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Abstract

It has been widely known that CAM (Class Activation
Map) usually only activates discriminative object regions
and falsely includes lots of object-related backgrounds. As
only a fixed set of image-level object labels are available
to the WSSS (weakly supervised semantic segmentation)
model, it could be very difficult to suppress those diverse
background regions consisting of open set objects. In this
paper, we propose a novel Cross Language Image Match-
ing (CLIMS) framework, based on the recently introduced
Contrastive Language-Image Pre-training (CLIP) model,
for WSSS. The core idea of our framework is to introduce
natural language supervision to activate more complete ob-
ject regions and suppress closely-related open background
regions. In particular, we design object, background region
and text label matching losses to guide the model to excite
more reasonable object regions for CAM of each category.
In addition, we design a co-occurring background sup-
pression loss to prevent the model from activating closely-
related background regions, with a predefined set of class-
related background text descriptions. These designs enable
the proposed CLIMS to generate a more complete and com-
pact activation map for the target objects. Extensive exper-
iments on PASCAL VOC2012 dataset show that our CLIMS
significantly outperforms the previous state-of-the-art meth-
ods. Code will be available at https://github.com/CVI-
SZU/CLIMS.

1. Introduction

Semantic segmentation attempts to assign each pixel in
an image with a semantic label. Though fully supervised
semantic segmentation has achieved remarkable success in
recent years, pixel-level annotation is significantly time-
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Figure 1. (a) Conventional CAM solution. (b) The proposed
CLIMS. The problem of false-activation of irrelevant background,
e.g., railroad and ground, and underestimation of object contents
usually exist in conventional CAM method. To solve this prob-
lem, we propose a novel text-driven learning framework, CLIMS,
which introduces natural language supervision, i.e., an open-world
setting, for exploring complete object contents and excluding irrel-
evant background regions. Best viewed in color.

consuming and labor-intensive. Instead, weakly supervised
semantic segmentation (WSSS) tries to mitigate this issue
by relying solely on image-level [2, 15, 23, 24], bounding
box-level [8, 22], point-level [3], or scribble-based supervi-
sion [20,29]. This work aims to only use image-level labels
in the learning of a semantic segmentation model.

Existing WSSS approaches typically follow a three-stage
learning process. First, the image-level labels are used as
supervision at the feature level to train a classification net-
work to generate initial class activation maps (CAMs) (as
shown in the left of Fig. 1(a)). Then the initial CAMs are re-
fined as pseudo ground-truth masks using dense CRF [16],
pixel affinity-based methods [1, 2], or additional saliency
maps [12, 19, 21]. Finally, the refined pseudo ground-truth
masks are used to further train a segmentation network.
However, as only a fixed set of object categories is avail-
able during the first stage training, i.e., a close-world set-
ting, class-related background pixels, e.g., railroad, also
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contribute to the prediction of closely related objects, e.g.,
train. This results in unnecessary activation of background
in the generation of initial CAMs, as shown in the right
of Fig. 1(a). Besides, conventional CAM solution usually
struggles in the underestimation of object contents. Both of
them severely limit the quality of initial CAMs for the next
two stages.

In this paper, we design a novel Cross Language Image
Matching framework for WSSS, i.e., CLIMS, based on the
power of recently introduced Contrastive Language-Image
Pre-training (CLIP) [25] model, to address the aforemen-
tioned issues. The CLIP model is pretrained from scratch
on a dataset of 400 million image-text pairs (automatically
collected from the publicly available sources on the Inter-
net), which enables CLIP to associate much wider visual
concepts in the image with their text labels in an open-
world setting, rather than a fixed set of predetermined object
categories. Based on this, the proposed CLIMS has great
potentials to generate a high-quality initial activation map
for each object category without irrelevant background (as
shown in the right of Fig. 1(c)).

In the left of Fig. 1(a), the conventional CAM method
performs image-level supervision on the average feature
after the global average pooling (GAP) layer. Given the
trained model, the class activation maps (CAMs) can be ex-
tracted. However, the CLIP model cannot be directly used
in this pipeline. Instead, as shown in Fig. 1(b), we replace
the GAP and fully connected (FC) layer with convolutional
layers to directly generate an activation map for each class
under the supervision from CLIP model, where natural lan-
guage can be used to guide the model for the activation
maps generation.

Details of the proposed CLIMS are depicted in Fig. 2. It
mainly consists of a backbone network and a text-driven
evaluator including three CLIP-based loss functions, i.e.,
Object region and Text label Matching loss (LOTM ), Back-
ground region and Text label Matching loss (LBTM ), and
Co-occurring Background Suppression loss (LCBS). The
core idea is to complementarily learn the generation of ini-
tial CAMs P through the supervision of the text-driven
evaluator. First, given an image, the backbone network pre-
dicts the initial CAMs P, which represents the probability
of each pixel belonging to a category. P and (1−P) are then
multiplied with the input image to mask out the object and
background area, respectively, which serve as the input of
the text-driven evaluator. As shown in Fig. 2(b), each mask-
out area and its corresponding text category label are passed
to the CLIP model to calculate their cosine similarity. The
text labels for foreground objects, e.g., “train”, “cat” and
“person”, etc, are defined according to the dataset. During
training, LOTM aims to maximize the similarity between
the foreground object area and the given text label, e.g., “a
photo of train”. In this way, though the generated CAMs

can gradually approach the target object in the image, the
completeness of the regions is not guaranteed. For exam-
ple, the image still looks like a bird even when only head of
the bird is visible. Thus, we proposeLBTM to minimize the
similarity between mask-out foreground area X·(1−P) and
the same object category text label as LOTM . This excludes
object regions out of (1 − P) and recovers more probable
object contents in P. In addition, to constrain the size of
activated regions, we design a regularization term to ensure
the compactness of P. However, when the object area is
activated, the background closely related to the object, e.g.,
train and railroad, boat and river, etc, will usually be acti-
vated as well, as no pixel-level labels are available. To ad-
dress this issue, we additionally define a set of class-related
background text labels, such as “railroad” (background of
the train) and “river” (background of the boat), etc. Based
on these text labels and the CLIP model, we design LCBS
to minimize the similarity between the mask-out object area
X · P and these co-occurring background text labels. This
enables CLIMS to exclude the irrelevant class-related back-
ground, e.g., railroad, out of the initial CAMs P. These
CLIP-based loss functions work complementarily to refine
the generated initial CAMs by the exploration of more com-
plete object areas and exclusion of irrelevant background
pixels.

Collectively, the main contributions of this paper can be
summarized as:

• We propose a text-driven learning framework, CLIMS,
to introduce image-text matching model based super-
vision, i.e., an open-world setting, for WSSS.

• We design three CLIP-based loss functions and an area
regularization. The object, background region and
matching losses ensure the correctness and complete-
ness of initial CAMs. The co-occurring background
suppression loss can further substantially mitigate the
influence of class-related background. The area regu-
larization can constrain the size of activated regions.

• Extensive experiments on PASCAL VOC2012 dataset
show that the proposed CLIMS significantly outper-
forms the previous state-of-the-art methods.

2. Related Work
In this section, we will first review existing weakly su-

pervised semantic segmentation methods according to the
three-stage learning process of WSSS: initial CAMs gener-
ation, CAMs refinement techniques, and segmentation net-
work training. In addition, we will briefly discuss the CLIP
model, which serves as the motivation for this work.

Weakly supervised semantic segmentation. The
pipeline of the conventional CAM [38] solution has been
used in the majority of previous WSSS works. Hou et
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al. [11] propose two self-erasing strategies for focusing at-
tention only on the reliable regions, generating complete
initial CAMs. Chang et al. [4] propose to investigate object
sub-categories to mine more object parts and then improve
the completeness of initial CAMs. Sun et al. [28] incor-
porate two neural co-attentions into the classifier for dis-
covering shared or unshared semantics in a pair of training
images. This helps to extract more complete initial CAMs
from the classifier. Jungbeom et al. [18] propose an anti-
adversarial manner to discover more regions of the target
object in the activation map. Ahn and Kwak [2] design a
deep neural network, called AffinityNet, to predict seman-
tic affinity between a pair of adjacent image coordinates.
This semantic affinity is then applied to refine the gener-
ated initial CAMs as pseudo ground-truth masks. Previous
works [12, 19, 21, 32] instead use additional saliency maps
from a fully supervised saliency detector to refine the gen-
erated initial CAMs. The series of DeepLab [5, 6] models
are typically used to train a semantic segmentation network
with the pseudo ground-truth masks.

Contrastive Language-Image Pre-training (CLIP).
The contrastive language-image pretraining (CLIP) [25]
shows great success and potential on many vision tasks in
a zero-shot setting. The CLIP model consists of an image
encoder and a text encoder. Given a batch of image and
text pairs, the CLIP model learns the embedding to measure
the similarity between image and text. The CLIP model is
trained on a large dataset of 400 million image-text pairs,
the set of object categories CLIP can recognize is much
bigger and diverse than a fixed set of object categories in a
small dataset, e.g., PASCAL VOC2012 [9]. The image-text
pairs are automatically collected from the Internet, without
the involvement of manual efforts.

3. Methodology
In this section, we will first review the conventional

CAM pipeline and its limitations. The proposed learning
framework, i.e., CLIMS, is then introduced. Finally, we
will detail three CLIP-based loss functions: object region
and text label matching loss, background region and text la-
bel matching loss and co-occurring background suppression
loss, and an area regularization.

3.1. Revisiting the Conventional CAM

The majority of previous WSSS works follow the CAM
pipeline to generate an initial activation map for each cate-
gory in the image. Given an input image X and correspond-
ing image-level label y ∈ R1×K , a backbone network will
first embed X to high-level feature maps Z ∈ RC×H×W ,
where K denotes the number of classes, C and H ×W de-
note the number of channels and spatial dimension, respec-
tively. A global average pooling (GAP) layer and a 1 × 1
convolution layer with learnable matrix W ∈ RC×K are

then applied on Z to produce prediction logits ŷ ∈ R1×K .
During training, the sigmoid cross entropy loss is calculated
as follow:

L(ŷ, y) = −
K∑
k=1

yk ·log σ (ŷk)+(1− yk)·log (1− σ (ŷk)) ,

(1)
where σ is the sigmoid activation function.

Given the trained backbone network, W is directly ap-
plied on Z to generate initial CAMs P ∈ RK×H×W :

Pk(h,w) = W>
k Z(h,w), (2)

where Z(h,w) denotes the representation vector located on
(h,w). The corresponding weight vector and activation
map for a given object category is Wk and Pk. Due to
the limited supervision, conventional CAM, despite being
simple and effective, may struggle with the only activation
of discriminative object parts and the unnecessary activation
of closely related backgrounds.

3.2. Cross Language Image Matching Framework

Fig. 2 depicts an overview of CLIMS. The backbone net-
work illustrated in Fig. 2(a) is similar to conventional CAM
solution, except that the GAP layer is removed and a sig-
moid function σ is directly applied after W:

Pk(h,w) = σ(W>
k Z(h,w)). (3)

While conventional WSSS methods only use the super-
vision of a fixed set of predetermined object categories, we
propose the text-driven evaluator based on the CLIP model
to explore additional object categories in the dataset. As
shown in Fig. 2(b), the text-driven evaluator consists of an
image encoder fi(·) and a text encoder ft(·) from the CLIP
model. To begin with, Pk and (1 − Pk) are multiplied by
X to mask out the foreground object and background pixels,
respectively. The results are then mapped to representation
vectors viok and vibk by fi(·):

viok = fi(X ·Pk), vibk = fi(X · (1−Pk)). (4)

Following CLIP [25], the corresponding object text
prompt tok for (X · Pk) is represented as “a photo of {}”,
e.g., “a photo of the train”. On the contrary, the correspond-
ing class-related background text prompts tbk,l are manually
pre-defined as a set of L co-occurring background closely
related with the object of the k-th category. For example,
the class-related background of boat (k-th object) is {“a
photo of river”, “a photo of a lake”}. Then tbk,0={“a photo
of river”}, tbk,1={“a photo of a lake”}, the text representa-
tions can be obtained as follow:

vtok = ft(t
o
k), vtbk,l = ft(t

b
k,l), (5)

where tok and tbk,l denote text label of the object and the l-th
class-related co-occurring background for the specific class
k, respectively.
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Figure 2. An overview of the proposed Cross Language Image Matching framework for WSSS, i.e., CLIMS. (a) The backbone network
for predicting initial CAMs. σ denotes the sigmoid activation function. W denotes the weight matrix of convolutional layers. (b) The
text-driven evaluator. It consists of three CLIP-based loss functions, i.e., object region and text label matching loss LOTM , background
region and text label matching loss LBTM , and co-occurring background suppression loss LCBS . Best viewed in color.

3.3. Object region and Text label Matching

Given the k-th foreground object representation viok and
its corresponding text representation vtok , we begin by cal-
culating the cosine similarity between image and text repre-
sentations and then maximize it using the proposed object
region and text label matching loss LOTM :

LOTM = −
K∑
k=1

yk · log(sook ), (6)

sook = sim(viok ,v
to
k ), (7)

sook indicates the cosine similarity between viok and vtok .
The generated initial CAMs will gradually approach the tar-
get object under the supervision of LOTM . However, the
LOTM alone can not encourage the model to explore non-
discriminative object regions and suppress the background
regions activated in Pk.

3.4. Background region and Text label Matching

To improve the completeness of activated object regions,
we design the background region and text label matching
loss LBTM to include more object contents. Given the
background representation vibk and its corresponding text
representation vtok (note that, the text label for LBTM is
the same with that for LOTM ), the LBTM is calculated as
follow:

LBTM = −
K∑
k=1

yk · log(1− sbok ), (8)

sbok = sim(vibk ,v
to
k ), (9)

where sbok represents the cosine similarity between vibk and
vtok . When LBTM is minimized, fewer target object pixels
are reserved in X · (1−Pk) and more target object contents
are recovered in (X ·Pk). This ensures that more complete
object contents are activated in Pk.

3.5. Co-occurring Background Suppression

The aforementioned two loss functions, however, only
ensure P to completely cover the target object, without tak-
ing into account the false-activation of co-occurring class-
related background. The inclusion of co-occurring back-
ground may significantly degrade the quality of generated
pseudo ground-truth masks. However, pixel-level labeling
of these backgrounds is very time-consuming and labor ex-
pensive, and is usually not available in WSSS. As the set of
background is much more diverse than that of foreground,
lots of them might not have been seen by the classifica-
tion network trained using ImageNet. However, it’s much
easier to use the pretrained CLIP to identify these back-
grounds given the corresponding text descriptions. To solve
this problem, we design the following co-occurring back-
ground suppression loss. Given the target object represen-
tation viok and its corresponding text representation of class-
related background vtbk,l, the loss is calculated as:

LCBS = −
K∑
k=1

L∑
l=1

yk · log(1− sobk,l), (10)

sobk,l = sim(viok ,v
tb
k,l), (11)
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where sobk,l indicates the cosine similarity between viok and
vtbk,l. During training, the backbone network will gradually
suppress the false-activation of class-related background re-
gions in Pk for the minimization of LCBS .

3.6. Area Regularization

With only LOTM , LBTM , and LCBS , if both the irrel-
evant backgrounds and the target object are included in the
activation map, the CLIP model can still correctly predict
the target object. Therefore, we design a pixel-level area
regularization term to constraint the size of activation maps
to ensure that the irrelevant backgrounds are excluded in the
activation map Pk:

LREG =
1

K

K∑
k=1

Sk, where Sk =
1

HW

H∑
h=1

W∑
w=1

Pk(h,w).

(12)

3.7. Overall Training Objective

The overall training loss for the proposed text-driven
learning framework CLIMS can be formulated as:

L = αLOTM + βLBTM + γLCBS + δLREG, (13)

where α, β, γ, and δ are the hyper-parameters weighting the
four loss terms.

4. Experiments
4.1. Experimental Setup

Datasets and Evaluation Metric. PASCAL
VOC2012 [9] is a popular semantic segmentation dataset
with 20 object categories, which consists of 1,464 images
for training, 1,449 images for validation, and 1,456 images
for test. Following the common protocol in previous
studies, we train the proposed CLIMS using an augmented
training set of 10,582 images. The mean Intersection over
Union (mIoU) is adopted as the evaluation metric for all
experiments.

Implementation Details. The input image is randomly
rescaled and then augmented by random cropping to 512×
512. Horizontal flipping is also used for augmenting train-
ing data. SGD is adopted as the default optimizer. The co-
sine annealing policy is applied to schedule learning rate.
The default batch size is 16. As there are minor differ-
ences in describing classes between PASCAL VOC2012
and CLIP, we use the text label descriptions in the train-
ing set to finetune the CLIP model (both image and text en-
coder) for 20 epochs, with an initial learning rate of 0.00005
and a weight decay of 0.003. The CLIMS model is trained
for 10 epochs, with an initial learning rate of 0.00025 and
a weight decay of 0.0001. We follow [2] to adopt ResNet-
50 [10] as backbone network for the generation of initial

Table 1. Comparison of the quality of initial CAMs and refined
pseudo ground-truth masks using RW (PSA [2]) on PASCAL
VOC2012. The mIoU values here are reported on the train set.
Bac. denotes the backbone network for CAMs generation.

Method Bac. CAMs +RW

PSA CVPR’2018 [2] WR38 48.0 61.0
SC-CAM CVPR’2020 [4] WR38 50.9 63.4
SEAM CVPR’2020 [31] WR38 55.4 63.6
PuzzleCAM ICIP’2021 [13] R50 51.5 64.7
VWE IJCAI’2021 [26] R50 52.9 -
AdvCAM CVPR’2021 [18] R50 55.6 68.0
CLIMS (Ours) R50 56.6 70.5

CAMs. All models are implemented in PyTorch and trained
on NVIDIA A100 GPU with 40 GB memory.

Refinement of initial CAMs. Because the initial CAMs
only coarsely cover the target object, refinement techniques
such as PSA [2] and IRNet [1] are commonly used to im-
prove the quality of initial CAMs before using them as
pseudo ground-truth masks. To make a fair comparison, we
follow SEAM [31], PuzzleCAM [13], and AdvCAM [18]
to adopt PSA [2] for initial CAM refinement.

Table 2. Evaluation results on PASCAL VOC2012 val and test
sets. The best results are in bold. Sup. denotes the weak super-
vision type. F denotes full supervision. S denotes saliency map
supervision. I denotes image-level supervision. Seg. denotes
the segmentation network. Bac. denotes the backbone network
for CAMs generation. V1: DeepLabV1. V2: DeepLabV2. V16:
VGG-16 [27]. R50: ResNet-50 [10]. WR38: WideResNet38 [33].
‡: Segmentation network pretrained using MS COCO dataset.

Sup. Method Seg. Bac. val test

F

Full supervision.
DeepLabV1 ICLR’15 [5] - - 75.5 -
DeepLabV2 TPAMI’18 [6] - - 77.6 79.7
WideResNet38 PR’19 [33] - - 80.8 82.5

I + S

Image-level supervision + Saliency maps.
OAA+ ICCV’19 [12] V1‡ - 65.2 66.4
MCIS ECCV’20 [28] V1‡ V16 66.2 66.9
LIID TPAMI’21 [21] V2 R50 66.5 67.5
NSROM CVPR’21 [35] V2‡ V16 68.3 68.5
DRS AAAI’21 [14] V2‡ V16 70.4 70.7
EPS CVPR’21 [19] V2‡ WR38 70.9 70.8
EDAM CVPR’21 [32] V2‡ WR38 70.9 70.6
AuxSegNet ICCV’21 [34] WR38 - 69.0 68.6

I

Image-level supervision only.
IAL IJCV’20 [30] V2 - 64.3 65.4
SEAM CVPR’20 [31] V3 WR38 64.5 65.7
BES ECCV’20 [7] V2 R50 65.7 66.6
SC-CAM CVPR’20 [4] V2‡ WR38 66.1 65.9
CONTA NeurIPS’20 [37] V3 WR38 66.1 66.7
A2GNN TPAMI’21 [36] V2 WR38 66.8 67.4
VWE IJCAI’2021 [26] V2‡ R50 67.2 67.3
AdvCAM CVPR’21 [18] V2 R50 68.1 68.0
Kweon et al. ICCV’21 [17] WR38 WR38 68.4 68.2
CLIMS (Ours) V2 R50 69.3 68.7
CLIMS (Ours) V2‡ R50 70.4 70.0
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Figure 3. Initial CAMs generated by the proposed CLIMS using different combinations of loss functions. Input images are shown in
column 1. Columns 2 to 5 present the generated CAMs using LOTM , LOTM +LBTM , LOTM +LBTM +LREG, and LOTM +LBTM +
LREG + LCBS , respectively. RW denotes the refinement of PSA [2]. Best viewed in color.

Segmentation Network. Given pseudo ground-truth
masks, we follow VWE [26], SC-CAM [4] and Adv-
CAM [18] to adopt DeepLabV2 with ResNet-101 [10] as
the segmentation network. For experiments on PASCAL
VOC2012 dataset, we follow the default setting of deeplab-
pytorch toolkit

†
to train DeepLabV2 with weights pretrained

using MS COCO dataset. Besides, we also follow the set-
ting of AdvCAM [18] to train DeepLabV2 with weights
pretrained using ImageNet-1K dataset.

4.2. Results on PASCAL VOC2012 Dataset

Quality of Initial CAMs and Pseudo Labels. The qual-
ity of generated initial CAMs and refined pseudo ground-
truth masks on the PASCAL VOC2012 train set is com-
pared in Table 1. +RW denotes that the initial CAMs are
refined by PSA [2]. As shown in the table, the initial
CAMs generated by our CLIMS reach 56.6% mIoU, sig-
nificantly outperforming the state-of-the-art methods, e.g.,
PuzzleCAM and AdvCAM. This mostly attributes to the de-
signs of three CLIP-based loss functions. When compared
to SEAM (WideResNet38 [33] is adopted as the backbone
network), our CLIMS (the smaller ResNet-50 is adopted as
backbone) achieves better results. Besides, our pseudo la-
bels refined with PSA achieve 70.0% mIoU, which is 5.3%
and 2.0% higher than that of PuzzleCAM and AdvCAM,
respectively.

In Fig. 4, we visualize the initial CAMs and compare
them with the results of conventional CAM [38] and recent

†
https://github.com/kazuto1011/deeplab-pytorch

Table 3. Comparison of the quality of initial CAMs on PASCAL
VOC2012 dataset using different combinations of loss functions.
The mIoU(%) results are reported on the train set. LCLS indicates
that we use a pretrained classifier, i.e., VGG-16, to replace our
text-driven evaluator for comparsion.

LOTM LBTM LREG LCBS LCLS mIoU(%)

X 28.6

X 37.2
X X 41.3
X X X 53.1
X X X 45.4
X X X X 56.6

method Adv-CAM [18]. It is observed that the proposed
CLIMS typically activates more complete object contents
and less class-related background regions. Specifically, as
shown in the first two and last two columns, CAM and Adv-
CAM may underestimate the region of boat, person, and cat
or falsely activate the region of river. Compared with them,
initial CAMs generated by CLIMS are more complete and
compact, including more reasonable object regions for next
stage of refinement. In the third and sixth columns, lots of
false activations of class-related background, i.e., railroad,
are available in the results of CAM and Adv-CAM. With the
supervision provided by LCBS , our CLIMS can efficiently
reduce the false activation of co-occurring background re-
gions and yield complete and compact CAMs.

Segmentation Performance. To further validate the
quality of the pseudo ground-truth masks generated by
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Figure 4. Visualization of the initial CAMs generated by CAM, Adv-CAM, and the proposed CLIMS. White dotted circles illustrate the
missed object regions. Red dotted circles illustrate the false activation of class-related background regions, e.g., the river and railroad.

our method, we fully train a segmentation network, i.e.,
DeepLabV2, on the PASCAL VOC2012 dataset using the
generated pseudo labels. The evaluation results are reported
in Table 2. It is observed that, compared to the methods with
only image-level supervision, our method achieves the best
results. Specifically, DeepLabV2 trained using the mask
generated by our CLIMS achieves 69.3% and 68.7% mIoU
on val and test set, respectively. Compared with Adv-CAM,
our method outperforms it by 1.2% and 0.7% mIoU on
val and test sets, respectively. Compared to methods with
additional saliency map (obtained from a fully supervised
model), e.g., EPS [19] and EDAM [32], our method also
achieve competitive performance.

Table 4. Evaluation results of two specific object categories, i.e.,
boat and train, on PASCAL VOC2012 dataset with/out the addi-
tion of LCBS . The results are reported on the train set.

loss functions. boat(%) train(%) mean(%)

LOTM + LBTM 7.1 30.7 18.9
LOTM + LBTM + LCBS 58.2+51.1 63.9+33.2 61.1+42.2

4.3. Ablation Studies

Impact of Loss Functions. The proposed CLIMS, as
described in Sec. 3, is optimized by a combination of four
loss functions, i.e., object region and text label match-
ing loss LOTM , background region and text label match-
ing loss LBTM , co-occurring background suppression loss
LCBS , and area regularization LREG, which play differ-
ent roles in guiding backbone network to generate initial

CAMs. Here, we perform ablation experiments on the PAS-
CAL VOC2012 dataset to further validate the effective-
ness of each loss function. The visual results are shown
in Fig. 3 (note that, +L means that we successively add
the loss function). As shown in the second column of
Fig. 3, by only using LOTM , we observe that 1) only the
discriminative object parts are activated in the CAMs; 2)
class-related backgrounds, e.g., railroad in the second row
and water in the third row, are also activated in the initial
CAMs. As seen in the third column, an addition of LBTM
significantly increases the size of activated regions, such
that more complete object regions are activated. However,
LOTM + LBTM falsely activate the background regions.
As shown in the fourth and fifth column in Fig. 3, the addi-
tion of LREG and LCBS helps address the aforementioned
issues. We can observe that LREG efficiently constrains
the size of activated regions and LCBS significantly ex-
cludes the class-related background, e.g., railroad, out of the
CAMs. Furthermore, as shown in the sixth column, with the
refinement of RW (PSA [2]), the pseudo masks are closely
similar to the ground-truth.

Table 3 shows quantitative comparisons between differ-
ent combinations of loss functions. As can be seen, CLIMS
only obtains 37.2% mIoU on the train set when only LOTM
is used. An addition of LBTM improves mIoU from 37.2%
to 41.3%. By ensuring the compactness of initial CAMs,
the inclusion of LREG improves the mIoU from 41.3%
to 53.1%. As expected, LCBS can efficiently remove the
class-related background regions from the generated CAMs
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Figure 5. Sensitivity analyses of hyper-parameters α, β, γ, and δ. The mIoU values here are reported on PASCAL VOC2012 train set.

and improve the mIoU by 3.5% on the train set. To vali-
date the effectiveness of CLIP model, we use a pretrained
classifer, i.e., VGG-16, to replace text-driven evalutor and
compare their performances. It means that only mask-
out area of image is fed into the classifier for evaluation.
The result is illustrated by LCLS . As shown in Table 3,
LCLS only achieves 28.6% mIoU, which is much lower
than LOTM (37.2%). This suggest that, without other con-
straints, supervision from CLIP leads the backbone network
to generate better CAMs than a pretrained classifier.

Class-related Background. In our experiments, we
only pre-define a set of class-related backgrounds for some
object categories, such as train and boat. For example, the
background sets of train and boat are {“railroad”, “rail-
way”, “tree”} and {“river”, “sea”, “lake”}, respectively. To
further demonstrate the effectiveness of co-occurring back-
ground suppression loss LCBS , we report the IoU of boat
and train in Table 4 with/out LCBS . As can be seen, an ad-
dition of LCBS can significantly improve the IoU of both
boat and train, from 7.1% to 58.2% and 30.7% to 63.9%,
respectively. The results suggest that CLIP can effectively
identify those diverse background categories. Based on the
embeddings of background regions and text descriptions,
LCBS can effectively exclude these co-concurring back-
grounds from the activated regions of foreground objects.

Sensitivity Analyses. There are four hyper-parameters
in Eq. 13. The sensitivity analyses of these four parameters
are performed on PASCAL VOC2012 train set and the eval-
uation results are presented in Fig. 5. It is observed that the
performances of our approach are stable with the variation
of α (from 7 to 13), β (from 22 to 28), γ (from 28 to 31),
and δ (from 1 to 1.3), i.e., our approach is not sensitive to
hyper-parameters. In our experiments, the default value of
α, β, γ, and δ are 10, 25, 29.5, and 1.15, respectively.

Feature Representation Analysis. Fig. 6 depicts the
relationship between learned features and the weight vec-
tor Wk. The demo image used to extract representation
features is shown in the left of Fig. 6. To investigate the
quality of learned features, we sample some features from
the pixels belonging to the class of train and background
and compute the similarity between weight vector Wk and
them. The results are shown in the right of Fig. 6. The
sample features are denoted in the x-axis, and the weight

vector of a class is denoted in the y-axis. It is observed
that the extracted features of the blue stars (index from 10
to 19) are highly related to the weight vector Wk of train
and are unrelated to the other classes. This suggests that the
features of train are clustered with Wk of train and dis-
tribute far away from other classes. The sample regions
from the class-related background are represented by yel-
low stars (index from 0 to 9). Their learned features have a
weak relationship with the weight vector of train. This en-
sures that the class-related background will not be activated
in the activation map generation for the class of train.
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Figure 6. Left: the sample image. Yellow and blue stars in the im-
age denote the sample regions. Right: the similarity matrix. The
x-axis denotes the feature of sample region and the y-axis denotes
the weight vector Wk of each class. The (i, j)-th element means
the cosine similarity between i-th class and j-th region in the im-
age. Note that, the calculated cosine similarities are truncated and
normalized into [0, 1]. Best viewed in color.

5. Conclusion
This paper proposes a novel Cross Language Image

Matching framework, i.e., CLIMS, to introduce natural lan-
guage supervision for WSSS. The designed four loss func-
tions can efficiently handle the problem of underestima-
tion of complete object contents and unnecessary activation
of closely-related background regions. Extensive experi-
ments conducted on the PASCAL VOC2012 dataset vali-
date the effectiveness of CLIMS. The experimental results
reveal that our method generates more complete and com-
pact initial CAMs and refined pseudo ground-truth masks
than baseline and state-of-the-art methods.

Acknowledgments
The work was supported by the National Natural Science

Foundation of China under grant 91959108.

4490



References
[1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly su-

pervised learning of instance segmentation with inter-pixel
relations. In CVPR, pages 2209–2218, 2019. 1, 5

[2] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic
affinity with image-level supervision for weakly supervised
semantic segmentation. In CVPR, pages 4981–4990, 2018.
1, 3, 5, 6, 7

[3] Amy L. Bearman, Olga Russakovsky, Vittorio Ferrari, and
Fei-Fei Li. What’s the point: Semantic segmentation with
point supervision. In ECCV, pages 549–565, 2016. 1

[4] Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson
Piramuthu, Yi-Hsuan ai, and Ming-Hsuan Yang. Weakly-
supervised semantic segmentation via sub-category explo-
ration. In CVPR, pages 8988–8997, 2020. 3, 5, 6

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Semantic image segmen-
tation with deep convolutional nets and fully connected crfs.
In ICLR, 2015. 3, 5

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. TPAMI, 40:834–848, 2018. 3,
5

[7] Liyi Chen, Weiwei Wu, Chenchen Fu, Xiao Han, and Yun-
tao Zhang. Weakly supervised semantic segmentation with
boundary exploration. In ECCV, pages 347–362, 2020. 5

[8] Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploit-
ing bounding boxes to supervise convolutional networks for
semantic segmentation. In ICCV, pages 1635–1643, 2015. 1

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.
3, 5

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5, 6

[11] Qibin Hou, Peng-Tao Jiang, Yunchao Wei, and Ming-Ming
Cheng. Self-erasing network for integral object attention. In
NeurIPS, pages 547–557, 2018. 3

[12] Peng-Tao Jiang, Qibin Hou, Yang Cao, Ming-Ming Cheng,
Yunchao Wei, and Hong-Kai Xiong. Integral object mining
via online attention accumulation. In ICCV, pages 2070–
2079, 2019. 1, 3, 5

[13] Sanghyun Jo and In-Jae Yu. Puzzle-cam: Improved local-
ization via matching partial and full features. In 2021 IEEE
International Conference on Image Processing (ICIP), pages
639–643, 2021. 5

[14] Beomyoung Kim, Sangeun Han, and Junmo Kim. Discrim-
inative region suppression for weakly-supervised semantic
segmentation. In AAAI, pages 1754–1761, 2021. 5

[15] Alexander Kolesnikov and Christoph H. Lampert. Seed, ex-
pand and constrain: Three principles for weakly-supervised
image segmentation. In ECCV, pages 695–711, 2016. 1
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