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Abstract

We propose a novel adversarial attack targeting content

features in some deep layer, that is, individual neurons in the

layer. A naive method that enforces a fixed value/percentage

bound for neuron activation values can hardly work and

generates very noisy samples. The reason is that the level

of perceptual variation entailed by a fixed value bound is

non-uniform across neurons and even for the same neuron.

We hence propose a novel distribution quantile bound for

activation values and a polynomial barrier loss function.

Given a benign input, a fixed quantile bound is translated to

many value bounds, one for each neuron, based on the distri-

butions of the neuron’s activations and the current activation

value on the given input. These individualized bounds enable

fine-grained regulation, allowing content feature mutations

with bounded perceptional variations. Our evaluation on Im-

ageNet and five different model architectures demonstrates

that our attack is effective. Compared to seven other latest

adversarial attacks in both the pixel space and the feature

space, our attack can achieve the state-of-the-art trade-off

between attack success rate and imperceptibility. 1

1. Introduction

Adversarial attack is a prominent security threat for Deep

Learning (DL) applications. With a benign input, perturba-

tion is applied to the input to derive an adversarial example,

which causes the DL model to misclassify. An underlying as-

sumption is that adversarial samples should be perceptually

close to real inputs [10]. Without this assumption, adversar-

ial samples could merely be too different from real inputs

and become unseen samples, in which case misclassification

is well expected. Traditionally, imperceptibility is ensured by

having bounded perturbation in the pixel space. The bound

is usually small, e.g., [−4, 4] in the RGB range of [0, 255],
such that perturbations are imperceptible by humans.

Researchers have recently shown adversarial examples

with large pixel distances (from the original inputs) can

1Code and Samples are available on Github [37].

be generated. Such distances are usually way beyond the

bounds that many existing defense and validation techniques

aim to protect, providing a new attack vector. These tech-

niques focus on mutating meta-features of original inputs,

such as colors and styles, due to the difficulty of harness-

ing perturbations on content features, such as shapes and

local patterns, denoted by individual neurons. While us-

ing adversarial samples generated by these techniques can

harden the model in meta-feature space, making the model

robust to color and style changes, they offer limited protec-

tion when the attacker is able to mutate individual content-

features/neurons in an imperceptible way. In addition, the

perturbations generated by these methods are pervasive and

hence more visible in human eyes, making them less desir-

able when being used in real attacks.

In this paper, we propose a new attack vector in the fea-

ture space that can perform imperceptible content feature

perturbation. Such perturbations cannot be expressed by

pixel bounds or meta-feature bounds (e.g., bounds on mean

and standard deviation of activation values) and hence pose

a new challenge to existing defense techniques. The essence

of our technique is to bound the perturbations of individ-

ual neurons. Given a uniform bound at the perception level

(e.g., allowing 10% perceptual perturbation for each content-

feature/neuron), it is projected to various value bounds for

individual neurons which have different activation value

ranges and distributions. Gradient back-propagation is used

to mutate input pixels, just like in traditional adversarial

attack, while the mutations are constrained by the internal

bounds. A naive method is to first profile the activation value

ranges of individual neurons and then limit the variation of

each neuron to a fixed portion of its value range. However,

this method does not work because the perception of a fixed

activation value perturbation varies substantially (even for

a single feature) depending on the activation value itself.

For example, a change of 1.0 when the activation value is

0.0 admits a substantially different level of perceptual varia-

tions compared to the same change when the value is 15.0.

To achieve a uniform perceptual bound, we propose to use

a distribution quantile bound. More specifically, given a

model, we identify internal values that approximate normal
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(a) Original
(ℓ! ℓ" conf.  succ.)

(c) BIM
(16/255, 460, 8.6,      )

(b) BIM
(5/255, 64, -10.4,     )

(d) FS
(255/255, 3.8k, 15.4,      )

(e) SM
(243/255, 15k, 31.5,     )

(f) D2B
(58/255, 586, 34.8,      )

Figure 1. Adversarial examples of different attacks/attack-settings. The first column represents the original images. The second and third

columns show examples from Basic Iterative Method (BIM) with a small and a large pixel distances, respectively. The following columns

are samples from Feature Space Attack(FS), Semantic Attack (SM), and our Deep Distribution Bounded Attack (D2B). For each set of

images, the first row presents the adversarial examples. The second row shows the perturbations applied to the original image. We enlarge

the perturbations of BIM by 10 times and the others’ by 5 times for better illustration. On the bottom of each column, there is a quadruple

representing the ℓ∞, ℓ2 distances, the attack confidence of each example and the attack success. A positive value implies a successful attack

and a large value indicates the model is very confident about the (misclassification) result.

distributions. We call them a throttle plane (see Section

3). After identifying the throttle plane, we collect the acti-

vation distribution over the training set for each neuron on

the plane. Given a benign sample, its activation on each

neuron (on the plane) is acquired. The bound for its value

change is dynamically computed based on a fixed quantile

of the distribution (e.g., 10%) and the activation itself. This

is called the quantile bound. Our technique is hence called

D2B (Deep Distribution Bounded Attack). We then enforce

the value bounds using a polynomial internal barrier loss

(Section 3.2). Note that such value bounds are completely

dynamic while they denote the same perceptual bound. Our

results show that the method can mutate content features in a

way that is less human perceptible. According to our human

study in Section 4, our technique can achieve 95% attack

success rate, and yet humans cannot easily distinguish the

adversarial examples from the benign ones within a short

time. In comparison to traditional pixel space attacks that

generate noise-like perturbations, our attack generates pertur-

bations piggy-backing on existing semantically meaningful

features, making them difficult to detect.

Example. The second and third columns of Figure 1 (in

the blue dashed box) show some samples with a small

pixel bound (i.e., ℓ∞ = 5/255, meaning the maximum

pixel value change is 5 out of 255) and a larger bound (i.e.,

ℓ∞ = 16/255) for the BIM attack2. Observe that with the

larger bound, the adversarial perturbation is detectable by

2We use BIM instead of other pixel space attacks such as PGD because

we found that (compared to BIM) the random initialization of PGD degrades

imperceptibility at a non-trivial scale, in exchange for just a slightly higher

success rate. Hence, we consider BIM a more compelling baseline when

considering the balance between attack success rate and imperceptibility.

human eyes, suggesting using a large bound in the pixel

space is undesirable. The third and fourth columns (in the

orange dashed box) show some examples of attacks in the

feature space, namely feature space attack [38] and semantic

attack [2]. Details of these attacks can be found in Section 2.

Observe that they have much larger ℓ∞ and ℓ2 distances

(from the original inputs in the first column) than the exam-

ples generated by the BIM attacks. While their perturbations

are less perceptible than the examples generated by pixel

space attacks given a similar pixel distance, the perturbations

are quite noticeable in human eyes due to their pervasive

nature. This is confirmed by our human study (Section 4), in

which we show that with an 80% attack success rate, humans

can easily recognize the adversarial examples.

The last column of Figure 1 shows a typical example

generated by our technique and its pixel-level contrast with

the original image. Observe that the differences largely pig-

gyback on the content features of the original example (by

having similar shapes and local patterns as the original input),

making them more human imperceptible. More importantly,

these perturbations are quite different from those by exist-

ing pixel space and feature space attacks, suggesting a new

threat.

We conduct experiments on ImageNet and five models, in-

cluding both naturally and adversarially trained models. Our

results show that existing adversarial training has little effect

on our attack. Although comparing different attacks may

be comparing apple with orange, we study the correlations

between attack success rate and human imperceptibility for

seven related attacks perturbing either the pixel or internal

space, to understand the high level positioning of our attack.

Our results show that our attack produces adversarial exam-
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Figure 2. Workflow of our attack. It consists of three steps: 1⃝ throttle plane (TP) selection, 2⃝ internal distribution boundary constraint, and

3⃝ adversarial sample generation with combined losses.

ples that are less human perceptible when achieving the same

level of attack confidence/success-rate. Further evaluation

against three different detection techniques demonstrates that

our attack has better/comparable persistence while having

better imperceptibility due to its new attack vector.

2. Related Work

White-box attacks, such as PGD [20], C&W [4],

BIM [18], and FGSM [10], assume access to model inter-

nals and leverage gradient information in sample generation.

Black-box attacks, such as ZOO [6], assume no access to

model internals and directly mutate inputs based on classi-

fication outputs. Our work falls into the white-box attack

category in the image classification domain.

Several works explored adversarial samples which are

unrestricted in the pixel norm. Specifically, semantic at-

tack [2] manipulates a benign image’s color and texture. Xu

et al. [38] leveraged style transfer [14] to mutate (implicit)

styles of benign inputs. In particular, it perturbs the distri-

bution (e.g., mean and variation) of feature maps. Xiao et

al. [34] proposed to relocate pixels through flow optimiza-

tion and constructed spatial adversarial samples. Song et

al. [28] leveraged GAN to generate unbounded adversarial

examples. Some works propose to uniformly change the

colors and lightning conditions for constructing adversarial

examples [12, 19]. To improve imperceptibility of adversar-

ial samples, Croce et al. [7] proposed sparse attack. It defines

a salience score for each pixel and avoids large perturbation

to salient pixels. HotCold attack [23] constrains the pertur-

bation of adversarial samples by utilizing SSIM [41], a score

for measuring structure similarity. However, these scores

can be unreliable for bounding perturbations [27]. Different

from these approaches, our D2B manipulates local content

features, providing a novel attack vector. Analogous to pixel

space attacks, D2B allows changing individual features (just

like changing individual pixels). To achieve the goal, a novel

bounding technique is proposed. Our experiments show that

our attack has high success rate while preserving impercepti-

bility.

Some existing works utilized internal representations to

facilitate attack [17, 25]. Sabour et al. [25] tried to minimize

the ℓ2 distance of internal activations between normal and

adversarial inputs. Kumari et al. [17] optimized inputs to

have ℓ∞-bounded internal perturbations in order to improve

adversarial training. In Appendix F and L, we show that

the uniform bound and two-step optimization used in these

works are not effective for our purpose. Researchers also

tried to perturb the embedding of GAN to generate adver-

sarial samples [29, 30]. However, it is still an open problem

to obtain high-fidelity and content-preserving GAN based

adversarial examples [9].

Some defense techniques utilize internal representations.

For example, existing works [5, 21, 22] use distance of inter-

nal representations to detect adversarial samples. Defense-

GAN [26] leverages the manifold of normal samples. It is

however unclear whether these techniques can effectively

defend against adversarial samples whose perturbations are

bounded in deep layers [1, 31].

3. Attack Design

In our first attempt, we directly extended an existing pixel-

space attack BIM to enforce a fixed internal activation value

bound. However, we found that it does not work well. The

reason is that a fixed value or percentage range makes sense

in the pixel space as it directly reflects a fixed level of hu-

man perception variation. In contrast, a fixed internal range

may imply various levels of pixel changes and hence vari-

ous human perception levels. More details can be found in

Appendix A. We hence propose a different design.

Our Design. Figure 2 describes the workflow of our at-

tack. Given a reference model (from which a throttle plane

is identified and used to constrain feature variations), a target

model (for which adversarial samples are generated), and

some training samples, we first perform throttle plane (TP)

selection (step 1⃝). Specifically, model execution can be

considered as a directed acyclic computational graph (DAG)

from the input to the output. We run the reference model

over some samples and collect the output distributions of

all operations in its computational graph (e.g., the output of

matrix multiplication). The output values lie in a cut-set [33]

of this computational graph are defined as a plane (e.g., the

blue and gray planes in Figure 2). Intuitively, a plane is a
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“slice” of a layer. It contains values from all parallel opera-

tions in a particular layer across all neurons and channels

(and hence also a cut-set of the graph). A layer can be con-

sidered as a stack of multiple planes. For instance, assume

a layer consists of three operations: kernel multiplication,

addition with bias, and ReLU activation function. The val-

ues collected at the end of each operation constitute a plane.

The plane could lie in the border between layers or even in

between operations within a layer.

A plane whose value distribution approximates a normal

distribution is a possible throttle plane (TP) to harness the

adversarial perturbation (e.g., the blue plane in Figure 2).

We use the normality criterion to select information-rich

distributions and filter ill-defined distributions. With a (or

multiple) selected throttle plane(s), we further inspect the

possible distribution boundary for each neuron at step 2⃝.

That is, the perturbed value A′ should be bounded within

some distribution quantile range of the original value A. Fi-

nally, we model the constraint of distribution boundary by

an internal barrier loss function (on the reference model),

which is combined with the cross-entropy prediction loss

(on the target model). During attack (step 3⃝), a normal

input is fed to both models and updated with respect to the

combined attack loss, which produces a successful and im-

perceptible adversarial example. While the reference model

and the target model could be the same model, empirically,

we find that using a stand-alone reference model allows the

best performance as it enables our attack even when a good

throttle plane cannot be found in the target model.

3.1. Distribution Based Bounding and Throttle
Plane Selection

The overarching design of our attack is to harness pertur-

bation at the selected throttle plane(s) such that only small

variations of abstract features are allowed. Note that the

corresponding pixel space perturbations could be substantial

as long as the inner value changes are within bound.

Challenges of Having Internal Throttle Plane. Traditional

adversarial sample generation techniques simply place the

perturbation throttle at the input plane. This makes the design

simple as the perturbation happens strictly within the throttle

plane. In contrast, placing the throttle in an inner plane poses

new challenges.

First of all, while in the input space values have uniform

semantics (e.g., denoting the RGB values of individual pix-

els), values of the inner distributions do not have such a

property. The different values on the same inner plane of-

ten represent various abstract features whose value ranges

have diverse semantics. As such, a uniform perturbation

bound across all these internal values is meaningless. Sec-

ond, in our design, the perturbation occurs in the input space

while the throttle is placed somewhere inside the reference

model. Hence, the input perturbation is not directly con-

trolled and could be substantial. An important hypothesis

is that since the perturbations can only induce bounded in-

ner value changes at the throttle plane, they denote small

semantic mutations of the abstract features. However, given

a particular inner value, the semantic mutation entailed by its

changes is non-uniform within its range. Consider Figure 3c,

which denotes the distribution of an inner value (across the

training set). Observe that a variation of 0.5 when the value

is 1 implies much more substantial semantic changes (indi-

cated by the entailed substantial quantile change) than when

the value is 4, which is at the very tail of the distribution, as

the model is likely insensitive to such a large value.

Our Method – Looking for Gaussian Planes. According

to the above discussion, we cannot utilize a uniform value

bound across the different inner values (on the plane); we

cannot utilize the same bound even when the value varies

(from one input to another). Therefore, we propose a novel

idea of using a distribution based bound. Particularly, we col-

lect the distributions for the individual values (on the plane).

During perturbation, the bound for each inner value is based

on its distribution quantile. As such, not only different values

along the plane have different bounds, but also, the value

may have different bounds when it varies from input to input.

In particular, we select the plane(s) whose values approxi-

mate Gaussian distributions and use a quantile bound based

on the current value and its distribution, instead of using a

concrete value bound. These allow us to have precise and

relatively easy control of the level of semantic mutation.

The intuition of looking for Gaussian distribution is to

maximize entropy. A larger entropy in our case implies

that the neuron contains more information, allowing more

fine-grained semantic control. With the first and second

momentums fixed, a Gaussian distribution has the largest

entropy. In the following, we use a few examples to illustrate

this point.

Consider a block of an adversarially trained ResNet152

(Figure 3a). If we set the throttle plane at the block boundary

(i.e., right after the ReLU function), the distribution for

some value on the plane (across the entire training set) is

shown in Figure 3b. Observe that the density function is ill-

defined at point zero (due to ReLU). It is hence not a good

choice for the throttle plane. Intuitively, the reason is that

substantial input perturbations would be admitted as long as

their inner value remains negative before ReLU. Formally,

the information loss of the negative side is reflected by the

smaller entropy (4.0 after ReLu compared to 5.1 before) and

results in degenerated effectiveness (see Figure 4b and 4c).

If we set the plane right before ReLU, according to Fig-

ure 3c, it approximates Gaussian distribution. The Gaus-

sian distribution makes enforcing a quantile bound easy and

hence allows generating imperceptible adversarial examples

(see Figure 4c). Observe that the background has undergone

much less perturbation (compared to others) as most pertur-
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Figure 3. Operations in the last block of group 1 of an adversarially trained ResNet152 and the corresponding typical distributions of

the values after these operations. In (b)-(e), we present the estimated distance between the empirical distribution and a Gaussian through

Jensen-Shannon(JS) divergence. A smaller value indicates more resemblance.

(a) Original

(Entropy, Is Cut?)
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Figure 4. Adversarial images when the throttle plane is at different positions in Figure 3, under the same perturbation bound. In the bottom,

we report the average entropy of underlying throttle plane and whether it forms a cut of the data flow.

bation is on the content features of the dog and hence not

that visible. We also study the distributions of the values

after the main output and along the shortcut (e.g., Figure 3d

and 3e, respectively). Observe that although (d) resembles

Gaussian distribution and has the largest entropy, placing the

throttle there produces unnatural samples (see Figure 4d).

The main reason is that the operation alone does not form

a cut-set of the computational graph. Intuitively, it leaves a

large part (i.e., the values along the shortcut) unconstrained.

Figure 16 in Appendix R shows the distributions for a set

of randomly selected values on the same plane. Observe

that they approximately follow normal distributions. Also,

observe that their distribution parameters are quite different,

supporting our design of using different bounds for various

values on a plane.

During sample generation, given a benign input, the se-

lected throttle plane’s inner values are collected. The bound

of the value is then determined by its quantile of the value (on

its density function). How to enforce such quantile bounds

is discussed in the following section.

3.2. Enforcing Quantile Bound with Polynomial
Barrier Loss

Let D be a distribution on support S. The activation

yi of neuron i on a selected throttle plane I is a random

variable through mapping fi : S → R, yi ∼ fi(D). We

denote the cumulative distribution function of yi as Ci(x),
and the corresponding quantile function as C−1

i (x). Let

the original image be xnat and the adversarial sample be

xadv. Correspondingly, let yi
adv and yi

nat be the respective

activations for xnat and xadv. Assume the allowed quantile

change is less than a threshold ϵ. The corresponding value

bound for yadvi ∈ [lowi, highi] is hence the following.

yadvi ∈
[

C−1
i

(

max(Ci(x
nat)− ϵ, 0)

)

,

C−1
i

(

min(Ci(x
nat) + ϵ, 1)

)] (1)

Note that we translate the quantile bound to a value bound,

over which we can define a loss function.

Polynomial Barrier Loss. Interior point method or bar-

rier method [3] is a standard technique for constrained op-

timization. It is widely used in linear programming appli-

cations [32]. It utilizes a negative log function in the loss

function by default. However, it was intended to be used

in problems where the bound is hard, meaning the values

must not exceed the bound as the loss becomes infinitely

large when the value infinitely approaches the bounds. In

our context, a hard bound does not work well with ReLU

functions. Specifically, input changes guided by gradients

may activate some previously inactive neurons, leading to

the inner values to exceed their bounds, causing numerical

exceptions (on the log function). Another naive design is to

introduce a ReLU kind of bound, that is, the loss is 0 while

the value is in bound and some large value otherwise. How-

ever, it does not apply penalty when the value is approaching

the bound. Therefore, we devise a polynomial barrier loss as
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follows.

Li(yi
adv) = k

[

ReLU(yi
adv − yi

nat)

highi − yi
nat

+

ReLU(yi
nat − yi

adv)

yi
nat − lowi

]b (2)

Intuitively, the loss function applies a polynomially increas-

ing penalty when the inner value induced by adversarial per-

turbation approaches the bound. Please refer to Appendix J

for details and the comparison with other loss choices.

Optimization Method. With the polynomial barrier loss,

we use a standard gradient sign method [4] for optimiza-

tion. There are other design choices. For example, in [17], a

two-step optimization was proposed to facilitate adversarial

example generation by leveraging internal values. However,

we found that the method is not effective when a strict inter-

nal boundary is enforced. Another simple method is clipping,

which clips the inner values (on a throttle plane) and prevents

gradient propagation if they are beyond bounds as we men-

tioned in Section 3. We conduct experiments to compare the

three methods. Our method can better enforce the internal

bound and generate adversarial examples with one order of

magnitude smaller average boundary size. Details can be

found in Appendix F.

Identifying an appropriate quantile bound value is im-

portant. We address the problem by profiling the quantile

changes at the throttle plane under other attacks. Specifi-

cally, we use the average observed internal value ℓ∞ quan-

tile change (at a throttle plane) for the adversarial examples

by BIM4. Identifying the learning rate is discussed in Ap-

pendix B. Occasionally, we observe the generated adversarial

examples exhibit checkerboard patterns. We hence add a

feature smoothing loss during optimization. Details and an

ablation study can be found in Appendix C and G.

4. Experiments

We conduct experiments on ImageNet [24] and five types

of DNN models. We show that pre-trained models hardened

by state-of-the-art adversarial training methods cannot de-

fend our attack. Furthermore, although attacks in different

spaces may not be comparable in general, we study the trade-

off between attack effectiveness and imperceptibility for a

large set of eight attacks in both pixel and feature spaces,

including D2B. The goal of the study is not to say one at-

tack is superior to another, but rather to provide an intuitive

understanding of D2B’s positions in these generic metrics.

Finally, we evaluate D2B against three popular adversarial

attack detection approaches.

Attacks In Study. We study D2B and seven other existing

attack methods: BIM [18], hot cold attack [23], sparse at-

tack [7], feature space attack [38], semantic attack [2], latent

attack [17] and spatial attack [34]. We use BIM as the rep-

resentative of classic pixel space adversarial attacks such as

PGD and C&W (due to the reason explained in Section 1).

Feature space attack uses auto-encoder based on VGG16 and

performs bounded perturbation of the mean and variance of

internal embeddings [38]. Semantic attack manipulates input

color and texture. Sparse attack applies small perturbation

to salient pixels and large perturbation to less salient pixels.

Hot-cold attack uses the SSIM score [41] to constrain per-

turbation. Spatial attack optimizes flow of pixels to generate

adversarial sample. Latent attack uses two-step optimization.

We use these eight attack methods to generate adversarial

examples for a naturally trained ResNet50 model [11] and

an adversarially trained ResNet152 model [35] (ResNet152-

adv). For BIM, sparse attack, hot cold attack, latent attack,

feature space attack and our attack, we stop the attack op-

timization when convergence is reached (no confidence in-

crease). For semantic attack and spatial attack, we use a

preset number of optimization steps. Note that they are un-

bounded and the optimization step controls the perturbation

and the attack success rate. For the sparse attack, we are

unable to scale it up to an untargeted attack on ResNet152-

Adv.

Evaluation Metrics. We measure attack success rate versus

imperceptibility for untargeted attacks on the adversarially

trained model (Figures 5b and 5d). In contrast, we measure

attack confidence score versus naturalness for targeted at-

tacks on the normally trained model (Figures 5a and 5c).

Note that we cannot use attack success rate for the normally

trained model as it is almost 100% for all the attacks. We do

not conduct untargeted attacks on the normally trained model

or targeted attacks on the adversarially trained model as the

former is too easy and the latter is too hard for a comparative

study. The confidence score of a sample x is defined on the

logits (the pre-softmax) value L(x) [4]. Specifically, for a

targeted attack, suppose the target label is t, the confidence

score of a sample x is defined as follows.

Lt(x)−max
i ̸=t

Li(x) (3)

Intuitively, it is the logits gap between the target label and

another label with the maximum logits and hence measures

the success level of an attack when the attack can always

induce misclassification [35].

In order to measure the imperceptibility of generated

examples, we perform a human study using Amazon Turk.

We employ a similar setting as that in [40]. Specifically,

for each attack, users are given 100 pairs of images, each

consisting of a real image and its adversarial counterpart.

They are asked to choose the one that looks unreal. Each

user is given 5 test-drives before the study starts. Each pair

of image appears on screen for 5 seconds and is evaluated

by three different users. More about the user study can be
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(a) Targeted attacks on Resnet50 (human-pref vs. confidence) (b) Untargeted attacks on Resnet152-Adv (human-pref vs. ASR)

(c) Targeted attacks on Resnet50 (SSIM vs. confidence) (d) Untargeted attacks on Resnet152-Adv (SSIM vs. ASR)

Figure 5. Quality of the generated adversarial examples. These figures present the level of naturalness (y axis) versus the level of attack

success (x axis). Results in the top-right corner denote the best trade-off. Figures (a) and (c) denote targeted attacks on a normally trained

Resnet50; (b) and (d) denote untargeted attacks on an adversarially trained Resnet152. For naturalness, we report SSIM score (with value 1

indicating an adversarial sample and its benign version are identical), and human preference rate collected in human studies, which denotes

the rate that humans consider an adversarial example real (compared to its benign version), with 50% meaning humans cannot distinguish.

To measure attack success level, we use attack success rate and confidence score. The latter is for attacks on normally trained models which

always cause misclassification, rendering attack success rate an invalid metric. We regard an untargeted attack successful if the true label

does not appear in the top-5 predicted labels, which is consistent with the literature [36]. The shaded area on a data point (i.e., an attack

setting) represents the standard error of the human preference rate or the SSIM score.

Table 1. Pixel and quantile distances for ResNet50, with Conf.

meaning attack confidence

Attack Conf.
Pixel Dist. ℓ∞ Quantile Dist.

ℓ2 ℓ∞ Plane 1 Plane 2 Plane 3

BIM4 81.91 10.81 0.04 0.62 0.83 0.90

D2B10 30.29 4.26 0.07 0.06 0.08 0.09

D2B20 58.82 6.27 0.09 0.12 0.16 0.17

D2B30 72.43 7.28 0.10 0.18 0.24 0.26

D2B40 80.06 7.88 0.11 0.24 0.32 0.35

D2B50 84.52 8.25 0.11 0.30 0.41 0.44

Table 2. Pixel and quantile distances for ResNet152-Adv, with Succ.

meaning attack success rate

Attack Succ.
Pixel Dist. ℓ∞ Quantile Dist.

ℓ2 ℓ∞ Plane 1 Plane 2 Plane 3

BIM4 0.58 14.49 0.04 0.65 0.82 0.89

D2B10 0.61 6.65 0.11 0.06 0.08 0.09

D2B20 0.86 15.43 0.24 0.13 0.16 0.17

D2B30 0.86 16.68 0.19 0.19 0.24 0.26

D2B40 0.97 21.84 0.22 0.26 0.33 0.35

D2B50 0.98 27.08 0.26 0.33 0.41 0.44

found in Appendix D. In addition to the human study, we

also use Structure Similarity Index (SSIM) [41] to quantify

the perceptual distance of the adversarial samples. SSIM

ranges from −1 to 1, with a larger value indicating more

similarity, while a 0 score indicating no similarity.

Results. The results are summarized in Figure 5. These

figures show the tradeoffs between imperceptibility (y axis)

and attack effectiveness (x axis) for various attacks. Fig-

ures (a) and (c) present targeted and untargeted attacks for

Resnet50, respectively, and (b) and (d) for the adversarial

trained Resnet152. Each point in these figures denotes an

attack setting and each curve shows the variations of differ-

ent settings of an attack. Points at the top-right corner are
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desirable, i.e., effective attacks with imperceptibility.

BIMx denotes BIM with an ℓ∞ bound x% of 255. For

example, BIM4 means the ℓ∞ bound is 255 × 4% ≈ 10.

FS1 and FS2 are feature space attacks using the relu2_1 and

relu3_1 layers of VGG16, respectively, as the embedding

layer. SMx is semantic attack with an optimization step

of x. SP1 and SP2 are spatial attacks [34] with the flow

constraint set to 0.005 and 0.0005 respectively. HCx is the

hot-cold attack using a SSIM score x as the constraint. D2Bx
denotes that we allow x% of the average quantile change

observed in BIM4 at the throttle plane. The reason we use

percentage relative to BIM4 is for simplicity. Otherwise, one

needs to fine tune the magnitude among different throttle

planes. Overall, we have studied 37 attack settings, each

entailing one user study. In these user studies, we involve

3700 samples and 252 users in total.

From Figure 5, we have the following observations.

(1) Adversarial training has less effect on D2B. Observe

in (a), without adversarial training, D2B40 has a very high

80 confidence with 0.43 human preference, meaning that

the attack is quite effective while humans can hardly tell the

adversarial samples from the benign ones. BIM2 and BIM4

have similar performance. In (b), with adversarial training,

D2B40 still has close to 1.0 attack success rate and a 0.36

human preference rate. Even the lightest attack D2B10 has

close to 0.7 ASR and 0.42 human preference. In contrast,

adversarial training is quite effective for defending BIM.

Observe only BIM2 can achieve a similar human preference

rate as D2B40. But its ASR is as low as 0.37. The results on

SSIM, i.e., (c) and (d), disclose similar observations.

(2) D2B is much more effective and imperceptible than

other feature space attacks. Observe that in (a), all the

feature space attack data points are distant from the D2B

curve, mostly falling in the left-bottom quadrant. In other

words, they have low attack confidence and humans can tell

the adversarial samples. In (b), although the gap becomes

narrower due to adversarial training, the differences are still

prominent. For example, SM500 can achieve 1.0 ASR, just

like D2B40. However, its human preference rate is as low

as 0.04. FS1 has a comparable human preference score as

D2B40, but its ASR is 0.66 (compared to 1.0 for D2B40).

(3) D2B has the highest attack confidence/success rate

at the same level of human preference/SSIM score (more

towards the top-right corner than others). And with the

same confidence/success rate, our adversarial examples are

consistently more favored by the testers/SSIM score (for

being more imperceptible) than those by other attacks. Our

adversarial examples with the most aggressive settings (e.g.,

D2B40) have a similar human preference to pixel space

attack with a very small bound (BIM2 and BIM4), indicating

our attack is indeed imperceptible. With the increase of

quantile change, perturbation bound, or optimization step,

all the attacks achieve a higher success rate, and our attack

is increasingly more imperceptible than others.

We further study the pixel distance and quantile distance

of the generated adversarial examples by different attacks.

The ℓ∞ quantile distance is defined as maxi∈I |Ci(x
adv)−

Ci(x
nat)|. Table 1 and Table 2 show that with a similar level

of attack confidence or attack success rate, our attack has

a smaller ℓ2 pixel distance and ℓ∞ quantile distance. This

indicates that our generated examples can achieve a similar

level of attack effectiveness with less perturbation (and hence

better imperceptibility). In other words, it can tolerate more

aggressive perturbation without degrading imperceptibility

as much, demonstrating the benefits of bounding deep layers.

The larger ℓ∞ pixel distance and the smaller ℓ2 pixel distance

(compared to BIM4) indicate our perturbations are more

diverse, heavily piggy-backing on original features. The

attack effectiveness and pixel/internal distances for other

models are similar. Details can be found in Appendix H.

Adversarial examples generated by the different settings of

our attack and other attacks can be found in Figure 13 and

Figure 14 in Appendix Q.

Other Experiments. We evaluate D2B against three popular

detection approaches and find that our attack is more or com-

parably persistent in the presence of detection (Appendix M).

We study the transferability of our attack and observe that

D2B has a comparable/slightly-better transferability than

others (Appendix O). We conduct a study about the essence

of D2B by studying the places that it aims to attack (Ap-

pendix N). Comparison of different reference models and

deep bounds can be found in Appendix K and L. Details

about the throttle planes used are discussed in Appendix E.

5. Conclusion

We propose a novel adversarial attack that perturbs indi-

vidual content-features/neurons. It leverages a per-neuron

normal distribution quantile bound and a polynomial bar-

rier loss to address the non-uniformity of internal values

regarding perception. Our evaluation on ImageNet, five

models, and comparison with seven other state-of-the-art

attacks demonstrates that the examples generated by our at-

tack are more imperceptible while achieving better attack

effectiveness. This poses new challenges to existing defense.

It is also more persistent in the presence of various detection

techniques. We discuss ethical considerations in Appendix P.
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