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Abstract

This paper presents a new solution for low-light image
enhancement by collectively exploiting Signal-to-Noise-
Ratio-aware transformers and convolutional models to
dynamically enhance pixels with spatial-varying opera-
tions. They are long-range operations for image regions of
extremely low Signal-to-Noise-Ratio (SNR) and short-range
operations for other regions. We propose to take an SNR
prior to guide the feature fusion and formulate the SNR-
aware transformer with a new self-attention model to avoid
tokens from noisy image regions of very low SNR. Extensive
experiments show that our framework consistently achieves
better performance than SOTA approaches on seven
representative benchmarks with the same structure. Also,
we conducted a large-scale user study with 100 participants
to verify the superior perceptual quality of our results. The
code is available at https://github.com/dvlab-research/SNR-
Aware-Low-Light-Enhance.

1. Introduction
Low-light imaging is critical for many tasks, such as

object and action recognition at night [18, 27]. Low-
light images are generally with poor visibility for human
perception. Similarly, downstream vision tasks can be
affected when taking low-light images directly as the input.

Several methods have been proposed to enhance low-
light images. The de facto approach nowadays is to develop
neural networks that learn to manipulate color, tone, and
contrast to enhance low-light images [12, 15, 41, 56], while
some recent works account for noise in images [29, 48]. In
this paper, our key insight is that different regions in a low-
light image can have different characteristics of lightness,
noise, visibility, etc. Regions of extremely low lightness
are heavily corrupted by noise, while other regions in the
same image can still have reasonable visibility and contrast.
For better overall image enhancement, we should adaptively
consider different regions in the low-light images.

To this end, we study the relation between signal and
noise in image space by exploring Signal-to-Noise-Ratio
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Figure 1. Our approach consistently achieves better performance
in terms of PSNR/SSIM over 10 SOTA methods on 7 different
benchmarks with the same network structure. Each plot is for
comparison on one benchmark dataset.

(SNR) [3, 54] for achieving spatial-varying enhancement.
In particular, regions of lower SNR are typically unclear.
So we exploit non-local image information in longer spatial
range for image enhancement. On the other hand, regions
of relatively higher SNR typically have higher visibility
and less noise. Thus local image information is typically
sufficient. Fig. 2 shows a low-light image example for
illustration. Further discussion is presented in Sec. 3.1.

Our solution to low-light image enhancement in the
RGB domain is to collectively exploit long- and short-
range operations. In the deepest hidden layer, we design
two branches. The long-range branch with a transformer
structure [38] is to capture non-local information and the
short-range one with convolutional residual blocks [17]
captures local information. When enhancing each pixel, we
determine the contribution of local (short-range) and non-
local (long-range) information dynamically based on the
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Extremely low SNR

Local image information is lost

Need long-range operation
Relatively high SNR

Local image information is enough

Prefer short-range operation

Figure 2. Low-light image enhancement requires spatial-varying
operations. The blue (or red) region has extremely low (or
relatively high) SNR. It offers inadequate (or sufficient) local
image information for image enhancement. In operations, we use
long-range image information for the blue region, since it has been
heavily corrupted by noise. We linearly scale up brightness on the
right for visualizing noise in different image regions.

pixel’s signal-to-noise ratio. Hence, in regions of high SNR,
local information plays a vital role during the enhancement,
whereas in regions of very low SNR, non-local messages
are effective. To achieve such spatial-varying operations,
we construct an SNR prior and use it to guide feature fusion.
Also, we modify the attention mechanism in the transformer
structure and propose the SNR-aware transformer. Unlike
existing transformer structure, not all tokens contribute to
the attention computation. We consider only the tokens
with sufficient SNR values to avoid noise influence from
the very-low-SNR regions.

Our framework effectively enhances low-light images
of dynamic noise levels. Extensive experiments were
conducted on 7 representative datasets: LOL (v1 [45], v2-
real [53], & v2-synthetic [53]), SID [5], SMID [4], and
SDSD (indoor & outdoor) [39]. As shown in Fig. 1, our
framework outperforms 10 SOTA approaches on all datasets
with the same structure. Further, we conduct large-scale
user study with 100 participants to verify the effectiveness
of our approach. Qualitative comparison is presented in
Fig. 3. Overall, our contribution is threefold.

• We propose a new signal-to-noise-aware framework
that simultaneously adopts a transformer structure and
a convolutional model for achieving spatial-varying
low-light image enhancement with an SNR prior.

• We design an SNR-aware transformer with a new self-
attention module for low-light image enhancement.

• We conducted extensive experiments on seven rep-
resentative datasets, manifesting that our framework
consistently outperforms a rich set of SOTA methods.

2. Related Work
No-learning-based Low-light Image Enhancement. To
enhance low-light images, histogram equalization and
gamma correction are fundamental tools to expand the
dynamic range and increase the image contrast. These

(a) Input (b) MIR-Net [59] (ECCV 2020)

(c) IPT [6] (CVPR 2021) (d) Ours

Figure 3. A challenging low-light frame (a) enhanced by a SOTA
method with a convolutional structure (b), a SOTA transformer
structure (c), and our method (d). Ours exhibits clearer details,
more distinct contrast, and less noise (best view by zoom-in).

primary approaches tend to produce undesirable artifacts
in the enhanced real-world images. Retinex-based
methods, which treat the reflectance component as plausible
approximation for image enhancement, are able to produce
more realistic and natural results [28, 35]. However,
when enhancing complicated real-world images, this line
of methods often distort colors locally [40].

Learning-based Low-light Image Enhancement. Many
learning-based low-light image enhancement approaches
were proposed in recent years [2,14,20,22,29,31,42,48–50,
52, 53, 59, 60, 62, 63]. Wang et al. [40] proposed to predict
the illumination map for enhancing underexposed photos.
Sean et al. [33] designed a strategy to learn three different
types of spatially local filters for enhancement. Yang et
al. [51] presented a semi-supervised approach to recover
a linear-band representation of the low-light image. Also,
there are unsupervised methods [7, 14, 19]. For instance,
Guo et al. [14] built a lightweight network to estimate pixel-
wise and high-order curves for dynamic range adjustment.

Unlike previous work, our new approach enhances low-
light image based on a signal-to-noise-aware framework
consisting of a new SNR-aware transformer design and
a convolutional model to adaptively enhance low-light
images in a spatial-varying manner. As shown in Fig. 1,
our framework achieves better performance consistently on
seven different benchmarks with the same structure.

3. Our Method

Fig. 4 shows the overview of our framework. The input is
a low-light image, from which we first obtain an SNR map
using a simple and yet effective strategy (see Sec. 3.2 for
details). We propose to take SNR to guide our framework
to learn different enhancement operations adaptively for
image regions of varying signal-to-noise ratios.

In the deepest hidden layer of our framework, we design
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Figure 4. Our framework for low-light image enhancement starts by estimating an SNR map for guiding pixel enhancement in different
image regions. We formulate an SNR-guided attention (Fig. 5) to guide how our patch-wise SNR-aware transformer processes long-range
image information, particularly for enhancing image regions of very low SNR. Further, we develop the SNR-guided fusion to combine
resulting long-range feature Fl with short-range feature Fs to produce the final image feature F .

two different branches for long- and short-range. They are
specifically formulated for achieving efficient operations,
implemented by transformer [38] and convolution struc-
tures, respectively. To achieve the long-range operations
while avoiding the influence of noise in extremely low-light
regions, we guide the attention mechanism in transformer
with an SNR map. To adopt different operations, we
develop an SNR-based fusion strategy to obtain a combined
representation from the long- and short-range features.
Also, we use skip connections from the encoder to decoder
to enhance image details.

3.1. Long- and Short-range Branches

Necessity of spatial-varying operations. Traditional net-
works for low-light image enhancement adopt convolution
structures in the deepest hidden layer. These operations
have short-range to capture local information mostly. Local
information may suffice to recover image regions that are
not extremely dark, since these pixels still contain an
amount of visible image content (or signals). But for
extremely dark regions, local information is inadequate for
enhancing pixels, since adjacent local regions are also weak
in terms of visibility and are mostly dominated by noise.

To address this key issue, we dynamically enhance
pixels in different regions with varying local and non-
local communication. Local and non-local information is
complementary. The effect can be determined based on
the SNR distribution over the image. On the one hand,
for image regions of high SNR, local information should
play the major role, since local information is adequate

for enhancement. It is generally more accurate than long-
distance non-local information.

On the other hand, for image regions of very low SNR,
we pay more attention to non-local information, since local
regions likely have very little image information while
being dominated by noise. Unlike previous methods, we
explicitly formulate a long-range branch for image regions
of very low SNR and a short-range branch for other regions
in the deepest hidden layer of our framework (see Fig. 4).

Implementation of two branches. The short-range branch
is implemented based on the structure of convolutional
residual blocks for capturing local information, whereas
the long-range branch is implemented based on the
structure of transformer [38] since transformers are good
at capturing long-range dependency via the global self-
attention mechanism, as demonstrated in many high-
level [10, 16, 21, 30, 46, 57, 58] and low-level tasks [6, 44].

In the long-range branch, we first partition feature map F
(extracted by the encoder from input image I ∈ RH×W×3)
into m feature patches, i.e., Fi ∈ Rp×p×C , i = {1, ...,m}.
Suppose the size of feature map F is h × w × C and the
patch size is p × p. There are m = h

p × w
p feature patches

for covering the entire feature map.
As shown in Fig. 4, our SNR-aware transformer is patch-

based. It consists of the multi-head self-attention (MSA)
modules [38] and the feed-forward networks (FFN) [38],
both composed of two fully connected layers. The output
features F1, ...,Fm from the transformer have the same size
as the input feature patches. We flatten F1, ..., Fm into 1D
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features and perform the computation of

y0 = [F1, F2, ..., Fm],

qi = ki = vi = LN(yi−1),

ŷi = MSA(qi, ki, vi) + yi−1,

yi = FFN(LN(ŷi)) + ŷi,

and [F1,F2, ...,Fm] = yl, i = {1, ..., l},

(1)

where LN denotes layer normalization; yi denotes the
output of the i-th transformer block; MSA denotes our
SNR-aware multi-head self-attention module (see Fig. 5),
which will be detailed in Sec. 3.3; qi, ki, and vi denote
the query, key, and value vectors, respectively, in the i-th
multi-head self-attention module; and l denotes the number
of layers in the transformer. The transformed features
F1, ...,Fm can be merged to form the 2D feature map Fl

(see Figure 4).

3.2. SNR-based Spatially-varying Feature Fusion

The SNR map. As shown in Fig. 4, our framework starts
by estimating an SNR map. It is difficult and tedious to
estimate the amount of noise in input image I and prepare a
clean version of I to determine the SNR value of each pixel,
given only a single input image. Similar to previous no-
learning-based denoising approaches [1,8], we treat noise as
discontinuous transition between adjacent pixels in spatial
domain. The noise component can be modeled as the
distance between the noisy image and an associated clean
image. In this work, we use it to estimate the SNR map
of I and make it an effective prior for our spatial-varying
feature fusion. Given I ∈ RH×W×3, we first compute the
gray-scale of I , i.e., Ig ∈ RH×W , followed by computing
the SNR map S ∈ RH×W as

Îg = denoise(Ig), N = abs(Ig − Îg), S = Îg/N, (2)

where denoise is a no-learning-based denoising operation
(with experiments in Sections 4.2 and 4.3), e.g., averaging
local groups of pixels; abs denotes the absolute value; and
N ∈ RH×W is the estimated noise map. Although the
resulting SNR values are approximates given the extracted
noise not accurate, our framework with such SNR map is
still effective as verified by our extensive experiments.

Spatial-varying feature fusion with the SNR map. As
shown in Fig. 4, we employ encoder E to extract feature
F from input image I . The feature is then processed
separately by the long- and short-range branches, which
produce long-range feature Fl ∈ Rh×w×C and short-range
feature Fs ∈ Rh×w×C . To adaptively combine the two
features, we resize the SNR map into h × w, normalize its
values to range [0, 1], and take the normalized SNR map S′

as interpolation weights to fuse Fl and Fs as

F = Fs × S′ + Fl × (1− S′), (3)

𝑆 𝑆′
threshold

Set mask for self-attention map

Resize Partition into 
Patches

Self-attention Map in Transformer 𝑸𝑲
%

&'
∈ ℝ*×*

𝑆,, 𝑖 ∈ [1,𝑚]

Columns for SoftMax

SoftMax

Columns not
for SoftMax

Values in [0, 1]

Shape:𝑚×𝑚
Sum of each row is 1

SNR Input

Figure 5. Illustration: SNR-guided attention in transformer. Black
squares are elements ignored by SoftMax; colored squares reveal
the similarity between feature tokens. They are used in SoftMax.

where F ∈ Rh×w×C is the output feature to be passed to
the decoder for producing the final output image. Since
values in the SNR map dynamically reveal the level of
noise in different regions of the input image, the fusion can
adaptively combine local (short-range) and non-local (long-
range) image information for production of F .

3.3. SNR-guided Attention in Transformer

Limitation of traditional transformer structures. Al-
though traditional transformers can capture non-local
information for enhancing images, they have critical issues.
In original structures, the attention is computed among all
patches. To enhance a pixel, the long-range attention may
come from any image region, regardless of the signal and
noise levels. In fact, regions of very low SNR are dominated
by noise. Thus, their information is inaccurate, severely
disrupting image enhancement. Here, we propose SNR-
guided attention to improve transformer in this special task.

SNR-aware transformer. Fig. 5 shows our SNR-aware
transformer with the new self-attention module. Given
input image I ∈ RH×W×3 and associated SNR map
S ∈ RH×W , we first resize S to S′ ∈ Rh×w to match
the size of feature map F . We then partition S′ into m
patches following the way we partition F into patches,
and compute the average value in each patch, i.e., Si ∈
R1, i = {1, ...,m}. We pack these values into vector
S ∈ Rm. It acts as a mask in the attention computation of
the transformer, which can avoid the message propagation
from image regions of extremely low SNR (see Fig. 5) in
the transformer. The mask value of the i-th element of S is
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expressed as

Si =

{
0, Si < s

1, Si ≥ s
, i = {1, ...,m}, (4)

where s is a threshold value. Next, we stack m copies of S
to form matrix S ′ ∈ Rm×m. Suppose the head number is B
for the multi-head self-attention (MSA) module (Eq. (1)),
the b-th head self-attention calculation Attentioni,b in the
transformer’s i-th layer is formulated as

Qi,b = qiW
q
b ,Ki,b = kiW

k
b ,Vi,b = viW

v
b , and (5)

Attentioni,b(Qi,b,Ki,b,Vi,b) = Softmax(
Qi,bK

T
i,b√

db
+ (1− S ′)σ)Vi,b, (6)

where qi, ki, vi ∈ Rm×(p×p×C) are input 2D features
in Eq. (1); W q

k , W k
k , W v

k ∈ R(p×p×C)×Ck represent the
projection matrices for the k-th head; Qi,b, Ki,b, Vi,b ∈
Rm×Ck are the query, key, and value features, respectively,
in attention computation.

The output shape of Softmax() and Attentioni,b() is
m×m and m× Ck, respectively, where Ck is the channel
number in the self-attention computation. Also,

√
dk is

for normalization and σ is a small negative scalar −1e9.
The output of all B heads are concatenated. All values are
linearly projected to produce the final output of MSA in the
transformer’s i-th layer. Thus, we ensure that long-range
attentions are from the image regions with sufficient SNR.

3.4. Loss Function

Data flow. Given the input image I , we first apply an
encoder with convolutional layers to extract feature F . Each
stage in the encoder contains a stack of the convolutional
layer and LeakyReLU [47]. Residual convolutional blocks
are used after the encoder. Then, we forward F to the
long- and short-range branches to produce features Fl and
Fs. Lastly, we fuse Fl and Fs into F and use the decoder
(symmetrical to the encoder) to transfer F into the residual
R. The final output image I ′ is I ′ = I +R.

Loss terms. There are two reconstruction loss terms to
train our framework, i.e., the Charbonnier loss [25] and the
perceptual loss. The Charbonnier loss is written as

Lr =

√
∥I ′ − Î∥2 + ϵ2, (7)

where Î is the ground truth and ϵ is set as 10−3 in
all experiments. The perceptual loss compares the VGG
feature distances between Î and I ′ using an L1 loss as

Lvgg = ∥Φ(I ′)− Φ(Î)∥1, (8)

where Φ() is the operation of extracting features from the
VGG network [37]. The overall loss function is

L = Lr + λLvgg, (9)

where λ is a hyper parameter.

4. Experiments
4.1. Datasets and Implementation Details

We evaluate our framework on several datasets with
noise observable in low-light image regions. They are LOL
(v1 & v2) [45, 53], SID [5], SMID [4], and SDSD [39].

LOL has noticeable noise in both v1 and v2 versions.
LOL-v1 [45] contains 485 pairs of low-/normal-light
images for training and 15 pairs for testing. Each pair
includes a low-light input image and an associated well-
exposed reference image. LOL-v2 [53] is divided into LOL-
v2-real and LOL-v2-synthetic. LOL-v2-real contains 689
low-/normal-light image pairs for training and 100 pairs for
testing. Most low-light images were collected by changing
the exposure time and ISO with other camera parameters
fixed. LOL-v2-synthetic was created by analyzing the
illumination distribution in the RAW format.

For SID and SMID, each input sample is a pair of short-
and long-exposure images. Both SID and SMID have heavy
noise, as the low-light images were captured in extreme
dark environments. For SID, we use the subset captured
by the Sony camera and follow the script provided by SID
to transfer the low-light images from RAW to RGB using
rawpy’s default ISP. For SMID, we use its full images and
also transfer the RAW data to RGB, since our work explores
low-light image enhancement in the RGB domain. We set
the training and testing split according to that of [4].

Lastly, we adopt the SDSD dataset [39] (the static
version) for evaluation. It contains an indoor subset and an
outdoor subset, both providing low- and normal-light pairs.

We implement our framework in PyTorch [34], and train
and test it on a PC with a 2080Ti GPU. We train our
method from scratch with network parameters randomly
initialized with Gaussian distribution and adopt standard
augmentation, e.g., vertical and horizontal flips. The
encoder of our framework has three convolution layers
(i.e., strides 1, 2, and 2) with one residual block after the
encoder. The decoder is symmetric to the encoder with
the upsampling mechanism implemented using the pixel
shuffle layer [36]. For the loss minimization, we adopt the
Adam [23] optimizer with momentum set to 0.9.

4.2. Comparison with Current Methods

We compare our method with a rich collection of
SOTA methods for low-light image enhancement, including
Dong [9], LIME [15], MF [11], SRIE [12], BIMEF [55],
DRD [45], RRM [28], SID [5], DeepUPE [40], KIND [61],
DeepLPF [33], FIDE [48], LPNet [26], MIR-Net [59],
RF [24], 3DLUT [60], A3DLUT [42], Band [52], EG [20],
Retinex [29], and Sparse [53]. Also, we compared our
framework with two recent transformer structures for low-
level tasks, i.e., IPT [6] and Uformer [44].

Quantitative analysis. We adopt Peak Signal-to-Noise
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Input LPNet [26] MIR-Net [59] Ours GT

Input Band [52] Sparse [53] Ours GT

Input Band [52] MIR-Net [59] Ours GT

Figure 6. Visual comparison on LOLv1, LOL-v2-real, and LOL-v2-synthetic (top to bottom). Our method yields less noise and higher
visibility.

Methods Dong [9] LIME [15] MF [11] SRIE [12] BIMEF [55] DRD [45] RRM [28] SID [5] DeepUPE [40] KIND [61] DeepLPF [33] FIDE [48]
PSNR 16.72 16.76 18.79 11.86 13.86 16.77 13.88 14.35 14.38 20.87 15.28 18.27
SSIM 0.580 0.560 0.640 0.500 0.580 0.560 0.660 0.436 0.446 0.800 0.473 0.665

Methods LPNet [26] MIR-Net [59] RF [24] 3DLUT [60] A3DLUT [42] Band [52] EG [20] Retinex [29] Sparse [53] IPT [6] Uformer [44] Ours
PSNR 21.46 24.14 15.23 14.35 14.77 20.13 17.48 18.23 17.20 16.27 16.36 24.61
SSIM 0.802 0.830 0.452 0.445 0.458 0.830 0.650 0.720 0.640 0.504 0.507 0.842

Table 1. Quantitative comparison on LOL-v1.

Methods Dong [9] LIME [15] MF [11] SRIE [12] BIMEF [55] DRD [45] RRM [28] SID [5] DeepUPE [40] KIND [61] DeepLPF [33] FIDE [48]
PSNR 17.26 15.24 18.73 17.34 17.85 15.47 17.34 13.24 13.27 14.74 14.10 16.85
SSIM 0.527 0.470 0.559 0.686 0.653 0.567 0.686 0.442 0.452 0.641 0.480 0.678

Methods LPNet [26] MIR-Net [59] RF [24] 3DLUT [60] A3DLUT [42] Band [52] EG [20] Retinex [29] Sparse [53] IPT [6] Uformer [44] Ours
PSNR 17.80 20.02 14.05 17.59 18.19 20.29 18.23 18.37 20.06 19.80 18.82 21.48
SSIM 0.792 0.820 0.458 0.721 0.745 0.831 0.617 0.723 0.816 0.813 0.771 0.849

Table 2. Quantitative comparison on LOL-v2-real.

Methods Dong [9] LIME [15] MF [11] SRIE [12] BIMEF [55] DRD [45] RRM [28] SID [5] DeepUPE [40] KIND [61] DeepLPF [33] FIDE [48]
PSNR 16.90 16.88 17.50 14.50 17.20 17.13 17.15 15.04 15.08 13.29 16.02 15.20
SSIM 0.749 0.776 0.751 0.616 0.713 0.798 0.727 0.610 0.623 0.578 0.587 0.612

Methods LPNet [26] MIR-Net [59] RF [24] 3DLUT [60] A3DLUT [42] Band [52] EG [20] Retinex [29] Sparse [53] IPT [6] Uformer [44] Ours
PSNR 19.51 21.94 15.97 18.04 18.92 23.22 16.57 16.55 22.05 18.30 19.66 24.14
SSIM 0.846 0.876 0.632 0.800 0.838 0.927 0.734 0.652 0.905 0.811 0.871 0.928

Table 3. Quantitative comparison on LOL-v2-synthetic.

Ratio (PSNR) and Structural Similarity Index (SSIM) [43]
for evaluation. In general, a higher SSIM means more high-
frequency details and structures in results. Tables 1-3 show
the comparisons on LOL-v1, LOL-v2-real, and LOL-v2-
synthetic. Our method surpasses all the baselines. Note that
we obtain these numbers either from the respective papers
or by running the respective public code. Out method
(24.61/0.842) also outperforms those of [22] (22.81/0.827)
and [62] (21.71/0.834) on LOL-v1. Table 4 compares
methods on SID, SMID, SDSD-indoor, and SDSD-outdoor.
Ours yields the best performance.

Qualitative analysis. First, we present visual samples in

Fig. 6 (top row) for comparing our method with baselines
that achieve the best performance (in terms of PSNR) on
LOL-v1. Our result shows better visual quality with higher
contrast, more precise details, color consistency, and better
brightness. Fig. 6 also shows visual comparison on LOL-
v2-real and LOL-v2-synthetic. While the original images in
these datasets have apparent noise and weak illumination,
our method can still produce more realistic results. Also,
in regions with complex textures, our output exhibits less
visual artifacts.

Fig. 7 (top row) shows visual comparison on SID,
demonstrating that our method can effectively deal with
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Input IPT [6] MIR-Net [59] Ours GT

Input IPT [6] Uformer [44] Ours GT

Input IPT [6] MIR-Net [59] Ours GT

Input IPT [6] MIR-Net [59] Ours GT

Figure 7. Qualitative comparison on SID (top row), SMID (2nd row), SDSD-indoor (3rd row) and SDSD-outdoor (4th row).

SID SMID SDSD-indoor SDSD-outdoor
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
DRD [45] 16.48 0.578 22.83 0.684 20.84 0.617 20.96 0.629
SID [5] 16.97 0.591 24.78 0.718 23.29 0.703 24.90 0.693
DeepUPE [40] 17.01 0.604 23.91 0.690 21.70 0.662 21.94 0.698
KIND [61] 18.02 0.583 22.18 0.634 21.95 0.672 21.97 0.654
DeepLPF [33] 18.07 0.600 24.36 0.688 22.21 0.664 22.76 0.658
FIDE [48] 18.34 0.578 24.42 0.692 22.41 0.659 22.20 0.629
LPNet [26] 20.08 0.598 26.55 0.772 23.87 0.841 22.09 0.629
MIR-Net [59] 20.84 0.605 25.66 0.762 24.38 0.864 27.13 0.837
RF [24] 16.44 0.596 23.11 0.681 20.97 0.655 21.21 0.689
3DLUT [60] 20.11 0.592 23.86 0.678 21.66 0.655 21.89 0.649
A3DLUT [42] 20.32 0.595 24.56 0.684 22.39 0.656 22.95 0.692
Band [52] 19.02 0.577 26.60 0.781 24.08 0.868 25.77 0.841
EG [20] 17.23 0.543 22.62 0.674 20.02 0.604 20.10 0.616
Retinex [29] 18.44 0.581 25.88 0.744 23.17 0.696 23.84 0.743
Sparse [53] 18.68 0.606 25.48 0.766 23.25 0.863 25.28 0.804
IPT [6] 20.53 0.561 27.03 0.783 26.11 0.831 27.55 0.850
Uformer [44] 18.54 0.577 27.20 0.792 23.17 0.859 23.85 0.748
Ours 22.87 0.625 28.49 0.805 29.44 0.894 28.66 0.866

Table 4. Quantitative comparison on SID, SMID, SDSD-indoor,
and SDSD-outdoor. Our method performs the best consistently.

very noisy low-light images. Fig. 7 also shows visual results
on SMID, SDSD-indoor, and SDSD-outdoor. These results
also manifest that our method is effective to enhance image
lightness and reveal details, while suppressing noise.

User study. We further conduct large-scale user study
with 100 participants to evaluate the human perception of
our method and five strongest baselines (chosen by mean
PSNR on SID, SMID, and SDSD) on enhancing low-light
photos captured by an iPhone X or Huawei P30. Altogether,
30 low-light photos were captured in various environments,
including roads, parks, libraries, schools, portraits, etc., and

the intensity of 50% image pixels are lower than 30%.
Following the setting in [40], we evaluate results via

user ratings on the six questions shown in Fig. 8 using a
Likert scale of 1 (worst) to 5 (best). All methods were
trained on SDSD-outdoor, since [39] shows that the trained
models can effectively enhance low-light images captured
by mobile phones. Fig. 8 reports the rating distributions
of different methods, among which our approach receives
more “red” and less “blue” ratings. Also, we performed a
statistical analysis on the ratings using a paired t-test (using
the T-Test function in MS Excel) between our approach and
each of the other methods. With a significant level of 0.001,
all the t-test results are statistically significant, since all p-
values are smaller than 0.001.

4.3. Ablation Study

We consider four ablation settings by removing different
components from our framework individually.

• “Ours w/o L” removes the long-range branch, so the
framework has only convolutional operations.

• “Ours w/o S” removes the short-range branch, keeping
the full long-range branch and SNR-guided attention.

• “Ours w/o SA” further removes the SNR-guided
attention from “Ours w/o S”, keeping only the basic
transformer structure in the deepest layer.

• “Ours w/o A” removes the SNR-guided attention.

We performed ablation studies on all seven datasets.
Table 5 summarizes the results. Compared with all ablation

17720



0

180

360

540

720

900

MIR-Net IPT Uformer Band LPNet Ours

Q6: What is your overall rating?

0

140

280

420

560

700

MIR-Net IPT Uformer Band LPNet Ours

Q5: Is the result free of noises?

0

200

400

600

800

1000

MIR-Net IPT Uformer Band LPNet Ours

Q4: Is the result free of overexposure?

0

180

360

540

720

900

MIR-Net IPT Uformer Band LPNet Ours

Q3: Is the result visually realistic?

0

180

360

540

720

900

MIR-Net IPT Uformer Band LPNet Ours

Q2: Are the colors vivid?

0

180

360

540

720

900

MIR-Net IPT Uformer Band LPNet Ours

Q1: Are the details easy to perceive?

5
4
3
2
1

Figure 8. Rating distributions for different methods on the six questions in the user study. The ordinate axis records the rating frequency
received from the 100 participants. Obviously, our approach receives more “red” (score 5) and less “blue” (score 1).

LOL-v1 LOL-v2-real LOL-v2-synthetic SID SMID SDSD-indoor SDSD-outdoor
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Ours w/o L 16.27 0.638 16.98 0.687 20.81 0.881 19.10 0.593 26.20 0.776 22.24 0.818 20.03 0.713
Ours w/o S 23.06 0.828 18.98 0.790 23.47 0.919 22.30 0.604 27.00 0.768 28.13 0.884 25.43 0.823
Ours w/o SA 20.67 0.752 18.85 0.765 21.88 0.842 21.02 0.544 27.01 0.774 25.78 0.839 24.57 0.832
Ours w/o A 21.86 0.760 19.40 0.782 22.23 0.866 21.19 0.550 26.87 0.769 27.36 0.874 26.62 0.857
Ours 24.61 0.842 21.48 0.849 24.14 0.928 22.87 0.625 28.49 0.805 29.44 0.894 28.37 0.862

Table 5. Results of the ablation study in Sec. 4.3.
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Figure 9. Our framework yields consistent performance on
datasets when incorporated with different denoising operations for
obtaining the input SNR prior.

settings, our full setting yields the highest PSNR and SSIM.
“Ours w/o L,” “Ours w/o S,” and “Ours w/o SA” show
the shortcomings of solely using convolution operations
or transformer structures, thus manifesting effectiveness
of collectively exploiting short-range (convolution models)
and long-range (transformer structures) operations. The
results also show effects of “SNR-guided attention” (“Ours
w/o A” vs. “Ours”) and “SNR-guided fusion” (“Ours w/o
S” vs. “Ours”).

4.4. Influence of SNR Prior

The SNR input to our framework is obtained by applying
a no-learning-based denoising operation to the input frame
(Eq. (2)). In all experiments, we adopt the local means
as the denoising operation considering its fast speed. In

this section, we analyze the impact when embracing other
operations, including non-local means [1] and BM3D [8].
Fig. 9 shows the results, revealing that our framework is not
sensitive to strategies of obtaining the SNR input. All these
results are better than those of baselines.

5. Conclusion

We have presented a novel SNR-aware framework that
collectively exploits short- and long-range operations to
dynamically enhance pixels in a spatial-varying manner. An
SNR prior is adopted to guide feature fusion. The SNR-
aware transformer is formulated with a new self-attention
module. Extensive experiments, including user study,
demonstrate that our framework consistently achieves the
best performance on representative benchmark using the
same network structure.

Our future work is to explore other semantics to
enhance the spatial-varying mechanism. Also, we plan
to extend our method to handling low-light videos by
simultaneously considering temporal- and spatial-varying
operations. Another direction is to explore generative
methods [13,32] for nearly black areas in low-light images.

Acknowledgements We would like to thank Prof. Ying-
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