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Abstract

Recent advances in generative adversarial networks
(GANs) have provided potential solutions for photo-
realistic human image synthesis. However, the explicit and
individual control of synthesis over multiple factors, such as
poses, body shapes, and skin colors, remains difficult for ex-
isting methods. This is because current methods mainly rely
on a single pose/appearance model, which is limited in dis-
entangling various poses and appearance in human images.
In addition, such a unimodal strategy is prone to causing
severe artifacts in the generated images like color distor-
tions and unrealistic textures. To tackle these issues, this
paper proposes a multi-factor conditioned method dubbed
BodyGAN. Specifically, given a source image, our Body-
GAN aims at capturing the characteristics of the human
body from multiple aspects: (i) A pose encoding branch
consisting of three hybrid subnetworks is adopted, to gener-
ate the semantic segmentation based representation, the 3D
surface based representation, and the key point based rep-
resentation of the human body, respectively. (ii) Based on
the segmentation results, an appearance encoding branch
is used to obtain the appearance information of the human
body parts. (iii) The outputs of these two branches are rep-
resented by user-editable condition maps, which are then
processed by a generator to predict the synthesized image.
In this way, our BodyGAN can achieve the fine-grained dis-
entanglement of pose, body shape, and appearance, and
consequently enable the explicit and effective control of syn-
thesis with diverse conditions. Extensive experiments on
multiple datasets and a comprehensive user study show that
our BodyGAN achieves the state-of-the-art performance.

1. Introduction
Realistic human body image generation is a challeng-

ing problem, due to the complex textures, diverse poses

∗: These authors contribute equally.
†: Corresponding authors.

Figure 1. We propose BodyGAN, i.e., a general approach for syn-

thesizing photo-realistic human body with explicit control over

multiple factors: (a) Body pose and shape. (b) Skin colors. (c)

Hidden face and cartoon. (d) Marble and bronze sculptures. The

source pictures are shown in the top right corners.

and illumination distributions. As there are a large number

of application scenarios that rely on the high-quality and

controllable human image generation, such as virtual try-on

and virtual reality, extensive research has been conducted to

tackle this problem. For instance, in recent research on vir-

tual try-on [33, 47], both mask based methods [35, 37] and

mask-free methods [25, 42] have been explored to generate

images of the human body with target clothes. However,

these methods consider the human body and clothes togeth-

er as the whole target, and adopt the end-to-end generation

manner, which leads to poor results and artifacts on human

body parts, such as unnatural texture patterns, loss of detail-

s and color distortions. Meanwhile, a few skin completion

methods [23,43] target at the generation of face skin. There

are also algorithms [5, 18, 28, 30] generating faces based on

contour sketches. Nevertheless, considering that the human
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body is a flexible articulated structure with a higher degree

of freedom, the above solutions are not suitable for generat-

ing human body images.

Recently, a few GAN based methods have been proposed

for human body image synthesis, such as StyleGAN [15],

StylePoseGAN [34] and StyleRig [36]. The key idea of

these methods is to utilize a single model to disentangle

pose and appearance, so that different synthesized images

can be obtained via changing the pose or the appearance.

However, in real-life applications, a single model is not

robust enough to disentangle images with various poses

and appearances. Furthermore, existing methods may need

paired training images (e.g., StylePoseGAN) to ensure the

performance of their models. These issues of existing meth-

ods make the explicit control of the synthesis difficult and

restrict their applications.

To tackle the above limitations of existing methods, we

propose a highly controllable framework for human image

synthesis called BodyGAN. Unlike previous methods aim-

ing at a particular synthesis task with a single end-to-end

network, our BodyGAN focuses on the generation of pure

human body images with controllable poses, body shapes

and skin colors. The generated human body images are then

modified based on the requirements of the downstream task

(e.g., merged with a garment to complete try-on). Specifi-

cally, given a source image, our BodyGAN adopts a pose

encoding branch and an appearance encoding branch, to

generate seven types of condition maps for image synthe-

sis. In the pose encoding branch, we utilize three subnet-

works to obtain the semantic segmentation based condition

map, the 3D surface based condition map, and the key point

based condition map of the human body. While in the ap-

pearance encoding branch, four appearance condition maps

are used to encode the head, the hand, the upper body, and

the lower body of the human body. In this way, we achieve

the disentanglement of pose and appearance that is more

fine-grained, compared with existing methods. Besides, our

condition maps encode pose information via both 2D repre-

sentations (semantic segmentation and key points) and 3D

surface faces, which help to generate more natural poses.

The condition maps are fed into a generator that is opti-

mized via adversarial learning (without the need for paired

training images), to produce the synthesized images.

The contributions of this paper are summarized as fol-

lows:

• We propose BodyGAN, which is a general model for

human body image generation with explicit controls

over multiple factors. Our BodyGAN can disentangle

pose and appearance from a single source image, and

adopt condition maps, which are a convenient and ed-

itable representation of pose and appearance informa-

tion, to generate realistic human images.

• The proposed condition maps are generated by three

subnetworks that model the person from both 2D and

3D perspectives, which enhance the robustness of our

BodyGAN effectively. In addition, utilizing pose and

appearance condition maps allows us to train and apply

the BodyGAN with unpaired images.

• Compared with the existing methods, our BodyGAN

can generate more realistic and visually-pleasant re-

sults, even with extremely difficult poses such as

crossed arms/legs. Extensive experiments on three

datasets validate the effectiveness of our BodyGAN.

• We present the downstream applications of BodyGAN

in image manipulation, such as virtual try-on and dig-

ital humans. In summary, BodyGAN provides a novel

diagram for human image generation in computer ani-

mation.

2. Related Work

Human rendering. Early human body rendering meth-

ods rely on high-quality mannequins, well-calibrated tex-

tures, and expensive hardware [41] to achieve realistic re-

sults. With the recent advances in deep learning, neural

rendering techniques [16, 20, 24] which combine learnable

networks with physical knowledge (e.g., illumination mod-

el and geometry), have been proposed to speed up the ren-

dering process. In spite of their convenience and efficien-

cy, neural rendering methods are still limited in controllable

image synthesis.

Conditional GAN Generation. GANs [32] are one of

the most popular deep learning techniques for data genera-

tion, which have been applied to a large number of appli-

cations in various fields. In the past few years, extensive

improvements on GANs [1, 14, 44] have been proposed,

which make the training of GAN more stable and gener-

ate better results. To realize controllable generation, Mehdi

Mirza and Simon Osindero proposed the conditional GAN

(CGAN) [26], and its variants have been utilized in image-

to-image translation [11,39] and conditioned image genera-

tion [27]. Current CGANs [11,26,29,32] require paired data

to guide the training process, which limit their applications

because of the difficulty of collecting paired data. Further-

more, it is hard for existing methods to introduce multiple

controllable factors. For example, [34] aims at separating

the pose and appearance to control body synthesis. Never-

theless, [34] adopts the image-to-image translation frame-

work, and hence both the source image and the target im-

age are required. On the contrary, our BodyGAN is self-

supervised and does not require paired data. Besides, our

BodyGAN can manipulate the skin colors and use a more

flexible 3D human body model to complete synthesis con-

ditioning on pose and shape.
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Figure 2. Architecture of the BodyGAN, with virtual try-on as the application. The BodyGAN consists of three components, i.e., the pose

encoding branch, the appearance encoding branch and the generator. The two encoding branches obtain the condition maps from the source

image, which are fed into the generator to produce the synthesized image.

Motion Transfer/Virtual Clothes Try-On. Motion

transfer and virtual clothes try-on are the major applications

of human image synthesis. For example, [13] consider the

clothes and bodies generation as a concurrent task for syn-

thesis. To obtain satisfactory results, most methods utilize

the vid2vid framework [3,31,38] to accomplish these tasks.

However, the generalization ability of existing methods is

insufficient, and the drop of performance is unavoidable on

unknown persons or clothes with new styles. On the oth-

er hand, our BodyGAN focuses on the synthesis of human

bodies, i.e., the training process of our BodyGAN does not

involve downstream applications like try-on. Such a strat-

egy not only ensures the flexibility of our BobyGAN, but

also improves its generalization ability.

3. The Proposed Method

In this section we introduce the details of the proposed

BodyGAN. We begin by formulating the problem of human

image synthesis conditioned on multiple factors in Section

3.1, and then introduce the architecture of BodyGAN for

try-on in Section 3.2. The key components of BodyGAN,

including two branches for encoding pose and appearance,

and a generator for synthesizing human images, are present-

ed in Section 3.3 and Section 3.4, respectively. The objec-

tive functions for optimizing the BodyGAN are introduced

in Section 3.5.

3.1. Problem Formulation

Given a source human image, our goal is to synthe-

size a realistic image of the same person, with the ex-

plicit control of multiple factors, such as pose, shape and

skin color. Formally, let I denote the source image, and

C = {c1, c2, ..., cM} denote the set of M factors that we

are interested in, we aim at learning a transformation f as

follows:

IG = f(I|C), (1)

so that we can obtain the desired synthesized image (de-

noted as IG) via changing the factors in C. In real-world

applications, the representations of factors can be various,

e.g., cm can be a key point based representation of pose,

or a feature vector depicting certain styles/textures. With-

out loss of generality, we assume an arbitrary factor cm ∈ C
can be represented by a condition map of size H×W×Dm,

where H and W are the height and width of the source

image, and Dm is the number of user-defined channels of

cm. With such a condition map based representation, lo-

cal/spatial controls of factors become feasible. Our target

now can be further divided into (i) finding a way to obtain

condition maps conveniently, as well as (ii) realizing f , and

both of them are completed by our BodyGAN introduced in

the next section.
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Figure 3. Demonstration of the inference stage of the BodyGAN. We can obtain the pose condition maps of a source image through a 3D

model estimated by HMR, in which parameters β and θ control the shape and the pose of the 3D model respectively. The pose condition

maps are combined with the appearance condition maps to generate various synthesized images.

3.2. Network Architecture

The proposed BodyGAN is a general framework for con-

trollable human body image generation. For the purpose

of better understanding, here we consider the application

of virtual try-on as an example to explain the workflow of

BodyGAN, which is shown in Fig. 2. Given a 3D garment

and a source image, we first apply the BodyGAN to crop

out the person from the source image and generate the syn-

thesized image with desired properties. After that, the 3D

garment is deformed to fit the person, and then the rendered

garment and the synthesized image are merged via mask

blending. At last, we apply inpainting [19] to transfer the

background and obtain the try-on result.

The BodyGAN is composed of three major components:

the pose encoding branch and the appearance encoding

branch are responsible for generating the condition map-

s from the source image, while the generator converts the

condition maps into the synthesized image. To ensure the

fine-grained disentanglement of pose and appearance, we

consider seven types of condition maps in the BodyGAN

and all of them can be extracted efficiently: In the pose

encoding branch, three pose condition maps are obtained

to encode the pose with different representations; While in

the appearance encoding branch, four appearance condition

maps are used to describe the appearance information of

multiple parts of the target person. Details of these condi-

tion maps will be introduced in the following section.

The generator adopts an encoder-decoder architecture,

and is optimized via adversarial learning and reconstructing

the source image. Thanks to the above disentanglement of

pose and appearance via the condition maps, our BodyGAN

does not require the costly collection of paired training im-

ages. This provides our BodyGAN with the great flexibility

for various applications.

3.3. Pose and Appearance Encoding

Pose Encoding. Unlike previous methods that mainly

depend on a single pose model, our BodyGAN utilizes three

subnetworks to encode the pose condition maps. Specifi-

cally, we propose to utilize the results of semantic segmen-

tation, 3D surface mapping, and key point estimation, to

obtain the pose condition maps. To begin with, we con-

struct our own human parsing network based on DeepLab-

V3+ [4], to segment the source image into eleven semantic

classes (head, hand, etc.). We draw the segmentation result-

s with a predefined color for each class, so that we obtain

the first pose condition map csg ∈ [0, 1]H×W×3. After that,

we map the 2D pixels of the source image to the surface

of the 3D SMPL model [22] via DensePose [8]. The re-

sulted mapping cdp ∈ [0, 1]H×W×3 is used as the second

pose condition map directly. At last, we estimate key points

from the source image via OpenPose [2], and plot the stick

figure with predefined connection orders and colors. The

stick figure ckp ∈ [0, 1]H×W×3 is used as the third condi-

tion map. We concatenate all the three pose condition maps
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as the output of the pose encoding branch:

cp = concat(csg, cdp, ckp). (2)

Our three pose condition maps cooperate with each oth-

er closely to enrich the information extracted both from 2D

source images and 3D articulated models, and overcome the

limitations of existing methods in pose modeling. For ex-

ample, the difficult issue of arms/legs crossing in generating

human body can be addressed by the 3D surface maps easi-

ly, because they offer a depth-map like prior for distinguish-

ing each body part. Besides, the 2D semantic segmentation

results are robust and reliable, which not only improves the

performance of estimating the body shape but also helps to

locate the regions for appearance encoding.

Appearance Encoding. The semantic segmentation re-

sults can be utilized as the masks to obtain the appearance

information of each body part efficiently. Particularly, our

appearance condition maps ca ∈ [0, 1]H×W×10 are defined

as follows:

ca = concat(chead, chand, cubody, clbody), (3)

where chead, chand, cubody , and clbody denote the masked

image of the head, the hands, the upper body, and the

lower body, respectively. chead, cubody , and clbody are in

[0, 1]H×W×3. For the hand part, we use the gray-scale

image instead of the original RGB image (i.e., chand ∈
[0, 1]H×W×1), because in practice we found that the tex-

tures and the illumination distributions on hands are more

complex than the other parts, and using the gray-scale im-

age helps to alleviate the produced artifacts. For the similar

purpose, we set the pixel values in cubody/clbody to the spa-

tial mean of the skin color in the upper/lower body.

In the inference stage, it is convenient to prepare the

condition maps to generate various synthesized images, as

shown in Fig. 3. For instance, to transfer a pose, we can

either render the pose condition maps from a given SM-

PL model, or estimate the SMPL model from a given ref-

erence image via existing methods (e.g., Human Mesh Re-

covery (HMR) [12]). Unseen poses and shapes also can be

achieved via changing the parameters of the SMPL mod-

el. With the condition maps, the heavy cost of maneuver

manipulations can be reduced considerably.

3.4. Generator

We construct an encoder-decoder based generator to syn-

thesize realistic images based on the condition maps. Fol-

lowing the common configuration of encoder, we adopt four

convolutional layers (each followed by a downsampling

layer) to embed the pose condition maps cp into a com-

pact pose feature representation, while two convolution-

downsampling layers for embedding the appearance condi-

tion maps ca. For the decoder part, inspired by the seman-

tic layout based image synthesis method [29], we consider

the pose feature as the major feature (as it also represents

the spatial layout of the person), and use the appearance

feature as the conditions for normalizing the pose feature.

Therefore, the same SPADE layer proposed in [29] is used

to build our decoder. We use four SPADE layers in total and

each of them is followed by an upsampling layer.

In the training stage, two discriminators (each for

one branch in BodyGAN) of the same architecture as in

Pix2PixHD [39] are utilized to realize adversarial learning.

For the pose branch, the discriminator takes the concate-

nation of cp and I/IG as its input, while that for the ap-

pearance branch takes the concatenation of ca and I/IG.

Through the pose-appearance separation, each discrimina-

tor can focus on its own task and help to improve the gen-

erator, and consequently the generator can produce realistic

high-quality images.

3.5. Objective Function

The objective functions for optimizing our BodyGAN

are defined as follows:

L = λRECLREC + λGANLGAN , (4)

where LREC denotes the reconstruction loss and LGAN de-

notes the improved adversarial loss [39]. λREC and λGAN

are the scaling factors for balancing the losses. The recon-

struction loss can be further divided as follows:

LREC = λ1L1 + λSSIMLSSIM + λV GGLV GG, (5)

where L1 is the absolute error as follows:

L1 = ‖IG − I‖1 . (6)

LSSIM is used to emphasize the structural information in

images, which is defined as follows:

LSSIM = 1− SSIM(IG, I), (7)

where SSIM(IG, I) denotes the structural similarity index

measure between IG and I [40]. LV GG is the widely-used

perceptual loss that measures the distance between the hid-

den features of IG and I extracted by VGG Network [6]. A-

gain, λ1, λSSIM , and λV GG are the scaling factors of these

reconstruction loss terms.

4. Experiments

In this section, we conduct extensive experiments to vali-

date the proposed BodyGAN. Due to the page limitation, in-

terested readers can refer to the supplemental materials for

the complete network implementation, more experimental

results and analysis (e.g., failure cases).
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Figure 4. Qualitative comparison among different methods. (a)

Source image, (b) SPADE [29], (c) SPADE*, (d) Pix2PixHD [39],

(e) Pix2PixHD*, (f) Ours, (g) PF-AFN [7]. ‘*’ denotes methods

with the same input as our method.

Figure 5. Qualitative examples of our method with different con-

dition maps. (a) source image, (b) csg , (c) csg + ckp, (d) cp, (e) cp
+ chand , (f) cp + ca. Best zoom in for the details.

4.1. Setup

Dataset. We have constructed our own dataset for training

and evaluation. Our dataset consists of 36k human images

with tight and short clothes, i.e., underwear, under normal

light conditions. We use 33.6k images for training and the

rest 2.4k images for test. All training images are resized to

576×768. Besides, We also include two public datasets for

evaluation, namely, the VITON dataset [9] and the Deep-

Fashion dataset [21]. On the DeepFashion dataset, we se-

lect the images with the largest side larger than 1200, so that

we have 0.8k high-resolution test images.

Implementation Details. We train the BodyGAN on our

own dataset, with four NVIDIA Tesla-V100 GPUs. The

weights for the loss terms are set to λREC=1.0, λL1=5.0,

λSSIM=1.0, λV GG=1.0, and λGAN=2.0. We adopt the

Adam optimizer [17] with the learning rate of 0.0001 and

the momentum of 0.5.

4.2. Comparison with SOTAs

We utilize SSIM [40], FID [10], and LPIPS [46] as the

metrics to evaluate quality of synthesized images. During

the evaluation, the background areas will be removed, so

that our evaluation metrics can concentrate on the quality of

the generated human bodies.

We compare the BodyGAN with several state-of-the-art

methods, including SPADE [29], Pix2PixHD [39], and Co-

CosNet [45]. The inputs of these methods are different, and

hence we also implement two variants, i.e., SPADE* and

Pix2PixHD*, which use the same input as our BodyGAN.

As reported in Table 1, our BodyGAN outperforms these

methods consistently on all three datasets. These results

suggest that our BodyGAN achieves the better disentangle

of pose and appearance, and hence it obtains the higher per-

formance, compared with other methods.

Qualitative results of different methods are shown in Fig.

4. The first row shows the results of different methods in

reconstructing the source image from the condition maps,

and we can see that our BodyGAN better restores the tex-

tures and other details of the 2D source image, compared

with other methods. The second row shows synthesized im-

ages with 3D body parameters obtained through the HM-

R method [12]. Compared with other methods, our result

demonstrates the delicate body textures (e.g., around the

necks and knees), and is more visual pleasing. We also in-

clude PF-AFN [7] for visual comparison, which is a well-

designed virtual try-on method. As shown in Fig. 4 (g),

PF-AFN suffers from a few artifacts like color distortions

and loss of details, while our method avoids these artifacts

successfully.

4.3. User Study

We conduct a user study on one hundred randomly cho-

sen test images from our dataset. We concatenate each

source image with its five reconstructed counterparts gen-

erated by SPADE, SPADE*, Pix2PixHD, Pix2PixHD*, and

BodyGAN for comparison. The concatenated images are

presented to ten users in randomly shuffled orders. We

ask the users to score the reconstructed images based on

photo-realistic quality and naturalness. Our method re-

ceives the highest average score of 72.3% among all meth-

ods, while the scores of SPADE, SPADE*, Pix2PixHD and

Pix2PixHD* are 3.1%, 1.6%, 2.3% and 20.7% respectively.

4.4. Ablation Study

We conduct the ablation study on the effects of condi-

tional maps. Quantitative results of our BodyGAN with dif-

ferent conditional maps are shown in Table 2. These results

validate that all our condition maps play important roles in

enhancing the quality of the generated images. Qualitative

results for this ablation study are shown in Fig. 5 as well.

Both the quantitative and qualitative results indicate that our
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Figure 6. Visual examples of pose, shape, and skin color conditioning synthesis. (a) Source images. (b) to (h) are synthesized results with

the conditions shown in the top-left corners.

Our Test Set DeepFashion VITON

Methods/Results SSIM ↑ FID↓ LPIPS↓ SSIM ↑ FID↓ LPIPS↓ SSIM ↑ FID↓ LPIPS↓
SPADE [29] 0.6540 16.4102 0.0728 0.6186 36.7924 0.0213 0.6369 65.5421 0.0334

SPADE* [29] 0.6723 15.8825 0.0781 0.5601 37.2646 0.0234 0.5948 65.5927 0.0331

Pix2PixHD [39] 0.7782 4.4394 0.0351 0.6098 29.6315 0.0215 0.6215 53.1249 0.0359

Pix2PixHD* [39] 0.7884 4.4417 0.0346 0.6205 29.7461 0.0202 0.6383 42.0546 0.0346

CoCosNet [45] 0.3804 193.207 0.0991 0.4714 139.514 0.0401 0.5278 110.958 0.0458

Ours 0.8307 3.6760 0.0297 0.8470 6.1654 0.0070 0.8249 4.4529 0.0146

Table 1. Quantitative comparison of different methods. ‘*’ denotes methods with the same input as our method.

BodyGAN with the chosen combination of conditional im-

ages outperforms those with a single condition.

5. Applications

Benefiting from the dual-branch architecture which de-

couples appearance and pose, our model can explicitly con-

trol body poses, shapes and skin colors of the generated

body and can be applied to various human image synthe-

sis related applications.

Virtual Try-On. The BodyGAN can be combined with

the cloth generation method to accomplish virtual try-on.

Fig. 4 and Fig. 6 show our synthesized human body im-

ages for try-on. As clothes are not the main concern of this

paper, we render the clothes in the above figures with the

computer graphics pipeline, or extract them from the source

images with semantic segmentation. Fig. 6 shows that our

BodyGAN can be adapted to various conditions, and gener-

ate images of the same person with different poses, shapes,

and colors.

VR/AR/Metaverse. In the near future, we may design

an avatar to live, socialize and work as an independent indi-

vidual in the metaverse. For this application, we can design

a 3D human body model (Daz or SMPL [22], etc.), and u-

tilize the BodyGAN to generate an exclusive and realistic

character with the desired appearance and pose efficiently.

6. Discussion

Potential Negative Social Impact. The proposed

method can generate realistic human images, which might

be misused for generating fake photos and videos.

Limitations. There are a few limitations of our Body-

GAN, which we propose to tackle in the future: (i) A few

source images might have non-uniform illumination distri-

butions (e.g., with neon lighting), in this case, the skin color

of the original image is distorted, and consequently the skin

color of the synthesized image is distorted as well. (ii) It is

hard for the subnetworks to encode the target person with

heavy occlusion, as the pose might not be restored well.
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Figure 7. Visual examples of our synthesized images on the DeepFashion dataset [21]. The first column are the original images, while the

other columns are the synthesized images generated by the BodyGAN with various rendered clothes.

Our Test Set DeepFashion VITON

Condition Maps SSIM ↑ FID↓ LPIPS↓ SSIM ↑ FID↓ LPIPS↓ SSIM ↑ FID↓ LPIPS↓
csg 0.7466 6.0055 0.0473 0.6141 10.8691 0.0199 0.6754 8.7129 0.0273

csg + ckp 0.7602 5.7316 0.0477 0.6724 9.7372 0.01686 0.7022 7.9809 0.0263

cp 0.7694 5.2623 0.0408 0.6580 10.1058 0.0175 0.7068 8.4752 0.0267

cp + chand 0.7807 5.5167 0.0445 0.7665 7.4670 0.0131 0.7916 6.0040 0.0199

cp + ca (Ours) 0.8307 3.6760 0.0297 0.8470 6.1654 0.0070 0.8249 4.4529 0.0146

Table 2. Ablation study of the proposed method with different condition maps.

7. Conclusion

In this paper, we propose a general-purpose human im-

age synthesis framework called BodyGAN, which provides

explicit control over the body pose, shape and skin col-

ors. Our BodyGAN utilizes a pose encoding branch and an

appearance encoding branch, which generate pose and ap-

pearance condition maps as the bridge between user-desired

synthesized effects and the actual inputs of the network.

More importantly, these condition maps disentangle pose

and appearance explicitly, which not only provides us with

the benefit of training without paired images, but also im-

proves the quality of our synthesized images. Our exper-

iments on three datasets and the user study show that the

BodyGAN outperforms other state-of-the-art methods sig-

nificantly. Combined with physics-based clothes simulation

or other well-developed simulation methods, the proposed

BodyGAN can be applied to various human related applica-

tions, e.g., virtual clothes try-on, animation and metaverse.
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