single-DGOD, we
focus on extracting DIR without the reliance on domain-
related annotations, and a method of cyclic-disentangled
self-distillation is proposed accordingly. Firstly, we design
a cyclic-disentangled module to disentangle DIR. Then, tak-
ing the DIR as the teacher representation, a self-distillation
module is used to further enhance the generalization capa-
bility of the object detector. Experimental results and visu-
alization analyses show the superiorities of our method.
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