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Abstract

We present ONCE-3DLanes, a real-world autonomous
driving dataset with lane layout annotation in 3D space.
Conventional 2D lane detection from a monocular image
yields poor performance of following planning and control
tasks in autonomous driving due to the case of uneven road.
Predicting the 3D lane layout is thus necessary and enables
effective and safe driving. However, existing 3D lane de-
tection datasets are either unpublished or synthesized from
a simulated environment, severely hampering the develop-
ment of this field. In this paper, we take steps towards ad-
dressing these issues. By exploiting the explicit relationship
between point clouds and image pixels, a dataset annotation
pipeline is designed to automatically generate high-quality
3D lane locations from 2D lane annotations in 211K road
scenes. In addition, we present an extrinsic-free, anchor-
free method, called SALAD, regressing the 3D coordinates
of lanes in image view without converting the feature map
into the bird’s-eye view (BEV). To facilitate future research
on 3D lane detection, we benchmark the dataset and pro-
vide a novel evaluation metric, performing extensive ex-
periments of both existing approaches and our proposed
method.

The aim of our work is to revive the interest of 3D lane
detection in a real-world scenario. We believe our work
can lead to the expected and unexpected innovations in both
academia and industry.

1. Introduction
The perception of lane structure is one of the most funda-

mental and safety-critical tasks in autonomous driving sys-

tem. It is developed with the desired purpose of preventing

accidents, reducing emissions and improving the traffic effi-

ciency [4]. It serves as a key roll of many applications, such
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School of Data Science and Shanghai Key Laboratory of Intelligent In-

formation Processing, Fudan University

Figure 1. Images and 3D lane examples of ONCE-3DLanes
dataset. ONCE-3DLanes covers various locations, illumination

conditions, weather conditions and with numerous slope scenes.

as lane keeping, high-definition (HD) map modeling [13],

trajectory planning etc. In light of its importance, there has

been a recent surge of interest in monocular 3D lane detec-

tion [6, 7, 10, 15, 32]. However, existing 3D lane detection

datasets are either unpublished, or synthesized in a simu-

lated environment due to the difficulty of data acquisition

and high labor costs of annotation. With the only synthe-

sized data, the model inevitably lacks generalization ability

in real-word scenarios. Although benefiting from the de-

velopment of domain adaptation method [8], it still cannot

completely alleviate the domain gap.

Most existing image-based lane detection methods have

exclusively focused on formulating the lane detection prob-

lem as a 2D task [29, 34, 35], in which a typical pipeline is

to firstly detect lanes in the image plane based on seman-

tic segmentation or coordinate regression and then project

the detected lanes in top view by assuming the ground is

flat [28, 33]. With well-calibrated camera extrinsics, the in-

verse perspective mapping (IPM) is able to obtain an ac-

ceptable approximation for 3D lane in the flat ground plane.

However, in real-world driving environment, roads are not

always flat [7] and camera extrinsics are sensitive to vehicle

body motion due to speed change or bumpy road, which will
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lead to the incorrect perception of the 3D road structure and

thus unexpected behavior may happen to the autonomous

driving vehicle.

To overcome above shortcomings associated with flat-

ground assumption, 3D-LaneNet [7], directly predicts the

3D lane coordinates in an end-to-end manner, in which the

camera extrinsics are predicted in a supervised manner to

facilitate the projection from image view to top view. In ad-

dition, an anchor-based lane prediction head is proposed to

produce the final 3D lane coordinates from the virtual top

view. Despite the promising result exhibits the feasibility of

this task, the virtual IPM projection is difficult to learn with-

out the hard-to-get extrinsics and the model is trained under

the assumption that zero degree of camera roll towards the

ground plane. Once the assumption is challenged or the

need of extrinsic parameters is not satisfied, this method can

barely work.

In this work, we take steps towards addressing above is-

sues. For the first time, we present a real-world 3D lane de-

tection dataset ONCE-3DLanes, consisting of 211K images

with labeled 3D lane points. Compared with previous 3D

lane datasets, our dataset is the largest real-world lane de-

tection dataset published up to now, containing more com-

plex road scenarios with various weather conditions, differ-

ent lighting conditions as well as a variety of geographi-

cal locations. An automatic data annotation pipeline is de-

signed to minimize the manual labeling effort. Comparing

to the method [7] of using multi-sensor and expensive HD

maps, ours is simpler and easier to be implemented. In ad-

dition, we introduce a spatial-aware lane detection method,

dubbed SALAD, in an extrinsic-free and end-to-end manner.

Given a monocular input image, SALAD directly predicts

the 2D lane segmentation results and the spatial contextual

information to reconstruct the 3D lanes without explicit or

implicit IPM projection.

The contributions of this work are summarized as fol-

lows: (i) For the first time, we present a largest 3D lane

detection dataset ONCE-3DLanes, alongside a more gener-

alized evaluation metric to revive the interest of such task

in a real-world scenario; (ii) We propose a method, SALAD
that directly produce 3D lane layout from a monocular im-

age without explicit or implicit IPM projection.

2. Related work

2.1. 2D lane detection

There are various methods [1,14,22,29,31,35] proposed

to tackle the problem of 2D lane detection. Segmentation-

based methods [18, 24,28,29] predict pixel-wise segmenta-

tion labels and then cluster the pixels belonging to the same

label together to predict lane instances. Proposal-based

methods [34, 35] first generate lane proposals either from

the vanishing points [33] or from the edges of image [21],

and then optimize the lane shape by regressing the lane off-

set. There are some other methods [12,28, 33,37] trying to

project the image into the top view and using the properties

that lanes are almost parallel and can be fitted by lower or-

der polynomial in the top view to fit lanes. However, most

methods are limited in the image view, lack the image-to-

world step or suffer from the untenable flat-ground assump-

tion. As a result, formulating lane detection as a 2D task

may cause inappropriate behaviors for autonomous vehicle

when encountering hilly or slope roads [15].

2.2. 3D lane detection

LiDAR-based lane detection. Several methods [16,17,36]

have been proposed using LiDAR to detect 3D lanes, [11]

use the characteristic that the intensity values of different

material are different to filter out the point clouds of the

lanes by a certain intensity threshold and then cluster them

to obtain 3D lanes. However, it’s hard to determine the spe-

cific intensity threshold since the material used in different

countries or regions is distinct, and the intensity value varies

much in various weather conditions, e.g., rainy or snowy.

Multi-sensor lane detection. Other methods [2, 39] try to

aggregate information from both camera and LiDAR sen-

sors to tackle lane detection task. Specifically, [26] predicts

the ground height from LiDAR points to project the image

to the dense ground. It combines the image information

with LiDAR information to produce lane boundary detec-

tion results. Nevertheless, it’s difficult to guarantee that the

image and the point clouds appear in pairs in the real scenes,

e.g., CULane dataset only contains images.

Monocular lane detection. Recently there are a few meth-

ods [6, 7, 10, 15, 32] trying to address this problem by di-

rectly predicting from a single monocular image. The pio-

neering work 3D LaneNet [7] predicts camera extrinsics in

a supervised manner to learn the inverse perspective map-

ping(IPM) projection, by combining the image-view fea-

tures with the top-view features. Gen-LaneNet [10] pro-

posed a new geometry-guided lane anchor in the virtual

top view. By decoupling the learning of image segmen-

tation and 3D lane prediction, it achieves higher perfor-

mance and are more generalizable to unobserved scenes.

Instead of associating each lane with a predefined anchor,

3D-LaneNet+ [32] proposes an anchor-free, semi-local rep-

resentation method to represent lanes. Although the ability

to detect more lane topology structures shows the anchor-

free method’s power. However, all the above methods need

to learn a projection matrix in a supervised way to align

the image-view features with top-view features, which may

cause height information loss. While our proposed method

directly regresses the 3D coordinates in the image view

without considering camera extrinsics.
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Datasets images real published
weather

change

geographical

locations

synthetic-3D-lanes 306K No Yes No -

Apollo-Sim-3D 10.5K No Yes No
highway,urban

residential area

Real-3D-lanes 85K Yes No - highway,rural

Ours 211K Yes Yes Yes

highway,bridge

tunnel,suburb

downtown

Table 1. Comparison of different 3D lane detection datasets. ”-”

means not mentioned. Ours is the first published real-world dataset

covering different weather conditions and geographical locations.

2.3. Lane datasets

Existing 3D lane detection datasets are either unpub-

lished or synthesized in simulated environment. Gen-

Lanenet [10] uses Unity game engine to build 3D worlds

and releases a synthetic 3D lane dataset, Apollo-Sim-3D,

containing 10.5K images. 3D-LaneNet [7] adopts a graph-

ics engine to model terrains using a Mixture of Gaussians

distribution. Lanes modeled by a 4th degree polynomial in

top view are placed on the terrains to generate the synthetic

3D lanes dataset synthetic-3D-lanes, containing 306K im-

ages with a resolution of 360× 480. A real 3D lane dataset

Real-3D-lanes with 85K images is also created using mul-

tiple sensors including camera, LiDAR scanner and IMU as

well as the expensive HD maps in [7].

In this paper, we publish the first real-world 3D lane

dataset ONCE-3DLanes which contains 211K images and

covers abundant scenes with various weather conditions,

different lighting conditions as well as a variety of geo-

graphical locations. Comprehensive comparisons of 3D

lane detection datasets are shown in Table 1.

3. ONCE-3DLanes

3.1. Dataset introduction

Raw data. We construct our ONCE-3DLanes dataset based

on the most recent large-scale autonomous driving dataset

ONCE (one million scenes) [25] considering its superior

data quality and diversity. ONCE contains 1 million scenes

and 7 million corresponding images, the 3D scenes are

recorded with 144 driving hours covering different time pe-

riods including morning, noon, afternoon and night, various

weather conditions including sunny, cloudy and rainy days,

as well as a variety of regions including downtown, suburbs,

highway, bridges and tunnels. Since the camera data is cap-

tured at a speed of two frames per second and most adjacent

frames are very similar, we take one frame every five frames

to build our dataset to reduce data redundancy. Also, the

distortions are removed to enhance the image quality and

improve the projection accuracy from LiDAR to camera.
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Figure 2. An overview of slope scenes statistics is shown in (a).

The distribution of the height of lane points is shown in (b). The

histogram of the average number of lanes per image and the time

periods statistics are shown in (c) and (d) respectively.

Thus, by downsampling the ONCE five times, our dataset

contains 211k images taken by a front-facing camera.

Lane representation. A lane Lk in 3D space is represented

by a series of points
{
(xk

i , y
k
i , z

k
i )
}n

i=1
, which are recorded

in the 3D camera coordinate system with unit meter. The

camera coordinate system is placed at the optical center of

the camera, with X-axis positive to the right, Y-axis down-

ward and Z-axis forward.

Dataset analysis. The projection error from front-view

to top-view mainly occurs in the situation of slope ground,

so we focus on analyzing the slope statistics on ONCE-
3DLanes. The mean slope of lanes in each scene is utilized

to represent the slope of this scene. The slope of a specific

lane in forward direction which is considered to be the most

important is calculated as follows:

slope = (y2 − y1)/(z2 − z1) (1)

where (x1, y1, z1) and (x2, y2, z2) are the start point and the

end point of the lane respectively. The distribution of the

slope conditions and the histogram of the number of lanes

per image are shown in Figure 2. It shows that our dataset is

full of complexity and contains enough various slope scenes

with different illumination conditions.

Dataset splits. Follow the ONCE dataset, our benchmark

contains the same 3K scenes for validation and 8K scenes

for testing. To fully make use of the raw data, the training

dataset not only contains the original 5K scenes, but also

the unlabeled 200K scenes.

3.2. Annotation pipeline

Lanes are a series of points on the ground, which are

hard to be identified in point clouds. Hence the high-quality
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Figure 3. Dataset Annotation Pipeline: With the paired image

and Lidar point clouds as input, the 2D lanes on the image are

firstly labeled and broadened to get the lane regions; secondly the

ground points in the point clouds are filtered out through ground

segmentation; thirdly the filtered ground points are projected to

the image and collect the points which are contained in the lane

regions, finally cluster the points to get the real lane points.

annotations of 3D lanes are expensive to obtain, whilst it

is much cheaper to annotate the lanes in 2D images. The

paired LiDAR point clouds and image pixels are thoroughly

investigated and used to construct our 3D Lane dataset. An

overview of dataset construction pipeline is shown in Fig-

ure 3. The pipeline consists of five steps: Ground segmenta-

tion, Point cloud projection, Human labeling/Auto labeling,

Adaptive lanes blending and Point cloud recovery. These

steps are described in detail below.

Ground segmentation. Lanes are painted on the ground,

which is a strong prior to locate the precise coordinate in the

3D space. To make full use of human prior and avoid the

reflection of point clouds aliasing between lanes and other

objects, the ground segmentation algorithm is utilized to get

the ground LiDAR points at first.

The ground segmentation is performed in a coarse-to-

fine manner. In the coarse way, since the height of the Li-

DAR points reflected by the ground always settles in cer-

tain intervals, a pre-defined threshold is adopted to filter

out those points lying on the ground coarsely based on

the height statistics of the LiDAR points among the whole

dataset as seen in Figure 2(b). In the fine way, several points

in front of the vehicle are sampled randomly as seeds and

then the classic region growth method is applied to get the

fine segmentation result.

Point cloud projection. In this step, the previous extracted

ground LiDAR points are projected to the image plane with

the help of calibrated LiDAR-to-camera extrinsics and cam-

era intrinsics based on the classic homogeneous transforma-

tion, which reveals the explicit corresponding relationship

between the 3D ground LiDAR points and the 2D ground

pixels in the image.

Human labeling / Auto labeling. To obtain 2D lane la-

bels in the images and alleviate the taggers’ burden, a robust

2D lane detector which is trained in million-level scenes is

firstly used to automatically pre-annotate pseudo lane la-

bels. At the same time, professional taggers are required to

verify and correct the pseudo labels to ensure the annotation

accuracy and quality.

Adaptative lanes blending. After getting the accurate 2D

lane labels and ground points, in order to judge whether a

ground point belongs to the lane marker or not, we broaden

2D lane labels with an appropriate and adaptive width to

get lane regions. Due to the perspective principle, a lane is

broadened with different widths according to the distance

from camera. After the point clouds projection procedure,

we consider the ground points which are contained in the

lane regions as the lane point clouds.

Point cloud recovery. Finally, we select these lane point

clouds out. And for a specific lane, the lane point clouds in

the same beam are clustered to get the lane center points to

represent this lane.

To ensure the accuracy of annotations, we do not interpo-

late between center points in data collection stage. While in

training stage, we use cubic spline interpolation to generate

dense supervised labels. we also compared our annotations

with manually labeling results on a small portion of data,

which shows the high quality of our annotations. The inter-

polation code will be made public along with our dataset.

4. SALAD
In this section, we introduce SALAD, a spatial-aware

monocular lane detection method to perform 3D lane de-

tection directly on monocular images. In contrast to previ-

ous 3D lane detection algorithms [7, 10, 32], which project

the image to top view and adopt a set of predefined an-

chors to regress 3D coordinates, our method does not re-

quire human-crafting anchors and the supervision of extrin-

sic parameters. Inspired by SMOKE [23], SALAD consists

of two branches: semantic awareness branch and spatial

contextual branch. The overall structure of our model is

illustrated in Figure 4. In addition, we also adopt a revised

joint 3D lane augmentation strategy to improve the general-

ization ability. The details of our network architecture and

augmentation methods are discussed in the following parts.

4.1. Backbone

We choose the Segformer [38] as our backbone to extract

the global contextual features and to learn the slender struc-

ture of lanes. To be concrete, given an image I ∈ R
H×W×3,

the hierarchical transformer backbone encodes the image

I into multi-level features at {1/4, 1/8, 1/16, 1/32} of the

input resolution. Then all multi-level features are upsam-

pled to H
4 × W

4 and concatenated through a MLP-based de-

coder and a convolutional feature fusion layer to aggregate
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Figure 4. The architecture of SALAD. The backbone encodes an input image into deep features and two branches namely semantic

awareness branch and spatial contextual contextual branch decode the features to get the lane’s spatial information and the segmentation

mask. Then 3D reconstruction is performed by integrating these information and finally obtain the 3D lane positions in real-world scene.

the multi-level features into F ∈ R
H
4 ×W

4 ×C . Specifically,

we adopt Segformer-B2 as our feature extractor.

4.2. Semantic awareness branch

Traditional 3D lane detection methods [7,10,32] directly

projecting feature map from front view to top view, are not

reasonable and harmful to the performance of prediction as

the feature map may not be organized following the per-

spective principle.

In order to directly regress 3D lane coordinates, we first

design a semantic awareness branch to make full use of 2D

semantic information, which provides 2D lane point pro-

posals to aggregate 3D information together. It is a rela-

tively easy task to extract 2D features of lane markers from

images with rich semantic information. In addition, cur-

rent mature experience on semantic segmentation task can

also be used to enhance our semantic awareness branch.

We follow the method of [28], to encode 2D lane coor-

dinates
{
(uk

i , v
k
i )
}n

i=1
into ground-truth segmentation map

Sgt ∈ R
H×W×1.

During training time, image I ∈ R
H×W×3 and ground-

truth Sgt ∈ R
H×W×1 pairs are utilized to train semantic

awareness branch. During inference, given an image I ∈
R

H×W×3, we are able to locate the foreground lane points

on the binary mask S ∈ R
H×W×1.

According to [5], inverse projection from 2D image to

3D space is an underdetermined problem. Based on the

segmentation map generated by semantic awareness branch,

spatial information of each pixel is also required to transfer

this segmentation map from 2D image plane to 3D space.

4.3. Spatial contextual branch

To reconstruct 3D lanes from 2D lane points generated

by semantic awareness branch, we propose the spatial con-

textual branch to predict vital 3D offsets. To sum up, our

spatial contextual branch predicts a regression result O =
[δu, δv, δz]

T ∈ R
3×H×W . δu and δv denote the pixel loca-

tion offsets of lane points predicted in segmentation branch

(us, vs), and generate accurate 2D lane positions. The δz
denotes the pixel-level prediction of depth.

Due to the downsampling and lacking of global informa-

tion, the locations of the predicted lane points are not accu-

rate enough. Our spatial contextual branch accepts feature

F and outputs a pixel-level offset map, which predicts the

spatial location shift δu and δv of lane points along u and

v axis on the image plane. With the predictions of pixel lo-

cation offsets δu and δv , the rough estimation of lane point

locations is modified by global spatial context:

[
u
v

]
=

[
us + δu
vs + δv

]
. (2)

In order to recover 3D lane information, the spatial con-

textual branch also generates a dense depth map to regress

on depth offset δz for each pixel of the lane markers. Con-

sidering the depth of the ground on image plane increases

along rows, we assign each row of the depth map a pre-

defined shift αr and scale βr, and perform regression in a

residual way. The standard depth value z is recovered as

following:

z = αr + βrδz. (3)

The ground-truth depth map is generated by projecting

3D lane points
{
(xk

i , y
k
i , z

k
i )
}n

i=1
on the image plane to get

pixel coordinates
{
(uk

i , v
k
i , z

k
i )
}n

i=1
. Then at each pixel

(uk
i , v

k
i ), its corresponding depth value is assigned to zki .

Following [20], we apply depth completion on the sparse

depth map to get the dense depth map Dgt to provide suffi-

cient training signals for our spatial contextual branch.
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4.4. Spatial reconstruction

The spatial information predicted by our spatial contex-

tual branch of our model plays a virtual role in 3D lane re-

construction. To map 2D lane coordinates back to 3D spa-

tial location in camera coordinate system, the depth infor-

mation is an indispensable element. To be concrete, given

the camera intrinsic matrix K3×3, a 3D point (x, y, z) in

camera coordinate system can be projected to a 2D image

pixel (u, v) as:

z

⎡
⎣uv
1

⎤
⎦ = K3×3

⎡
⎣xy
z

⎤
⎦ =

⎛
⎝fx s cx

0 fy cy
0 0 1

⎞
⎠

⎡
⎣xy
z

⎤
⎦ , (4)

where fx and fy represent the focal length of the camera,

(cx, cy) is the principal point and s is the axis skew. Thus,

given a 2D lane point in the image with pixel coordinates

(u, v) along with its depth information d, noted that the

depth denotes the distance to the camera plane, so the depth

d is the same as the z in the camera coordinate system. Thus

3D lane point in camera coordinate system (x, y, z) can be

restored as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z = d,

y =
z

fy
· (v − cy),

x =
z

fx
· [(u− cx)− s

fy
(v − cy)].

(5)

Utilizing the fixed parameters of the camera intrinsic, we

can project the 2D lane proposal points back to 3D locations

to reconstruct our 3D lanes.

4.5. Loss function

Given an image and its corresponding ground-truth 3D

lanes, the loss function between predicted lanes and ground-

truth lanes are formulated as:

L = Lseg + λLreg. (6)

Lseg is for the binary segmentation branch, with a cross-

entropy loss in a pixel-wise manner on the segmentation

map. For a specific pixel in segmentation map S, yi is the

label and pi is the probability of being foreground pixels:

Lseg = − 1

N

N∑
i=1

[yilog(pi) + (1− yi)log(1− pi)]. (7)

Lreg is for the spatial contextual branch, which predicts the

spatial offsets O = [δu, δv, δz]
T . we choose smooth L1 loss

to regress these spatial contextual information O:

Lreg =
1

N

N∑
i=1

[smoothL1
(Ôi −Oi)]. (8)

λ denotes the penalty term for regression loss and is set to

1 in our experiments.

4.6. Data augmentation

Randomly horizontal flip and image scaling are common

data augmentation methods to improve the generalization

ability of 2D lane detection models. However, it is worth

noting that the image shift and scale augmentation meth-

ods will cause 3D information inconsistent with the data

augmentation [23]. We revise it by proposing a joint scale

strategy and the augmentation steps are as follows:

Given an image with height H and weight W, the image

center is (cu, cv) = (W2 , H
2 ). With a fixed camera intrinsic

matrix, the principal center is (cx, cy) as mentioned before.

To guarantee the 3D point to align with the pixel when scal-

ing, it is proved that the scaling center (sx, sy) is{
sx = cx + s · (cu − cx),

sy = cy + s · (cv − cy).
(9)

To ensure we can restore the same size of the original image

from the scaled image, we first crop the top of the image

with size c. Then we scale the cropped image according to

the scaling center with the proportion s. The relationship of

3D information of a specific pixel before scaling (x, y, z)
and after scaling (x̂, ŷ, ẑ) is:

(x̂, ŷ, ẑ) = (x, y, z · s). (10)

Take scaling factor s which is less than one for example. If

the image is scaled with factor s, in the camera coordinate

system, it is like the camera is moving forward in the Z
direction. As for a specific point, the x and y keep the same

while the z become smaller and the new z equals z · s.

5. Experiment
In this section, our experiments are presented as follows.

First we introduce our experimental setups, including eval-

uation metrics and implementation details. Then we evalu-

ate our baseline method on our ONCE-3DLanes dataset and

investigate the evaluation performance of different hyper-

parameter settings. Next we compare our proposed method

with the prior state-of-the-art to prove the superiority of

our proposed method. Finally, we conduct several ablations

studies to show the significance of modules in our network.

5.1. Evaluation metric

Evaluation metric is set to measure the similarity be-

tween the predicted lanes and the ground-truth lanes. Previ-

ous evaluation metric [10], which set predefined y-position

to regress the x and z coordinates of lane points, is not so-

phisticated. Due to the fixed anchor design, this metric es-

sentially performs badly when the lanes are horizontal.

To tackle this problem, we propose a two-stage evalua-

tion metric, which regards 3D lane evaluation problem as

a point cloud matching problem combined with top-view
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constraints. Intuitively, two 3D lane pairs are well matched

when achieving little difference in the z-x plane (top view)

alongside a close height distribution. Matching in the top

view constrains the predicted lanes in the correct forward

direction, and close point clouds distance in 3D space en-

sures the accuracy of the predicted lanes in spatial height.
Our proposed metric first calculate the matching degree

of two lanes on the z-x plane. To be concrete, lane is rep-

resented as Lk =
{
(xk

i , y
k
i , z

k
i )
}n

i=1
. To judge whether

predicted lane Lp matches ground-truth lane Lg , the first
matching process is done in the z-x plane, namely top-view,
we use the traditional IoU method [29] to judge whether Lp

matches Lg . If the IoU is bigger than the IoU threshold,
further we use a unilateral Chamfer Distance (CD) to cal-
culate the curves matching error in the camera coordinates.
The curve matching error CDp,g between Lp and Lg is cal-
culated as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CDp,g =
1

m

m∑
i=1

||Pgi − P̂pj ||2,

P̂pj = min
Ppj

∈Lp
||Ppj − Pgi ||2,

(11)

where Ppj = (xpj , ypj , zpj ) and Pgi = (xgi , ygi , zgi)

are point of Lp and Lg respectively, and P̂pj
is the nearest

point to the specific point Pgi . m represents the number of

points token at an equal distance from the ground-truth lane.

If the unilateral chamfer distance is less than the chamfer

distance threshold, written as τCD. We consider Lp matches

Lg and accept Lp as a true positive. The legend to calculate

chamfer distance error is shown in Figure 5.

Figure 5. Unilateral chamfer distance Given a point on the

gound-truth lane, find the nearest point on the predicted lane to

calculate the chamfer distance.

This evaluation metric is intuitive and strict, and more

importantly, it applies to more lane topologies such as ver-

tical lanes, so it is more generalized. At last, since we know

how to judge a predicted lane is true positive or not, we use

the precision, recall and F-score as the evaluation metric.

5.2. Implementation details

Our experiments are carried out on our proposed ONCE-
3DLanes benchmark. We use the Segformer [38] as our

backbone with two branches. The Segformer encoder is

pre-trained with Imagenet [19]. The input resolution is set

to 320 × 800 with our augmentation strategy during train-

ing. The augmentation is turned off during testing. The

Adamw optimizer is adopted to train 20 epochs, with an

Figure 6. Qualitative results and failure cases analysis under spe-

cific threshold. The ground-truth lanes are colored in red, while

true positives of our predictions are in blue and false positives in

cyan. The τCD of 0.5 is somehow too loose for discrimination.

initial learning rate at 3e-3 and applied with a poly sched-

uler by default. For evaluation, We set the IoU threshold as

0.3, the chamfer distance thresh τCD as 0.3m. We also test

our model using the Mindspore [27].

5.3. Benchmark performance

5.3.1 Main results

We train our model with the whole training set of 200k im-

ages and report the detection performance on the test set

of ONCE-3DLanes dataset. To verify the rationality of the

hyper-parameters setting in our evaluation metric, we eval-

uate our model under different Chamfer Distance threshold

τCD and report the testing results in Table 2.

τCD(m) F1(%) Precision(%) Recall(%) CD error(m)

0.15 48.35 58.52 41.19 0.062

0.30 64.07 75.90 55.42 0.098

0.50 68.92 81.65 59.62 0.118

Table 2. Performance of SALAD under different τCD thresholds

on our test set.

We report our performance in different settings of τCD,

in order to fully investigate the impact of tightening or

loosening the criteria on model performance. The illustra-

tions of criteria adopting various τCD are also proposed in

Figure 6. It can be seen that under the threshold of 0.5,

some predicted lanes relatively far from the ground-truth

are judged as true positives. While under the τCD of 0.15,

the criteria seems too harsh. The τCD of 0.3 is more rea-

sonable and our SALAD achieves 64.07% F1-score based

on this threshold. Besides, since the distance is calculated

based on real scene so it is highly adaptable to real-world

datasets. In the remaining parts, the experimental results

are reported under the threshold of 0.3.

5.3.2 Results of 3D lane detection methods

In order to further verify the authenticity of our dataset and

the superiority of our method, which is extrinsic-free, we
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Method extri. free F1(%) Precision(%) Recall(%) CD error(m)

3D LaneNet [7] � 44.73 61.46 35.16 0.127

GenLaneNet [10] � 45.59 63.95 35.42 0.121

SALAD � 64.07 75.90 55.42 0.098

Table 3. Performance of 3D lane detection on ONCE-3DLanes.

also conduct some experiments of other 3D lane detection

algorithms on our dataset.

It is worth noting that all existing 3D lane detection al-

gorithms need to provide camera poses as supervision in-

formation and have strict assumptions that the camera is in-

stalled at zero degrees roll relative to the ground plane [7].

However, our method requires no external parameter infor-

mation. To make comparison, we used the camera-pose pa-

rameters provided by ONCE [25] to provide supervision

signals for counterpart methods and ultimately evaluated

them on our test set. The performance of 3D lane detec-

tion algorithms are presented in Table 3.

The comparison shows our method outperforms other

3D lane detection method in ONCE-3DLanes dataset. The

comparison result indicates that extrinsic-required methods

under the assumption of fixed camera pose and zero-degree

camera roll may suffer in real 3D scenarios.

5.3.3 Results of extended 2D lane detection methods

ONCE-3DLanes dataset is a newly released 3D lane detec-

tion dataset and no previous work addresses the problem of

extrinsic-free 3D lane detection. In order to verify the va-

lidity of our dataset and the efficiency of our method, we

extend the existing 2D lane detection model and evaluate

their performance on our dataset.

Different from 3D lane detection methods, 2D lane de-

tection algorithms can only detect the pixel coordinates of

lanes in the image plane, but cannot recover the spatial in-

formation of lanes. To obtain 3D lane detection results, we

use a pre-trained depth estimation model MonoDepth2 [9]

(finetuned to the depth scale of our dataset) to estimate the

pixel-level depth of the image. It is worth mentioning that

the depth model is finetuned on full ONCE dataset in or-

der to avoid under-fitting caused by sparse supervision pro-

vided by lane points, which also indicates that this pipeline

is difficult to be extended on other 3D lane benchmarks.

Combined with the detection results of extended 2D lane

detection model, the spatial position of 3D lanes are recon-

structed and our evaluation metric is used for performance

evaluation. The results are showed in Table 4.

Experimental results show that the extended 2D mod-

els are effective to perform 3D lane detection task on

our ONCE-3DLanes dataset. It can also be found that our

proposed method can reach 64.07% F1-score, outperforms

the best of other methods 56.57% by 7.5%, which shows

the superiority of our method.

Method F1(%) Precision(%) Recall(%) CD error(m)

PointLaneNet (R101) [3] 54.99 64.50 47.93 0.115

UltraFast (R101) [30] 54.18 63.68 47.14 0.128

RESA (R101) [40] 55.53 65.08 48.43 0.112

LaneAF (DLA34) [1] 56.39 66.07 49.18 0.109

LaneATT (R122) [35] 56.57 66.75 49.07 0.101

SALAD 64.07 75.90 55.42 0.098

Table 4. Performance of extended 2D lane detection methods on

ONCE-3DLanes test set.

5.4. Ablation study

To verify the efficiency of revised data augmentation

methods, we conduct ablation experiments by gradually

turning off data augmentation strategy. As shown in Table 5,

the performance of our method is constantly improved with

the gradual introduction of our data augmentation strategy.

The flip method brings a 1.06% improvement to our model

and the 3D scale provides a further 1.83% improvement,

which proves the validity of our augmentation strategy.

Method F1(%) Precision(%) Recall(%) CD error(m)

SALAD (w/o aug) 61.18 72.43 52.95 0.103

+ flip 62.24+1.06 73.67+1.24 53.88+0.93 0.102-0.001

+ joint scale 64.07+2.89 75.90+3.47 55.42+2.47 0.098-0.005

Table 5. Ablation study on data augmentation strategy.

6. Conclusion and limitations
In this paper, we have presented a largest real-world 3D

lane detection benchmark ONCE-3DLanes. To revive the

interest of 3D lane detection, we benchmark the dataset with

a novel evaluation metric and propose an extrinsic-free and

anchor-free method, dubbed SALAD, directly predicting the

3D lane from a single image in an end-to-end manner. We

believe our work can lead to the expected and unexpected

innovations in communities of both academia and industry.

As our dataset construction requires LiDAR to provide

3D information, occlusions would lead to short interruption

and we have used interpolation to fix it. Missing points

problem in the distance still exists due to the low resolu-

tion of LiDAR. Future work will focus on the ground point

clouds completion to generate full information for 3D lanes.
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