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Abstract

Average precision (AP) loss has recently shown promis-
ing performance on the dense object detection task. How-
ever, a deep understanding of how AP loss affects the detec-
tor from a pairwise ranking perspective has not yet been de-
veloped. In this work, we revisit the average precision (AP)
loss and reveal that the crucial element is that of select-
ing the ranking pairs between positive and negative sam-
ples. Based on this observation, we propose two strate-
gies to improve the AP loss. The first of these is a novel
Adaptive Pairwise Error (APE) loss that focusing on rank-
ing pairs in both positive and negative samples. Moreover,
we select more accurate ranking pairs by exploiting the
normalized ranking scores and localization scores with a
clustering algorithm. Experiments conducted on the MS-
COCO dataset support our analysis and demonstrate the
superiority of our proposed method compared with current
classification and ranking loss. The code is available at
https://github.com/Xudangliatiger/APE-Loss.

1. Introduction

Object detection is one of the fundamental computer vi-

sion tasks and aims to predict both the category labels and

the bounding-box coordinates of all objects in a given im-

age [3, 19, 21, 27, 30]. It also plays an important role in

many down-stream applications such as instance segmenta-

tion [1, 9, 31, 33] and face detection [6]. Modern object de-

tectors can be divided into two-stage approaches [3,27] and

one-stage approaches [35, 39]. One-stage detectors adopt

dense prediction without a region proposal phase; thus they

are also known as dense object detectors. One-stage ob-

ject detectors are also naturally faster than two-stage de-

tectors and popular in real-world applications such as that

on edge devices [35, 39]. Most one-stage object detec-

tors [16, 19, 21, 26, 30, 38, 40] rely on a classification task

to discriminate the category of objects, i.e., directly pre-
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dicting the category probability for every patch in an im-

age. However, it often suffers from an extreme imbalance

problem, as huge numbers of background patches (i.e., neg-

ative samples) can overwhelm the sufficient loss gradients

for foreground patches (i.e., positive samples). Recently, to

alleviate this sensitivity to the ratio of negative and positive

samples, Average Precision Loss [4] converts the classifica-

tion task into a ranking task by explicitly modeling sample

relationships that are calculated by comparing all sample

pairs.

Despite AP loss performing well at addressing the sam-

ple imbalance problem, the essential mechanism of how

AP loss affects the detector is still veiled. Accordingly, in

this paper, we delve into AP loss from a pairwise ranking

perspective [2]; specifically, the crucial part of AP loss is

the minimizing of the pairwise error between the positive

and negative samples. To find out the essential properties

of AP loss, we analyze components of pairwise error sep-

arately and reveal that the key factor is the accurate and

complete ranking pair selection. Consequently, we improve

the AP loss by adjusting the way in which ranking pairs

are constructed and selected. Proper ranking pair selection

achieves notable performance gains for object detection.

More specifically, we first derive a reformulation of the

AP loss and show that it contains three main components of

generalized pairwise error: distance function, balance con-

stant and ranking pair selection. We conduct detailed exper-

iments to verify these different components’ effects and de-

termine that proper ranking pair selection plays a vital role

in producing accurate detection results. We then investigate

the barriers to good performance encountered by existing

ranking pair selection strategies and identify the following

issues: (1) Traditional strategies [13, 19, 30, 38] ignore the

ranking pairs between positive samples, which may lead to

inaccurate category probability prediction, and harms the

Non-Maximum Suppression (NMS) result; (2) The prob-

ability of image content in the ranking task and accuracy

in the localization task, i.e., ranking score and localization

score have different distributions, which brings imbalanced

attentions to those two tasks during the pair selection pro-
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Figure 1. Comparison between our ranking pair selection and a traditional methods. Here, the large red and blue dots are used to highlight

positive and negative samples, respectively, while the two-way arrows are used to highlight typical ranking pairs. (a) Current pairwise

ranking methods ignore the pair between positive positions and focus on the anchor-based IoU to select ranking pairs. The red and white

boxes are the ground truth and preset anchor. (b) FCOS detector (this paper omits the center-ness branch). (c) Our method can make up

for the loss of ranking pairs between positive samples and focus on the distribution of prediction scores to adaptively select more accurate

ranking pairs.

cessing as in Probabilistic Anchor Assignment (PAA) [13].

To alleviate these barriers, we propose a simple yet ef-

fective Adaptive Ranking Pair Selection (ARPS) approach

to provide complete and more accurate ranking pairs for cal-

culating pairwise error. To begin with, we build extra rank-

ing pairs from the positive set to calculate Adaptive Pair-

wise Error (APE), which is differentiable and easy to im-

plement and can exploit the ranking information between

positive samples. It is worth noting that APE loss can also

be considered a more accurate AP loss formulation. Sec-

ond, we align the instance-level ranking scores and local-

ization scores via normalization and feed them into a clus-

tering algorithm (e.g.Gaussian Mixture Model in PAA [13])

to create a better split between the positive and the negative

set. After that, ranking pairs can be easily obtained from ev-

ery combination pair of two clusters. Experimental results

show that our method can optimize the training procedure

of ranking tasks with higher accuracy.

The contributions of this work are three-fold and can be

summarized as follows: 1) We conduct thorough experi-

ments to verify each part of AP loss from a pairwise per-

spective and reveal that inappropriate ranking pair selection

is the main obstacle; 2) we propose a ranking pair selection

algorithm, i.e., ARPS, to exploit complete and more accu-

rate ranking pairs automatically; 3) our method achieves

competitive performance when evaluated against all other

existing classification and ranking methods.

2. Related Work

Dense Object Detection: In object detection frameworks,

two-stage detectors commonly utilize cross-entropy loss

[3, 27] for the classification purpose, while many dense de-

tectors equip GHM loss [14] and focal loss [19] to alleviate

the sample imbalance problem. Moreover, a large number

of works have attempted to boost dense object detection,

using methods that include exploiting information from dif-

ferent layers [8,18], feature alignment [25,37] and accurate

category probability [11, 13, 16, 36, 37].

Accurate Object Detection: Recent studies [11,16,30,36]

have integrated the quality information of positive sam-

ples, i.e., Intersection over Union (IoUs) between predicted

boxes and ground-truth boxes, into the classification task or

additional IoU (or center-ness) prediction task (e.g., IoUs

are employed as the labels for the CE loss on classification

task). When detectors are able to predict the qualities of the

positive samples, more accurately predicted category prob-

abilities (e.g., IoU-aware classification scores in [37]) will

greatly improve the results of the box selection algorithm

NMS [11].

Ranking for Object Detection: Recently, AP loss [4] has

been proposed to avoid the imbalance problem in dense ob-

ject detection by proposing a novel ranking framework to

replace the classification task. aLRP Loss [22] extends AP

loss to optimize unified detection metric LRP and also ad-

dresses the localization task. DR loss [24] re-distributes

positive and negative samples so that only one expectation

ranking pair is used in loss; however, it ignores localiza-

tion qualities, i.e., IoUs of positive samples. Learning to

ranking model [29] adds an extra branch in two-stage detec-

tors to solve the ranking of localization quality. Similarly,

RankDetNet [20] considers the task as a separated ranking

task and tackles it with an IoU-guided ranking loss. Adopt-

ing a different approach to these works, we verify each part

of AP loss from a pairwise perspective through experimen-

tal analysis and determine that inappropriate ranking pair

selection is the main obstacle. Hence we propose a ranking

pair selection algorithm, ARPS, to automatically produce

complete and more accurate ranking pairs and merge the

localization qualities into a more accurate AP metric opti-

mization problem.

From the perspective of localization quality ranking, a
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related and concurrent work is RS loss [23], which also pro-

poses to leverage the information among positive samples

by applying a sorting loss. Although RS loss [23] considers

the relation among positive samples, it differs from our pro-

posed method in essential ways. They combines IoUs into

error-driven update to tackle the non-differentiable nature

of ranking and sorting; by contrast we utilize IoUs informa-

tion to construct extra ranking pairs from positive samples

into a differentiable pairwise error, and can work without

error-driven update.

Training Sample Selection: Throughout this paper, we

will use the terms “ranking pair selection” and “training

sample selection” interchangeably, with the understanding

that the ranking pairs are formulated as different pairs from

two sample sets; i.e., the positive and negative. Reti-

naNet [19] defines positive samples using a manually ad-

justed IoU threshold of preset anchor box, while ATSS [38]

provides an adaptive IoU threshold. Recent studies [12, 13,

15] adaptively separate positive and negative sets depending

on the model’s learning status.

3. Preliminary
Based on traditional detector designs, let O ∈ RH×W×3

be an input image of width W and height H . Given an

image O, we use a backbone network FFPN with Feature

Pyramid Net (FPN) [18] to obtain n feature maps as fol-

lows:

F0,F1, ...,Fi, ...,Fn = FFPN (O) (1)

where Fi ∈ R
H
Si

×W
Si

×Di is the feature map at layer i ∈
{0, 1, ..., n}, Si is the output stride and Di is the dimen-

sional depth of Fi. The ranking sub-net Frank and local-

ization sub-net Floc are applied on each Fi, such that our

objective heatmaps are obtained as follows:

P̂i = Frank(Fi) B̂i = Floc(Fi) (2)

where P̂i ∈ R
H
Si

×W
Si

×M
and B̂i ∈ R

H
Si

×W
Si

×4
represent

category probability prediction and localization bounding

box prediction, respectively; moreover, 4 denotes the en-

coding of four coordinates for localization. Furthermore,

M is equal to C × A, where C is the number of classes (C
is 80 for the COCO [17] dataset) and A is the number of

anchors.

Specifically, with Npos positive samples, our training ob-

jective function Lrank can be described as the average pre-

cision loss Lp of each positive sample. The Lrank and lo-

calization loss Lloc on these two sub-nets can be expressed

as follows:

Lrank =
1

Npos

∑

i+

∑

c+

∑

x+,y+

Lp(P̂i+,x+,y+,c+ , P̂) (3)

Lloc =
1

Npos

∑

i+

∑

x+,y+

LGIoU(B̂i+,x+,y+ ,Bi+,x+,y+) (4)

where P̂i+,x+,y+,c+ ∈ R and P̂ are the predictions for each

sample on a positive location {i+, x+, y+, c+} and all the

samples on every location, respectively. We train M bi-

nary predictors rather than one multi-class predictor, fol-

lowing [19]. B̂i+,x+,y+ ∈ R4 and Bi+,x+,y+ ∈ R4 are

the prediction and the ground truth label for localization,

respectively, while {i+, x+, y+} indicates the position of

positive samples. As for localization, LGIoU is the GIoU

loss [28].

4. A Pairwise Ranking Perspective on AP Loss
Note that the predicted probabilities P̂ (before sigmoid

function) of all samples are fed into the loss function Lp.

This loss can accordingly exploit the ranking pairs between

the positive and negative samples. We formulate the preci-

sion loss as follows:

Lp(P̂u, P̂) = 1− Precision(P̂u, P̂) =
FP

TP + FP

=
rank−(u)

rank+(u) + rank−(u)

=

∑
v∈N

H(P̂v − P̂u)

∑
v∈P,v �=u

H(P̂v − P̂u) +
∑

v∈N
H(P̂v − P̂u)

(5)

where index u is used to replace {i+, x+, y+, c+} for nota-

tion convenience, while rank+ and rank− denote the rank-

ing position of sample u in the positive sample set P and

negative sample set N respectively. They also indicate the

number of True Positives (TP ) and False Positives (FP ),

respectively. Here, to approximately calculate the ranking

position, AP loss adopts the distance function H(·) between

sample pairs, which is a piece-wise step function and can be

written as follows:

H(x) =

⎧⎨
⎩

0, x < −δ
x/2δ, − δ <= x <= δ

1, δ < x

(6)

where δ is a tuning hyper-parameter used to control the

slope of H(·) in [−δ,+δ].
However, the vector field of prediction errors of H(·) is

not conservative. Thus [4] proposed an Error-Driven Up-

date method for AP loss by manually setting the error gu as

the gradient of precision loss Lp w.r.t.a positive prediction

P̂u. Here, gu is defined as follows:

gu =
−∑

v∈N H(P̂v − P̂u)

rank+(u) + rank−(u)
(7)

where gu is used in the same way as
∂Lp(P̂u,P̂)

∂P̂u
in back

propagation. Similarly, gv , the gradients w.r.t.a negative

prediction P̂v can be formulated as: gv = H(P̂v −
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Table 1. Comparison of distance functions.

distance function Error-Driven Update AP AP50 AP75

H(·) � 37.4 57.5 39.2

S(·) � 37.3 57.4 38.9

CE(S(·), 0) 37.3 57.2 39.1

P̂u)/(rank
+(u)+rank−(u)), where gv is used in the same

way as
∂Lp(P̂u,P̂)

∂P̂v
in back propagation. It is worth noting

that
∑

v∈N gv = −gu; thus, pairwise design can alleviate

the imbalance of positive and negative samples.

In fact, the denominator term of the backpropagation

gradient gu shown in Eq. (7) is the same as the one of pre-

cision loss in Eq. (5) and can be considered as a balance

constant. It is evident that optimizing AP loss is equivalent

to minimizing the numerator in Eq. (5) [22], which can also

be considered as the sum of the distance error between each

pair of prediction scores, i.e., pairwise error. Therefore, to

reduce the redundancy of analyzing ranking tasks, we can

rewrite the precision loss as pairwise error loss with the uni-

fied formalized description following [2]. We here present

this unified pairwise error loss LPE as follows:

LPE(P̂u, P̂) = − 1

BC

∑

v∈N
D(P̂v − P̂u) (8)

where BC denotes the balance constant, while D(·) denotes

the distance function adopted as the pairwise error. Finally,

we have our ranking loss Lrank for all positive samples in

a mini-batch: Lrank =
∑

u LPE(P̂u, P̂)/Npos.

5. What Contributes to Pairwise Error?
As shown in Eq. (8), the reformulation of the pairwise

ranking loss consists of three essential parts: (1) the dis-

tance function D(·); (2) the balance constant BC; (3) the

pair selection of P̂v and P̂u. To find out the essential prop-

erties of different designs in ranking-based losses, we ana-

lyze each part separately and verify the effect of different

strategies for pairwise ranking methods [2, 22, 29]:

Distance Function: [2, 29] adopt sigmoid S(·) as distance

function, which can be described as follows: S(P̂v −
P̂u) = 1/(1 + exp(λ(P̂u − P̂v)), where λ is a tuning

hyper-parameter that controls the slope of the sigmoid func-

tion near the origin. By contrast, AP loss uses a non-

differentiable function H(·), described in Eq. (6) and em-

ploys Error-Driven Update for backpropagation. However,

as shown in the first and second rows of Table 1, when H(·)
in AP loss is replaced with S(·), the influence on perfor-

mance is minor. Additionally, we also use a cross entropy

loss CE(·, 0) to replace Error-Driven Update (see appendix

for more details). The results are shown in Table 2, where it

can be seen that the usage of Error-Driven Update provides

the same performance as CE loss (i.e., 37.3). These results

illustrate that the influence on the performance of different

Table 2. Comparison of balance constants.

Balance Constant Threshold AP AP50 AP75

rank+(i) + rank−(u) 37.3 57.4 38.9

Nneg � 37.3 56.7 39.4

Table 3. Varying for sampling strategy on LPE.

Sampling Strategy AP AP50 AP75 APS APM APL

IoU threshold 37.3 57.4 38.9 19.4 41.7 51.8

ATSS 39.2 59.4 41.8 21.4 43.2 53.7

distance functions employed in recent pairwise loss [2,4,29]

are minor.

Balance Constant: Consequently, we need a balance con-

stant to normalize the sum of all pairwise errors. AP loss

uses rank+(i) + rank−(u) in Eq. (7) as its balance con-

stant. While [2] sets the balance constant as the number of

valid negative samples Nneg , which can keep the loss func-

tion simple. Note that, only if Nneg is small enough, we

can replace balance constant with Nneg . Hence, we use a

threshold to define which sample is valid (for more details,

please refer to the appendix). We conduct empirical stud-

ies with these two balance constants. As shown in Table 1,

the two different balance constants also yield similar perfor-

mances (37.3 v.s. 37.3). Although the results suggest that

these two balance constant choices are robust, the balance

constant design of AP loss is more adaptive and does not

require a valid sample threshold hyper-parameter.

Ranking Pair Selection: As for the selection of ranking

pairs, i.e., (P̂v, P̂u), ALRP loss [22] adopts ATSS [38]

while AP loss adopts an IoU threshold, following [19].

When we use the ATSS [38] to select ranking pairs, the per-

formance of pairwise loss is significantly promoted; specif-

ically, it is boosted from 37.3 to 39.2. This result may be

caused by some important ranking pairs being ignored or

many of the selected ranking pairs being inaccurate. Thus,

inappropriate ranking pair selection is a significant barrier

to higher accuracy.

Analysis of Inappropriate Ranking Pair Selection: Cur-

rent state-of-the-art pair selection strategies [4, 22, 24] only

depend on IoUs between preset anchor boxes and ground

truths; thus, there is a lack of exploiting image content. As

can be seen from Fig. 2 (a), the background and foreground

may have the same priority, since the distance to the centre

of this ground truth box is the same for both of them, lead-

ing to an inferior ranking pair selection (e.g., there will be a

ranking pair between the two grass positions in Fig. 2 (a)).

Recent studies on adaptive sampling selection [12, 13, 15]

integrate both the predicted category probabilities and lo-

calization results into positive sample selection, since the

category predictions can represent the image content, while

accurate localization results can also achieve better detec-

tion accuracy. To address this barrier, we employ PAA [13]

which utilize both classification loss and localization loss
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Figure 2. (a) Different positions in the ground truth box may have

the same IoU between their preset anchor box and ground truth.

The blue boxes are used to denote anchor boxes, while two-way

arrows are used to highlight two ranking pairs. (b) Dense object

detection can predict many candidate boxes from positive posi-

tions. The box that perfectly predicts this cat is clearly performing

better than those that ignore the cat’s foot. (c) Left: The distribu-

tion of original ranking scores and localization scores. Although

they are in the range of [0, 1], they have different distributions.

Right: The distribution of 0-1 normalized ranking scores and lo-

calization scores.

for adaptive sampling selection. However, two major prob-

lems remain with the existing sampling algorithms when

incorporated into the pairwise ranking method:

(1) existing ranking pair selection strategies naturally

ignore all important ranking pairs between positive sam-

ples (i.e., v in Eq. (8) is limited in the negative sample set

N ). As shown in Fig. 2 (b), the detection model may pre-

dict many candidate boxes for a specific positive position.

This reveals the existence of localization accuracy dispari-

ties between positive samples. It is accordingly necessary

to exploit the localization information for ranking loss. If

ranking pairs between the positive samples are ignored, the

detector is more likely to select unreliable boxes, which has

a severely detrimental impact on the final accuracy.

(2) Ranking scores (i.e., the predicted ranking probabil-

ities S(P̂)) used in the sampling processing have different

distributions with localization scores (i.e., IoUs), leading to

the attentions of the two tasks being uncoordinated. We

illustrate this phenomenon in Fig. 2 (c). The localization

scores typically have values close to 1, while the ranking

scores generally have relatively lower values. This is be-

cause the training stops before the ranking scores of positive

samples goes to 1. In particular, when the P̂u of positive

sample is relatively higher than P̂v , the distance function

D(·) will drop to 0. To this end, PAA [13] will focus more

Algorithm 1: Adaptive Ranking Pair Selection

Input:
P is a set of positive positions

N is a set of negative positions

Î are the IoUs between boxes B̂ predicted at the

corresponding position and ground truth

Output:
A is a set of adaptive negative position sets

1 A ← ∅;

2 forall u ∈ P do
3 build an empty negative sample set for each positive

sample position u: Au ← ∅;

4 forall v ∈ P, v �= u do
5 if Îv < Îu then
6 If its IoU is smaller than that of p, this

sample should be considered an adaptive

False Positive (aFP) sample in original P set

Au = Au ∪ v;

7 end
8 end
9 Au = Au ∪N ;

10 A = A ∪ {Au};

11 end
12 return A;

on image content than localization accuracy, because classi-

fication loss will obtain a higher value than localization loss

at the end of the training.

6. Adaptive Ranking Pair Selection
We propose ARPS to calculate Adaptive Pairwise Error

between positive samples. Our method focuses on dynam-

ically selecting negative samples Au in positive set P ac-

cording to their localization qualities. Notably, each posi-

tive sample u is assigned with a different set Au to replace

N in Eq. (8). Here, APE loss LAPE can be written as fol-

lows:

LAPE(P̂u, P̂) = − 1

BC

∑

v∈Au

D(P̂v − P̂u) (9)

where the balance constant BC is set as rank+(u) +
rank−(u), while the distance function is set as cross en-

tropy with sigmoid CE(S(·), 0). In a departure from pre-

vious works [11, 16, 30, 36], adaptive pairwise error in-

tegrates localization quality-related information into extra

ranking pairs between positive samples rather than regress-

ing a certain value (e.g., center-ness in [30] and IoU in [16]).

Our method is adaptive and does not bring any hyper-

parameters, which eases training overloads for different ap-

plications. With the dynamic expansion of the negative

sample set, our proposed APE loss considers the ranking

pairs in the positive samples and further boosts the detec-

tion accuracy.
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Description: Alg. 1 describes how the proposed method

works for an existing negative sample set and dynamically

expands it. For each positive position u ∈ P with IoU Îu,

we add the samples v with lower IoU Îv than Îu into a dy-

namically expanded negative sample set Au as shown in

Alg. 1. After we store all additional negative samples from

P , we merge Au with N in lines 9 to 10. After we employ

the ARPS to calculate adaptive pairwise error in Eq. (9), it

would be interesting to explore the obstacle part in the orig-

inal AP metric. Hence, we re-write APE loss in AP formula

and analyse which parts of AP loss are modified by ARPS.

LAPE(P̂u, P̂) = − 1

BC

∑

v∈Au

D(P̂v − P̂u)

=

∑
v∈N

D(P̂v − P̂u) +
∑

v∈P,Iv<Iu

D(P̂v − P̂u)

∑
v∈P,v �=u

D(P̂v − P̂u) +
∑

v∈N
D(P̂v − P̂u)

==
FP + aFP

(TP − aFP ) + (FP + aFP )

(10)

where BC is also set as rank+(u) + rank−(u); moreover,

a sample should be considered as an adaptive False Positive

(aFP) sample if its IoU is smaller than that of p.

In conclusion, the question of how to define TPs and FPs

is an important one for dense object detection, as not all pos-

itive samples are the best detection results. ARPS accord-

ingly identifies some adaptive False Positive (aFP) samples

in the original TP set, and can thus be considered to provide

a more accurate AP metric.

Additionally, to reduce the inaccurate ranking pairs in

ARPS that are selected by the preset anchor’s IoU, we fo-

cus on image contents by investigating ranking scores and

localization scores. Considering there are massive numbers

of candidate boxes before the NMS algorithm, positive sam-

ples around objects can receive comparatively higher local-

ization scores while the IoUs of negative samples are nor-

mally close to 0. This means that a large localization score

gap exists between positive and negative samples. Instead,

it can be inferred from Fig. 3 (b) that the ranking scores of

the positive and negative samples only have a small gap be-

tween them (e.g., the value of the distance function will be

close to 0 when P̂u − P̂v goes to 1, which means that after

sigmoid function, their gap S(P̂u) − S(P̂v) is far smaller

than 1).

We here employ PAA [13] to exploit the information of

these pair gaps. Specifically, we first use 0-1 normalization

for each instance to reduce the scale differences between the

ranking score and localization score. We can then observe

from Fig. 3 (c) that samples naturally gather close to two

ends (i.e., (0, 0) and (1, 1)), and the blank area between the

blue and red shades is an ideal separation that we expected.

However, there are still many outliers of the two clusters,

i.e., the small blue and red dots in the gap. If the ranking

Normalized Ranking Scores

Normalized Localization Scores

G
A
P

(a)

(b) (c)
Figure 3. Illustration of gaps between ranking pairs. (a) The mas-

sive candidate box before NMS can have a high IoU with the

ground truth, while all remaining negative samples have 0 IoU.

(b) S(·) and its design, which lead to a small gap between ranking

scores. (c) Ideal gap between ranking pairs in the view of normal-

ized ranking and localization scores.

pairs are formulated as every different potential combina-

tion of two samples from the two clusters (the bottom-left

and top-right region in Fig. 3 (c)), the pairwise error will

in turn enlarge this gap and control the outliers as the train-

ing progresses. Therefore, we convert the ranking pair se-

lection problem into a two-cluster discrimination problem

on the two normalized scores. Following PAA [13], Gaus-

sian Mixture Model (GMM) is used to construct positive

and negative clusters.

7. Experiments

7.1. Dataset and Implementation Details

Experiments are conducted on the MS-COCO 2017

dataset [17]. We use a split set train-2017 (115k
images) for training and validation set val-2017 (5k
images) for the ablation study and compare with other

losses. test-dev split is used to test advanced additions.

The COCO-style average precision (AP) is employed as the

performance metric. The implementation is based on Py-

torch 1.4, CUDA 10 and mmdetection [5]. Unless other-

wise specified, all hyper-parameters are set to default, as in

RetinaNet [19] and FCOS [30]. The ranking score thresh-

old of NMS is 0.15 and IoU threshold of NMS is 0.6. The

batch size is 16 and 4 GPUs are used for training (we use 4

× GTX 2080Ti-11G for training on ResNet-50 [10] and 4

× RTX Titan-24G for training with advanced methods, i.e.,
advanced backbone and multi-scale training). SGD is used

as an optimizer and warmed up for the first 500 iterations.

RetinaNet 512: Here, we follow the baseline, i.e., AP

loss, and employ SSD-style [21] data augmentations (in-

cluding Photo Metric Distortion and Min IoU
Random Crop [5]) for comparable evaluations. More-

over, to improve this baseline, we employ GIoU [28] loss

to obtain more accurate localization results. Here, the max

pair number Q (see appendix) here is 1, 000, 000. The reso-
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Table 4. Overall contribution of the proposed methods over base-

line. � denotes the usage of a higher learning rate. * denotes re-

placing the clustering input of PAA [13] with normalized ranking

and localization scores.

Ranking Loss Sampling Strategy AP AP50 AP75

AP Loss� IoU threshold 37.3 57.4 38.9

Adaptive Pairwise Error IoU threshold 38.3 55.8 41.1

Adaptive Pairwise Error ATSS 39.9 58.3 42.6

Adaptive Pairwise Error PAA* 41.1 59.6 43.7

Table 5. Contribution of APE loss in association with localization

scores.

Method PCC SCC KCC

Pairwise Error 0.3742 0.3790 0.2538

Adaptive Pairwise Error 0.4940 0.5034 0.3449

lution of the input images is 512× 512 and the initial learn-

ing rate is 0.004. For 48-epochs training, we divide learning

rate by 10 at 32 epochs and again at 44 epochs.

FCOS 800: We here omit the center-ness branch and make

the pipeline more elegant. To ensure focus on more impor-

tant samples, we also use category prediction to weight the

GIoU loss following [16], and use IoU to weight APE loss

following [32]. The weight of ranking loss is set to 1.0.

The max pair number Q here is 100, 000 (see appendix).

The resolution of the input images is 800 × 1333 with the

same ratio of raw images. The initial learning rate is 0.01.

For 24-epochs training, we divide the learning rate by 10 at

18 and again at 22 epochs.

7.2. Ablation Study

We conduct ablation experiments on ResNet-50-

FPN [10, 18] to evaluate the effect of each component of

our proposed method. To begin with, we implement our

approach on RetinaNet to evaluate individual components

relative to the baseline method, i.e., AP loss [4]. However,

RetinaNet is an obsolete detector with lower performance

than the currently most popular method, i.e., FCOS. There-

fore, we also test our method on the state-of-the-art detector

FCOS (ATSS) to illustrate the superiority of APE loss over

recent classification losses.

Effect of Adaptive Pairwise Error: We conduct experi-

ments with our implementation of Pairwise Error on Reti-

naNet, where λ is set to 8 (see appendix for the varying of

λ). As shown in Table 4, by replacing AP loss with APE

loss, we can improve the AP and AP75 by 1.0 and 2.2, re-

spectively. This demonstrates that our proposed APE loss

improves detection accuracy. Moreover, to better under-

stand the reasons why APE loss is effective, we adopt IoUs

and ranking scores of detection results with higher localiza-

tion scores (i.e., IoUs larger than 0.5) as two lists of data

and calculate their Pearson Correlation Coefficient (PCC),

Spearman Correlation Coefficient (SCC) and Kendall rank

Correlation Coefficient (KCC). The results are presented

Table 6. Comparison of different clustering input scores of PAA.

Here all scores are 0-1 normalized for each instance.

GMM Clustering Input 0-1 Normalization AP AP50 AP75

Focal Loss + GIoU Loss 39.4 58.1 41.4

Ranking + Localization Scores 40.5 57.6 43,5

Ranking + Localization Scores � 41.1 59.6 43.7

Table 7. Comparison of different detectors with our method.

Detector AP AP50 AP75 APS APM APL

RetinaNet(512) 41.1 59.6 43.7 22.9 45.2 57.3

FCOS(800) 41.5 59.2 44.7 23.6 46.1 54.8

Table 8. Training time comparison of different training conditions.

Ranking Loss Resolution Learning Rate Epoch

AP Loss 512 0.001 100

AP Loss 512 0.004 48

Adaptive Pairwise Error 512 0.004 48

Adaptive Pairwise Error 800 0.01 24

in Table 5. From the table, it can be seen that APE loss

promotes PCC by 0.12, SCC by 0.12 and KCC by 0.09.

As quantitative measurements of correlation, the three co-

efficients are promoted significantly, indicating that APE

loss can associate the category predictions with localization

qualities and thereby boost NMS accuracy.

Effect of Normalized Scores Input of PAA: To study the

necessity of two normalized scores for PAA, we test the

original PAA [13] that adopts Focal loss [19] and GIoU

loss [28] for clustering. As the results in Table 6 show, when

we replace normalized ranking and classification scores

with Focal loss and GIoU loss, the performance drops from

41.1 to 39.4. We contend that it is because the scales of

ranking and localization gap in these losses are not well

aligned; localization loss would be smaller, and its infor-

mation could be easily ignored. However, PAA works well

in classification methods owing to the fact that these two

scores are trained to be equal [16,37] and could have similar

distribution scales. We additionally test different clustering

input features; normalized ranking scores and localization

scores independently achieve 38.9 and 33.9 AP, illustrating

the association of two scores brings 2.2 AP performance

gain. Moreover, as shown in Table 6, when normalization

processing on the two scores is omitted, the performance

also drops to 40.5, illustrating the normalization brings 0.6
AP performance gain.

Effect of Higher Resolution and Learning Rate: To fa-

cilitate comparative evaluation of our method with state-

of-the-art losses, we incorporate it into the most popular

detector with the higher input resolution, i.e., FCOS(800).

As the results in Table 7 show, training on FCOS(800) can

improve our method by 0.4 AP. Note that we here discard

SSD-style augmentation. We argue that this promotion oc-

curs due to the higher input resolution, since the main per-

formance gap between RetinaNet and FCOS is addressed

by ATSS [38]. We also record the comparison of training
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Table 9. Here we omit center-ness branch [30] or IoU branch [13] in our method. Data Aug. denotes the SSD-style [21] data augmentation.
† denotes multi-scale training, ‡ denotes multi-scale testing.

Loss Function Method Data Aug. Epoch Backbone AP AP50 AP75 APS APM APL

Classification Loss (on val-2017):

Focal Loss [19] (on test-dev) Retina(500) � 12 ResNet-50-FPN 32.5 50.9 34.8 13.9 35.8 46.7

GHM Loss [14] Retina(800) � 12 ResNet-50-FPN 35.8 55.5 38.1 19.6 39.6 46.7

Focal Loss [38] ATSS(800) � 12 ResNet-50-FPN 39.2 56.5 40.7 20.6 42.1 49.1

Quality Focal Loss [16] ATSS(800) � 12 ResNet-50-FPN 39.9 58.5 43.0 22.4 43.9 52.7

Varifocal Loss [37] ATSS(800) � 12 ResNet-50-FPN 40.2 58.2 44.0 23.9 44.1 52.2

Focal Loss [13]) PAA(800) � 18 ResNet-50-FPN 41.1 59.4 44.3 23.5 45.4 54.3

Ranking Loss (on val-2017):

Average Precision Loss [4, 22] Retina(512) � 100 ResNet-50-FPN 35.4 58.1 37.0 19.2 39.7 49.2

Distributional Ranking Loss [24] Retina(800) � 12 ResNet-50-FPN 37.4 56.0 40.0 20.8 41.2 50.5

aLRP Loss [22] ATSS(512) � 100 ResNet-50-FPN 41.0 61.2 43.3 22.9 44.7 55.8

RankDetNet Losses [20] ATSS(800) � 24 ResNet-50-FPN 40.7 58.4 44.0 23.8 44.8 52.8

Rank & Sort Loss [23] PAA(800) � 12 ResNet-50-FPN 41.0 59.1 44.5 23.9 44.9 53.5

Ours (on val-2017):

Adaptive Pairwise Error Retina(512) � 48 ResNet-50-FPN 38.3 55.8 41.1 21.0 42.5 53.1

Adaptive Pairwise Error ATSS(512) � 48 ResNet-50-FPN 39.9 58.3 42.6 21.9 44.1 55.0

Adaptive Pairwise Error ATSS(800) � 24 ResNet-50-FPN 40.8 58.4 44.0 23.0 44.5 54.5

Adaptive Pairwise Error PAA*(512) � 48 ResNet-50-FPN 41.1 59.6 43.7 22.9 45.2 57.3

Adaptive Pairwise Error PAA*(512) � 96 ResNet-50-FPN 42.9 61.3 46.1 25.0 47.1 59.1

Adaptive Pairwise Error PAA*(800) � 24 ResNet-50-FPN 41.5 59.2 44.7 23.6 46.1 54.8
Losses with Adv. Tricks (on test-dev):

Average Precision Loss‡ [4] Retina(512) � 100 ResNet-101-FPN 42.1 63.5 46.4 25.6 45.0 53.9

Distributional Ranking Loss†‡ [24] Retina(800) � 18 ResNeXt-101-FPN 44.7 63.8 48.7 28.2 47.4 56.2

Focal Loss† [38] ATSS(800) � 24 ResNeXt-101-FPN-DCN 47.7 66.5 51.9 29.7 50.8 59.4

Generalize Focal Loss† [16] ATSS(800) � 24 ResNeXt-101-FPN-DCN 48.2 67.4 52.6 29.2 51.7 60.2

Ours with Adv. Tricks (on test-dev):

Adaptive Pairwise Error† PAA*(800) � 24 ResNeXt-101-FPN-DCN 49.0 67.1 53.0 29.9 52.9 63.4

Adaptive Pairwise Error† PAA*(800) � 36 Res2Net-101-FPN-DCN 50.0 67.7 53.9 31.8 55.3 66.7

epochs as shown in Table. 8. It can be observed that our

method only needs a quarter of the AP loss training epochs,

i.e., 24 rather than 100. However, due to the slow converge

speed of baseline AP loss, we still train APE loss with more

epochs than recent losses [13, 16, 19, 37]. If a higher learn-

ing rate (i.e., 0.04) is used, we can also train AP loss within

48 epochs, the same as ours. Thus, we argue that the pro-

motion of training efficiency occurs largely because of the

higher learning rate and higher image resolution than the

baseline.

7.3. Comparison with State-of-the-Art Losses

Finally, we compare APE loss with state-of-the-art loss

functions on val-2017, as shown in Table 9. Here, ev-

ery method only uses single-model and single-scale test-

ing, omits 1.5 stage regression (as in [25, 37]) and utilizes

ResNet-50-FPN [10, 18]. APE loss achieves 41.5 on the

FCOS [30] detector without center-ness branch. We also

verify our method on ATSS, PAA and RetinaNet. The per-

formances of APE loss are superior to that of recent state-

of-the-art losses. Furthermore, we test our method with ad-

vanced additions on test-dev, i.e., multi-scale training and

stronger backbones (ResNext [34], Res2Net [7]) with De-

formable ConvNets v2 [41]. As shown in Table 9, those

additions boost our methods to 50.0 AP.

8. Conclusion
In this paper, we revisit the AP loss from a pairwise rank-

ing perspective for dense object detection. In the process,

we reveal an essential fact that proper ranking pair selection

plays an important role in producing accurate detection re-

sults compared with the distance function and balance con-

stant. Therefore, we propose a novel strategy, Adaptive

Ranking Pair Selection (ARPS), by providing more com-

plete and accurate ranking pairs. We first exploit the lo-

calization information into extra rank pairs with the Adap-

tive Pairwise Error, which can also be considered as a more

accurate form of AP loss. We then use normalized rank-

ing scores and localization scores to split the positive and

negative samples. The proposed method is very simple and

achieves performance comparable to existing classification

and ranking methods.
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