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Abstract

We address weakly supervised point cloud segmentation

by proposing a new model, MIL-derived transformer, to

mine additional supervisory signals. First, the transformer

model is derived based on multiple instance learning (MIL)

to explore pair-wise cloud-level supervision, where two

clouds of the same category yield a positive bag while two

of different classes produce a negative bag. It leverages not

only individual cloud annotations but also pair-wise cloud

semantics for model optimization. Second, Adaptive global

weighted pooling (AdaGWP) is integrated into our trans-

former model to replace max pooling and average pooling.

It introduces learnable weights to re-scale logits in the class

activation maps. It is more robust to noise while discovering

more complete foreground points under weak supervision.

Third, we perform point subsampling and enforce feature

equivariance between the original and subsampled point

clouds for regularization. The proposed method is end-

to-end trainable and is general because it can work with

different backbones with diverse types of weak supervision

signals, including sparsely annotated points and cloud-level

labels. The experiments show that it achieves state-of-the-

art performance on the S3DIS and ScanNet benchmarks.

The source code will be available at https://github.

com/jimmy15923/wspss_mil_transformer.

1. Introduction

Point clouds capture geometric characteristics and sur-

face context, and hence serve as an essential representation

for many 3D vision applications such as scene understand-

ing [6, 22, 28], autonomous vehicles [4, 5], and robotics [9].

Point cloud segmentation aims to identify points belong-

ing to semantic categories of interest. It offers point-level

recognition, thereby being an intrinsic component of point

cloud analysis. However, learning a segmentation model re-

lies on training data with point-level annotations. The high

annotation cost poses an obstacle to this task. To address

this issue, existing weakly supervised methods derive the

segmentation model with different weak supervisory sig-

nals, such as partially labeled points [26, 42, 46, 47], sub-

cloud level annotations [38] or scene level annotations [31].

To compensate for the lack of complete annotations,

weakly supervised point cloud segmentation methods [26,

31, 38, 42, 46, 47] make the most of weakly labeled data by

different techniques such as graph propagation, permutation

consistency, and object proposals. Despite effectiveness,

these methods use only intra-cloud information: The super-

visory signals are grabbed from point clouds independently.

Inspired by image co-segmentation [13,45] and cross-image

pattern mining [32], we aim to explore inter-cloud seman-

tics to supervise segmentation model training. To this end,

we generalize the transformer model [34] to work on paired

point clouds and formulate the problem as a multiple in-

stance learning (MIL) [27] task. It follows that our method

can use both intra-cloud and inter-cloud information to bet-

ter accomplish weakly supervised segmentation.

Specifically, we develop an MIL-derived transformer

where MIL addresses the uncertainty of weak labels. As

shown in Figure 1, we apply the transformer to two point

clouds of the same category. One cloud is treated as an

anchor with each of its points being a query in the trans-

former. The other cloud serves as a reference where each of

its points forms a key-value pair. The transformer encoder

and decoder are applied to the reference and the anchor re-

spectively. Through the cross-attention [34] mechanism of

the decoder, each query (from the anchor) is expressed as a

weighted sum of the values (from the reference). The resul-

tant feature vectors of all points (i.e., queries) of the anchor

yield a positive bag in MIL for the common category of the

two clouds. MIL via this positive bag encourages the model

to attend to the foreground points of the anchor.

In contrast, we consider another reference point cloud

whose category is different from the anchor. This time,

the feature vectors of all queries of the anchor generate a

negative bag because the feature vector of each query is a

weighted sum of values of this reference where the target

category is not present. The model via this negative bag is

enforced to suppress irrelevant points. With the proposed

MIL-transformer, each pair of point clouds, forming either

a positive or a negative bag, produces extra signal to su-

pervise model training. In addition, long-range dependency

can be taken into account via the transformer.

Max or average pooling is widely used to aggregate in-
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Figure 1: Given two point clouds (anchor and reference) of the same category (chair), a backbone network is applied to

compute point embeddings. The transformer encoder and decoder are applied to the two clouds respectively. Self-attention

captures long-range dependency. In the cross-attention module of the decoder, the points (tokens) from the anchor serve as

the queries, while those from the reference act as key-value pairs. The transformer maps each query to a weighted sum of

values. The outputs of the queries produce a positive bag for multiple instance learning. Once the reference is changed to

another cloud without covering any chairs, the outputs of the queries then yield a negative bag for the chair category.

formation in weakly supervised segmentation, and hence is

crucial to the performance. Max pooling considers only

peak points, typically leading to incomplete object seg-

ments. In addition, it is sensitive to noise. Average pool-

ing for weakly supervised segmentation often suffers from

performance degradation caused by irrelevant points such

as those belonging to other classes or background. More-

over, stuff categories, e.g. floor or wall, in point cloud seg-

mentation bring the class imbalance problem, which makes

the aforementioned issues worse. We address these issues

by proposing adaptive global weighted pooling (AdaGWP),

which introduces learnable weights, one for each class.

These class-specific weights are derived so that the model

can attend to points of relevant classes. It turns out that

AdaGWP suppresses irrelevant points while recovering ob-

ject points more completely.

We also consider cross-scale consistency of point clouds

to regularize weakly supervised feature extraction. Random

point sampling is applied to subsample a point cloud. Sub-

sampling does not change point labels even if the labels are

unknown in weakly supervised learning. Thus, a consis-

tency loss is imposed to enforce the similarity between the

features of the original and subsampled point clouds, acting

as extra supervision signals for network training.

The main contribution of this work is the MIL-derived

transformer, which explores additional inter-cloud seman-

tics for weakly supervised segmentation. In addition, a

class-specific, learnable pooling technique AdaGWP and

multi-scale feature equivariance are utilized to enhance

model training. Our method is flexible to work with differ-

ent point cloud networks, and with diverse types of weak su-

pervisory signals, including sparsely annotated points [42],

subcloud-level [38] and scene-level [31] annotations. It per-

forms favorably against existing methods on the S3DIS [1]

and ScanNet [7] benchmarks.

2. Related work

Weakly supervised semantic segmentation on images.

This task aims at reducing the expensive annotation cost

of pixel-level labels for learning an image segmentation

model. It works on training data with weak annotations,

such as bounding boxes [18], scribbles [25], points [2], and

image-level labels [20, 21, 32, 37, 39, 40, 44, 49]. Labels in

the form of scribbles [25] and points [2] are referred to as

incomplete supervision, which corresponds to partially la-

beled points on point clouds. These methods under incom-

plete supervision usually explore image-specific properties,

such as spatial and color continuity [2, 25]. Image-level an-

notations [17, 20, 21, 23, 32, 37, 39, 40, 44, 49] are referred

to as inexact supervision, which corresponds to subcloud-

level or scene-level labels on point clouds. Many methods

[20,32,37,39,40,44] use class activation maps (CAM) [48]

with classification-oriented models for object localization.

Compared with methods of this category, our method is de-

veloped for point cloud segmentation. It is flexible to work

under incomplete and inexact supervision.

Weakly supervised point cloud segmentation. This task

learns a point cloud segmentation model under weak super-

vision, such as sparsely labeled points [12, 26, 42, 46, 47],

subcloud-level labels [38], and scene-level labels [31].

Given sparsely labeled points e.g. one labeled point for each

category in a scene, existing approaches use spatial con-

straints and different techniques, such as graph propagation

[26, 42, 47], self-training [26, 47], and pre-training [12, 46],

to derive segmentation models. Learning with scene-level

or subcloud-level annotations is even more challenging

since only class tags of clouds or subclouds are available.

With scene-level annotations, Ren et al. [31] jointly ad-

dress segmentation, proposal generation, and object detec-

tion through a cross-task consistency loss. With subcloud-

level labels, Wei et al. [38] subsample the whole scene into

subclouds and use multi-path attentions for self-training.
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Figure 2: Overview of our method for weakly supervised point cloud segmentation. Our method integrates the three proposed

components: the MIL-derived transformer, the adaptive global weighted pooling (AdaGWP), and the cross-scale feature

consistency. The whole network is optimized by three loss functions, i.e., Lcls, Lmil, and Lcon. The black arrows indicate

the path for training, while the blue ones form the path of inference. See text for details.

Different from and complementary to the aforemen-

tioned methods, our method extends transformers to explore

inter-cloud semantics for weakly supervised learning. We

also present a learnable pooling technique for class-specific

information aggregation and implement inter-scale feature

equivariance to reach the state-of-the-art performance.

Co-segmentation and cross-image pattern mining. The

co-attention module [13, 32, 43] aims at discovering the

co-occurrence areas among multiple images. It has been

used for object co-segmentation [10, 13, 14, 24, 45]. For in-

stance, Hsu et al. [13] design a co-attention generator to

consider feature discrepancy across images and produce co-

segmentation maps by using contrastive learning. Sun et

al. [32] utilize contrastive co-attention to capture cross-

image semantics via computing an affinity matrix for a pair

of images. Methods for object proposal or saliency map

generation are usually required for common area mining

among multiple images, but they are not applicable to point

clouds. Our method addresses the unavailability of ob-

ject proposals and saliency maps by exploring the cross-

attention mechanism in transformers. We generalize the

transformer [3,34,35] with its encoder-decoder architecture

to identify inter-cloud co-occurrence points, and derive it

under weak supervision by multiple instance learning.

Global and weighted pooling. Pooling is widely used

to aggregate global information and handle uncertainty in

weakly supervised learning. Some advanced pooling meth-

ods integrate channel-wise and spatial information [8] or

include spatial attention [16]. Kolesnikov et al. [20] pre-

define the decay weight for each class before pooling. Com-

pared with these pooling methods, the proposed AdaGWP

learns a weight for each class, which is associated with a

channel in CAM to suppress less relevant points. Combin-

ing the proposed MIL-derived transformer and AdaGWP,

our method carries out point-specific identification and

class-specific suppression simultaneously, which is essen-

tial to weakly supervised point segmentation.

3. Proposed method

This section presents the proposed method. We first give

an overview of the method and elaborate on the proposed

MIL-derived transformer. Then, we describe the adaptive

global weighted pooling and cross-scale feature equivari-

ance. Finally, the implementation details are provided.

3.1. Overview

We are given a weakly annotated set of N point clouds

with either cloud-level labels or sparsely labeled points, i.e.,

D = {Pn,yn}
N
n=1, where Pn denotes the nth point cloud

and yn is its label. Without loss of generality, we assume

that each cloud has M points, i.e., Pn = {pnm}Mm=1, where

each point pnm ∈ R
3 is represented by its 3D coordi-

nate. If cloud-level labels are given, yn ∈ {0, 1}C is a C-

dimensional binary vector indicating which categories are

present in cloud Pn, where C is the number of object cate-

gories. If sparsely labeled points are provided, yn records

the categories of the labeled points of cloud Pn. With the

weakly labeled dataset D, we aim to derive a segmentation

model, which classifies each point of a testing cloud into

one of the C categories or the background.

Figure 2 illustrates our method. In training, we con-

sider a point cloud P and its label y. A backbone network,

such as 3D U-Net [6], is employed to extract the per-point

embeddings. The embeddings are then fed into the MIL-

derived transformer’s encoder to produce the self-attention

features X = {xm}Mm=1 of P , where M is the number of

points. The MIL-derived transformer’s decoder is applied

to another cloud P ′. As shown in Figure 1, point clouds P

and P ′ serve as the reference and the anchor, respectively.

For each category c present in anchor P ′, the transformer

outputs a positive bag if category c is also present in P , or

a negative bag otherwise. An MIL (multiple instance learn-

ing) loss Lmil works on the produced positive and negative

bags, and is used to train the transformer and the preceding

backbone network.
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The features X of the point cloud P , produced by the

transformer’s encoder, serve as the input to the class-aware

layer [32], i.e. a 1× 1 convolution layer with C filters, get-

ting the class activation maps (CAM) S ∈ R
M×C . The pro-

posed adaptive global weighted pooling (AdaGWP) makes

the classification predictions. A classification loss Lcls is

computed based on the predictions and the label y.

As shown in Figure 2, we apply random point sampling

to the point cloud P and get its subsampled point cloud

P̃ . The same process of feature extraction is used for P̃ .

The consistency loss Lcon enforces feature equivariance be-

tween the common points of P and P̃ . In sum, the whole

network is optimized in a weakly-supervised manner by the

following loss function

L = Lcls + Lmil + Lcon, (1)

where loss Lcls is the multi-label classification loss [38,42]

under inexact supervision or the per-point classification

loss [42] under incomplete supervision. The MIL loss Lmil

and the consistency loss Lcon will be elaborated later.

Inference. Given a testing cloud P for segmentation, we

get its sub-sampled version P̃ by using random sampling.

Both P and P̃ are fed into the backbone network followed

by the transformer encoder to extract their features X and

X̃ . The class-aware layer maps these features X and X̃ to

the class activation maps, S and S̃, respectively. To fuse the

multi-scale information, we apply the nearest upsampling

method [30, 38] to S̃. The final segmentation results are

obtained by applying the element-wise max operation to S

and the upsampled counterpart of S̃.

3.2. MIL­derived transformer

We describe how to construct the MIL-derived trans-

former, which generates positive and negative bags under

weak supervision. As shown in Figure 2, we apply the back-

bone network to a point cloud of M points P = {pm}Mm=1.

Suppose that class c is present simultaneously in P and an-

other point cloud P ′ = {p′

m}Mm=1. The transformer treats

P and P ′ as reference and anchor respectively, and takes

them as the input. As illustrated in Figure 1, the transformer

encoder is applied to reference P . Each encoder layer com-

prises a self-attention module and a feed forward network

(FFN). Through the encoder, the output embeddings {xm}
for points of the reference P are obtained.

The transformer decoder is composed of layers, each of

which has a self-attention module, a cross-attention module,

and an FFN. The decoder applies the self-attention module

to anchor P ′ by treating the points of P ′ as tokens. The

cross-attention module considers both the reference P and

anchor P ′, where each point (token) of the anchor P ′ serves

as a query while each point of the reference P forms a key-

value pair. The output embeddings of anchor P ′ compose

a positive bag with M instances, i.e., b+ = {z′m}Mm=1, of

class c, which is then used for multiple instance learning.

The transformer maps each query (corresponding to a

point in P ′) to a weighted combination of the values (cor-

responding to all points of P ). This property is realized by

turning off residual learning in the transformer in our imple-

mentation. Since both reference P and anchor P ′ contain at

least one point of class c, treating b+ = {z′m}Mm=1 as a pos-

itive bag in MIL enforces the transformer and the preceding

backbone network attend to similar or matched points in

P and P ′. In contrast, if the reference P is changed to

a point cloud without covering any points of class c, the

output embeddings of the anchor P ′ yield a negative bag,

b− = {z′m}Mm=1. The reason is clear: Each instance z′m is

a weighted sum of the values, which are derived from points

not belonging to class c. Thus, instance z′m must be irrele-

vant to class c. Treating b− = {z′m}Mm=1 as a negative bag

helps discard the points in anchor P ′ that are similar to any

points of reference P , namely those irrelevant to class c.

We adopt mini-batch optimization in the implementa-

tion. For every pair of point clouds in a batch, if class c

is present in at least one of them, a positive or negative bag

can be created for class c depending on whether c is present

in the other cloud. It follows that a set of positive bags

B+ = {b+} and a set of negative bags B− = {b−} are

collected for this batch. The developed MIL loss Lmil for

class c is defined by

Lmil(B
+, B−, c) =

α
∑

b∈B+

− log fc(b) + β
∑

b∈B−

− log (1− fc(b)),
(2)

where fc(b) = maxz∈b fc(z) is the probability of bag b be-

ing positive for class c, and fc is an MLP followed by soft-

max which predicts whether the input embedding z belongs

to class c. α and β are positive constants controlling the im-

portance of positive and negative bags, respectively. Via the

MIL loss Lmil, each pair of training point clouds produces

extra supervisory signals for optimizing the whole network.

3.3. Adaptive global weighted pooling

Most point cloud networks [29, 36] are developed to ex-

tract point-specific features from the orderless data struc-

ture. For weakly-supervised point cloud segmentation,

pooling, such as global average pooling (GAP) or global

max pooling (GMP), is widely adopted to aggregate point-

level features to make cloud-level predictions, with which

the classification loss Lcls in Eq. 1 is enabled to supervise

network training. However, GAP often suffers from perfor-

mance degradation caused by dominant irrelevant points,

such as those belonging to categories floor or wall. GMP

emphasizes just few points with peak responses, and hence

is less effective to discover more the whole segments. It is
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also sensitive to noise or outliers. To reduce these unfavor-

able issues, we propose adaptive global weighted pooling

(AdaGWP), which introduces extra learnable parameters,

one for each class, and can suppress irrelevant points while

discovering more complete segments.

In Figure 2, the class activation maps (CAMs) of point

cloud P with M points are computed by passing through

the class-aware layer. Each point of P at this stage is

represented as a C-dimensional vector, i.e., P = {sm ∈
R

C}Mm=1, where C is the number of classes. CAMs en-

code the point-class relationships: Positive sm(c) implies

that point m probably belongs to class c, while negative

sm(c) means that point m is likely irrelevant to class c.

Based on this property, the proposed AdaGWP introduces

one learnable parameter wc for each class c, which is de-

rived to determine the weights of irrelevant points. Specifi-

cally, AdaGWP applied to P is a re-weighted average pool-

ing with its output for class c computed as follows:

rc = AdaGWP({sm(c)}Mm=1) =

∑M

m=1 vmsm(c)
∑M

m=1 vm
,

where vm =

{

1, if sm(c) > 0,
σ(wc), otherwise,

(3)

and σ(·) is the sigmoid function. In Eq. 3, wc is the intro-

duced learnable parameter and its value is optimized dur-

ing training. Each point m is associated with a weight vm.

For points with positive responses for class c in CAM, their

weights are set to 1, meaning that all these points will be

taken into consideration during pooling. For points with

negative responses, they are probably irrelevant to class c,

and hence suppressed by shrinking their weights from 1 to

σ(wc). Via AdaGWP for re-weighting CAMs, the output

of point cloud P for class c, namely rc in Eq. 3, is ob-

tained by average pooling. AdaGWP alleviates all the is-

sues mentioned above regarding GAP and GMP by intro-

ducing few learnable parameters {wc}
C
c=1, and can substan-

tially improve the performance of weakly-supervised point

cloud segmentation in the experiments.

3.4. Cross­scale feature equivariance

Multi-scale feature equivariance constraints [15, 37] of-

fer extra supervisory signals and can enhance weakly super-

vised segmentation. In this work, we extend the image scal-

ing method to the 3D point cloud domain by random point

sampling. We enforce feature equivariance among cross-

scale point features, where the scale of a cloud means the

number of its points. For each point cloud P = {xm}Mm=1

in the training set, random point sampling is applied to P

for obtaining a subset of P , i.e., P̃ ⊂ P . The size of P̃ is

denoted by M̃ . We set M̃ = γM , and the sampling ratio

0 < γ < 1 is given in the implementation details. As shown

in Figure 2, the point-wise features X = {xm}Mm=1 of P

and X̃ = {x̃m}M̃m=1 of P̃ are obtained via the backbone net-

work and the transformer’s encoder. The cross-scale consis-

tency loss on the cloud P is defined by

Lcon(P ) =
1

M̃

M̃
∑

m=1

∥xπ(m) − x̃m∥2, (4)

where the m-th point in P̃ is sampled from the π(m)-th
point in P .

The consistency loss Lcon enforces the feature equivari-

ance between a point cloud at two different scales. This

loss offers an additional supervisory signal to regularize

the weakly-supervised training process of the segmentation

model. The consistency loss Lcon in Eq. 4 can be general-

ized directly to enforce multi-scale consistency.

3.5. Implementation details

The proposed method is implemented in PyTorch. We

have used DGCNN [36], KPConv [33] and 3D U-Net [6]

as the feature extractor in different experimental settings.

The numbers of heads, encoder layers, decoder layers, and

the width of FFN in the transformer are set to 2, 2, 2, and

256, respectively. The network is optimized on a machine

with eight V100 GPUs with 512 epochs. The batch size,

learning rate, and weight decay are set to 32, 10−3, and

10−4 respectively. We use AdamW [19] as the optimizer,

like the previous work [3]. The parameters α and β for

Lmil are set to 0.7 and 0.3 respectively. The sampling ratio

γ for Lcon is set to 0.8.

4. Experimental results

This section evaluates the proposed method. First, we

present the datasets and evaluation metrics. We then intro-

duce the competing methods and provide comparisons with

them. Finally, we show the analysis and ablation studies for

the individual components of our method.

4.1. Datasets and evaluation metrics

We conduct the experiments on two benchmark point

cloud datasets, S3DIS and ScanNet. S3DIS [1] consists of

six indoor areas including 272 rooms in total. Each room

is scanned with RGBD sensors and represented by point

clouds with XYZ coordinates and RGB values. Following

the previous practice [29, 30, 36, 42], area 5 is used as the

test scene. ScanNet [7] has 1,513 training scenes and 100

test scenes with 20 classes. Following the setting adopted

in [33], there are 1,201 training scenes and 312 validation

scenes. For both datasets, we use mean Intersect over Union

(mIoU) as the evaluation metric.

4.2. Competing methods and comparisons

We compare our method with the state-of-the-art seg-

mentation methods with different supervision settings.
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Method Pub. Sup. Val. Test

PointNet++ [30] NIPS’17 Full - 33.9

KPConv [33] CVPR’19 Full - 68.4

MinkNet [6] CVPR’19 Full - 73.6

MPRM [38] CVPR’20 Scene 21.9 -

WYPR [31] CVPR’21 Scene 29.6 24.0

Ours - Scene 26.2 -

MPRM [38] CVPR’20 Subcloud 43.2 41.1

Ours - Subcloud 47.4 45.8

SPT [46] AAAI’21 1% - 51.1

PSD [47] ICCV’21 1% - 54.7

WYPR [31] CVPR’21 20pts 51.5 -

CSC [12] CVPR’21 20pts 53.8 53.1

OTOC [26] CVPR’21 20pts 52.5 -

OTOC [26]† CVPR’21 20pts 55.1 -

Ours - 20pts 57.8 54.4

Table 1: Quantitative results (mIoU) of several point-cloud

segmentation methods with diverse supervision settings on

the ScanNet dataset. “Sup.” denotes the type of supervision.

“Pub.” gives the publication venue. † indicates iterative

self-training strategy without any post-processing.

First, fully supervised methods [6, 30, 33] for point cloud

segmentation are compared and they offer the potential per-

formance upper bounds. Second, the segmentation meth-

ods [31, 38] utilizing 3D weak labels that only indicate the

appeared classes in either scene or subcloud data, are com-

pared. This type of supervision is challenging for the large-

scale point cloud datasets and shows great room for per-

formance improvement. Third, the methods using sparsely

labeled points are compared [12, 26, 46, 47] by using the

20 labeled points per scene provided from official Scan-

Net [7, 26] benchmark. For a fair comparison, the same

backbones, data pre-processing and training strategies as

the state-of-the-art methods are used.

Table 1 and Table 2 report the mIoU results of the com-

peting methods using different types of supervision. For

ScanNet (Table 1), our method often considerably outper-

forms the existing methods, by using all different types and

numbers of sparse labels. Our method without extra post-

processing or iterative re-training outperforms the state-of-

the-art method OTOC [26] under the same training process.

It is worth mentioning that OTOC introduces several mech-

anisms to achieve better performance, such as pseudo label-

ing propagation, iterative self-training, and prediction re-

finement. For a fair comparison, we compare our method to

OTOC with self-training only. Moreover, OTOC [26] relies

on at least few annotated points for robust graph propaga-

tion, and it cannot be directly applied with subcloud-level

or scene-level annotations. In addition, our method using

20 labeled points can achieve comparable performance with

PSD [47] using 1% labeled points.

Method Pub. Sup. Test

PointNet++ [30] NIPS’17 Full 53.5

KPConv [33] CVPR’19 Full 70.6

MinkNet [6] CVPR’19 Full 65.4

MPRM [38] CVPR’21 Scene 10.3

WYPR [31] CVPR’21 Scene 22.3

Ours - Scene 12.9

Xu et al. [42] CVPR’20 0.2% 44.5

Xu et al. [42] CVPR’20 10% 48.0

SPT [46] AAAI’21 0.02% 45.8

PSD [47] ICCV’21 0.02% 48.2

OTOC [26] CVPR’21 0.02% 42.9

OTOC [26]† CVPR’21 0.02% 43.7

Ours - 0.02% 51.4

Table 2: Quantitative results (mIoU) of several point-cloud

segmentation methods with diverse supervision settings on

the S3DIS dataset. “Sup.” denotes the type of supervision.

“Pub.” gives the publication venue. † indicates iterative

self-training without any post-processing.

For scene-level or subcloud-level annotations, our

method consistently and significantly outperforms

MPRM [38] by 4.3 and 4.2 in terms of the validation

mIoU, respectively. Although our method is inferior

to WYPR [31] with the scene-level annotation, WYPR

requires the extra 3D object proposals and shows inferior

generalization results with sparsely labeled annotations.

For S3DIS (Table 2), our method also often outperforms

other methods. For example, by using 0.02% labeled

points, the proposed method already performs favorably

against Xu et al.’s method [42] with 10% annotations.

Figure 3 and Figure 4 show examples of the qualitative

results using different types of supervisions and the com-

parisons with the competing methods. For subcloud-level

supervision, most objects are accurately classified by our

method, e.g., cabinets (in blue) and chairs (in gold) are

classified more correctly by our method but sometimes mis-

classified by MPRM, showing the effectiveness of the pro-

posed MIL transformer. We believe the formulated pos-

itive and negative bags help the network learn more dis-

criminative features using weak supervision. Moreover,

the proposed sampling consistency loss and adaptive pool-

ing benefit the precise segmentation of the contour of ob-

jects. Our method can distinguish the objects even if they

are closed, while MPRM often fails to separate the closed

objects. For sparsely labeled supervision, we have sim-

ilar observations as found in subcloud-level supervision.

Our method with MIL-derived transformer and AdaGWP

generally classifies the objects more accurately and gener-

ates much smoother segmentation results compared with the

OTOC method [26].
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Figure 3: Examples of segmentation results on the ScanNet dataset under subcloud-level supervision. (a) Input point cloud,

(b) Ground truth, (c) MPRM [38], (d) Ours. Our method provides more accurate segmentation than MPRM.
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Figure 4: Examples of segmentation results on the ScanNet dataset under sparsely labeled point supervision. (a) Input point

cloud, (b) Ground truth, (c) OTOC method [42], (d) Ours.

4.3. Ablation study and analysis

We report ablation studies to evaluate the effects of our

proposed components and present performance analysis.

4.3.1 Contributions of components

To evaluate the effectiveness of each proposed component,

we first build the baseline by considering only the class

activation maps derived from standard classification loss

[38, 42]. Then, we assess the contributions of the three pro-

posed components, including the MIL-derived transformer

(Lmil), cross-scale consistency (Lcon), and AdaGWP, by

adding them to the baseline one after the other. Table 3

shows the performance of different combinations with these

components. The results validate that each component has

its contribution. In addition, they show the generalization

and effectiveness on different datasets. Finally, to show

that the performance gain does not come from the trans-

former itself, we enhance the baseline by augmenting it

with the transformer’s encoder layer. The last row of Ta-

ble 3 (base.+transformer) reports the performance of the

enhanced baseline. It shows that the proposed MIL formu-

lation also contributes to the performance.

Component
ScanNet S3DIS

Lmil Lcon Ada.

base. 52.3 46.3

✓ 55.4 49.1

✓ ✓ 55.9 49.6

✓ ✓ ✓ 57.8 51.4

base.+transformer 55.0 47.9

Table 3: Performance in mIoU of different combinations of

proposed components, including Lmil, Lcon, and AdaGWP

(Ada.), under the sparsely labeled point supervision.

Figure 5 gives the segmentation examples using our

method with different combinations of the proposed com-

ponents. When the MIL-derived transformer (Lmil) is in-

cluded, our method successfully identifies the sofa in the

middle, which is misclassified as a chair by the baseline

method. It is because the MIL-derived transformer helps

learn better features by exploring extra intra-class and inter-

class information. Both the cross-scale consistency loss

(Lcon) and AdaGWP helps on completing objects and de-

lineating finer object boundaries.
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Figure 5: Ablation study of each components on the S3DIS and ScanNet datasets. (a) Input point clouds, (b) Ground truth,

(c) baseline, (d) Lmil, (e) Lmil + Lcon, (f) Lmil + Lcon + AdaGWP (our full model).

Scene Subcloud 20pts Full

mIoU 26.2 47.4 57.8 73.3

label cost < 1 min 3 min 2 min 22.3 min

Table 4: Average annotation time per scene on ScanNet.

4.3.2 Performance analysis

Performance with different types of annotations. An-

notating 3D point clouds is time-consuming and labor-

intensive. According to previous work [26, 31, 41], the an-

notation cost for point cloud segmentation is 22.3 minutes

per scene on average in ScanNet. To save the cost, several

types of weak supervision have been introduced. As shown

in Table 4, the annotation time is reduced from 22.3 min-

utes to 2 ∼ 3 minutes using sparsely labeled points [26]

and subcloud-level labeling [38], and to less than a minute

using scene-level labeling. Our method can work with di-

verse weak supervision, with the results reported in Table 4.

Our method with sparsely annotated points performs signif-

icantly better than with scene-level or subcloud-level an-

notations. Considering the performance by using fully an-

notated training data, our weakly supervised method can

greatly save the annotation cost.

Performance with the different parameters. The pro-

posed MIL-derived transformer in Section 3.2 generates

positive and negative bags. The hyperparameters α and β

are introduced to control the relative importance between

the two types of bags. Table 5 shows the performance of

our method with different values of α and β, showing that

the positive bags and negative bags are complementary, but

the former contributes more than the latter. In Section 3.4,

the cross-scale consistency loss Lcon works with hyperpa-

rameter γ, the sampling ratio. We evaluate our method by

setting γ to 0.25, 0.5, and 0.75, and get the performance

55.5, 56.4 and 57.8, respectively.

Performance with different pooling strategies. In Sec-

tion 3.3, AdaGWP is developed to aggregate information

from relevant points. We compare it with existing pooling

strategies, including GMP, GAP, the one proposed by Ilse et

al. [16], and parametric ReLU [11] followed by GAP.

MIL
ScanNet S3DIS

α β

1 0 57.4 49.1

0.7 0.3 57.8 51.4

0.3 0.7 57.1 51.2

0 1 56.9 48.9

Table 5: Performance with

different values of α and

β under sparsely labeled

point supervision.

Pooling ScanNet S3DIS

GMP 52.4 46.2

GAP 55.9 49.6

Ilse et al. [16] 56.5 49.9

PReLU + GAP 57.1 49.8

AdaGWP 57.8 51.4

Table 6: Performance with

different pooling strategies

under sparsely labeled point

supervision.

For comparison, our method works with each of the

pooling strategies. In Table 6, AdaGWP performs favorably

against all competing pooling strategies on both datasets.

5. Conclusion

This paper presents a novel method for weakly super-

vised point cloud segmentation. As the key component,

the proposed MIL-derived transformer explores additional

cross-cloud supervisory signals to facilitate weakly super-

vised learning, and is learned via multiple instance learn-

ing. Also, we develop cross-scale consistency and adap-

tive weighted pooling to improve the performance further.

All proposed components are integrated into an end-to-end

trainable network. Experiments show that our method out-

performs existing weakly supervised methods, and even de-

feats some fully supervised methods. One limitation of our

method is the performance bounded by the backbone net-

work. Another limitation is that we have not fully utilized

the information conveyed in the annotated points. Neverthe-

less, in addition to boosting the performance of weakly su-

pervised semantic segmentation for point clouds, we believe

that the proposed techniques could benefit other recognition

tasks for point clouds and images with weak supervision.

Acknowledgments. This work was supported in part by

the Ministry of Science and Technology (MOST) under

grants 109-2221-E-009-113-MY3, 110-2628-E-A49-008,

111-2634-F-007-002, 110-2634-F-002-051, and 110-2634-

F-006-022. It was also funded in part by Qualcomm and

MediaTek.

811837



References

[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3D semantic

parsing of large-scale indoor spaces. In CVPR, 2016. 2, 5

[2] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li

Fei-Fei. What’s the point: Semantic segmentation with point

supervision. In ECCV, 2016. 2

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In ECCV, 2020. 3,

5

[4] Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-

Gonzalez, and Carl Wellington. 3d point cloud processing

and learning for autonomous driving: Impacting map cre-

ation, localization, and perception. IEEE Signal Processing

Magazine, 2020. 1

[5] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3D object detection network for autonomous

driving. In CVPR, 2017. 1

[6] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d

spatio-temporal convnets: Minkowski convolutional neural

networks. In CVPR, 2019. 1, 3, 5, 6

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:

Richly-annotated 3D reconstructions of indoor scenes. In

ICCV, 2017. 2, 5, 6

[8] Thibaut Durand, Taylor Mordan, Nicolas Thome, and

Matthieu Cord. Wildcat: Weakly supervised learning of deep

convnets for image classification, pointwise localization and

segmentation. In CVPR, 2017. 3

[9] Nikolas Engelhard, Felix Endres, Jürgen Hess, Jürgen Sturm,

and Wolfram Burgard. Real-time 3D visual SLAM with

a hand-held RGB-D camera. In Proceedings of the RGB-

D Workshop on 3D Perception in Robotics at the European

Robotics Forum, 2011. 1

[10] Junwei Han, Rong Quan, Dingwen Zhang, and Feiping Nie.

Robust object co-segmentation using background prior. TIP,

2018. 3

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In ICCV, 2015. 8

[12] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining

Xie. Exploring data-efficient 3d scene understanding with

contrastive scene contexts. In CVPR, 2021. 2, 6

[13] Kuang-Jui Hsu, Yen-Yu Lin, and Yung-Yu Chuang. Co-

attention CNNs for unsupervised object co-segmentation. In

IJCAI, 2018. 1, 3

[14] Kuang-Jui Hsu, Yen-Yu Lin, and Yung-Yu Chuang.

DeepCO3: Deep instance co-segmentation by co-peak

search and co-saliency detection. In CVPR, 2019. 3

[15] Zeyi Huang, Yang Zou, Vijayakumar Bhagavatula, and Dong

Huang. Comprehensive attention self-distillation for weakly-

supervised object detection. In NIPS, 2020. 5

[16] Maximilian Ilse, Jakub Tomczak, and Max Welling.

Attention-based deep multiple instance learning. In ICML,

2018. 3, 8

[17] Hoel Kervadec, Jose Dolz, Meng Tang, Eric Granger, Yuri

Boykov, and Ismail Ben Ayed. Constrained-cnn losses for

weakly supervised segmentation. Medical image analysis,

2019. 2

[18] Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias

Hein, and Bernt Schiele. Simple does it: Weakly supervised

instance and semantic segmentation. In CVPR, 2017. 2

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2014. 5

[20] Alexander Kolesnikov and Christoph H Lampert. Seed, ex-

pand and constrain: Three principles for weakly-supervised

image segmentation. In ECCV, 2016. 2, 3

[21] Suha Kwak, Seunghoon Hong, and Bohyung Han. Weakly

supervised semantic segmentation using superpixel pooling

network. In AAAI, 2017. 2

[22] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In

CVPR, 2018. 1

[23] Seungho Lee, Minhyun Lee, Jongwuk Lee, and Hyunjung

Shim. Railroad is not a train: Saliency as pseudo-pixel su-

pervision for weakly supervised semantic segmentation. In

CVPR, 2021. 2

[24] Weihao Li, Omid Hosseini Jafari, and Carsten Rother. Deep

object co-segmentation. In ACCV, 2018. 3

[25] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun.

ScribbleSup: Scribble-supervised convolutional networks

for semantic segmentation. In CVPR, 2016. 2

[26] Zhengzhe Liu, Xiaojuan Qi, and Chi-Wing Fu. One thing

one click: A self-training approach for weakly supervised 3d

semantic segmentation. In CVPR, 2021. 1, 2, 6, 8

[27] Oded Maron and Tomás Lozano-Pérez. A framework for
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