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Abstract

Online action detection has attracted increasing re-
search interests in recent years. Current works model his-
torical dependencies and anticipate the future to perceive
the action evolution within a video segment and improve
the detection accuracy. However, the existing paradigm ig-
nores category-level modeling and does not pay sufficient
attention to efficiency. Considering a category, its repre-
sentative frames exhibit various characteristics. Thus, the
category-level modeling can provide complimentary guid-
ance to the temporal dependencies modeling. This pa-
per develops an effective exemplar-consultation mechanism
that first measures the similarity between a frame and exem-
plary frames, and then aggregates exemplary features based
on the similarity weights. This is also an efficient mecha-
nism, as both similarity measurement and feature aggrega-
tion require limited computations. Based on the exemplar-
consultation mechanism, the long-term dependencies can
be captured by regarding historical frames as exemplars,
while the category-level modeling can be achieved by re-
garding representative frames from a category as exem-
plars. Due to the complementarity from the category-
level modeling, our method employs a lightweight archi-
tecture but achieves new high performance on three bench-
marks. In addition, using a spatio-temporal network to
tackle video frames, our method makes a good trade-off
between effectiveness and efficiency. Code is available at
https://github.com/VividLe/Online-Action-Detection.

1. Introduction

With the development of mobile communications, video
has become a powerful medium to record life and trans-
form information. As a result, video understanding tech-
nologies have aroused increasing research interests. Among
these technologies, temporal action detection [36, 39, 62]
can discover action instances from untrimmed videos and
extract valuable information. Well-performed action detec-
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Figure 1. Comparison between existing state-of-the-art method
OadTR [42] and our proposed Colar. Unlike OadTR, Colar con-
sults historical exemplars to model long-term dependencies and
consults category exemplars to capture category-level particular-
ity, forming an effective and efficient method.

tion algorithms can benefit smart surveillance [32], anomaly
detection [4] etc. In recent years, along with action detec-
tion technologies becoming mature, a more challenging but
more practical task, namely online action detection, has
been proposed [8]. The online action detection algorithm
tackles a streaming video, reports the occurrence of an ac-
tion instance, and keeps alarming until the action ends [8].
In inference, the algorithm only employs historical frames
that have been observed, but has no access to future frames.

As an early exploration, Geest et al. [8] discovered the
importance of modeling long-term dependencies. Later, Xu
et al. [45] revealed the value of anticipating future status
to enhance the long-term dependencies modeling. OadTR
[42] recently utilized the multi-head self-attention module
to jointly model historical dependencies and anticipate the
future, which achieved promising online action detection
results.

As an under-explored domain, there are three core chal-
lenges for online action detection: How to model long-term
dependencies? How to associate a frame with representa-
tive frames from the same category? How to conduct de-
tection efficiently? Existing works [8, 42, 45] primarily fo-
cus on the long-term dependencies modeling, but ignore the
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other two challenges. However, as shown in Figure 1 (a),
both analyzing historical frames and anticipating future sta-
tus only model relationships within a video segment, leav-
ing the category-level modeling under-explored. Because
an action category contains multiple instances and each in-
stance exhibits special appearance and motion characteris-
tic, the guidance of exemplary frames can make the online
detection algorithm more robust to resist noises within a
video segment. In addition, a practical online action de-
tection algorithm should always consider the computational
efficiency, including both the efficiency to perform online
detection and the efficiency to extract video features.

This paper develops an exemplar-consultation mecha-
nism to tackle above three challenges in a unified frame-
work. The exemplar-consultation mechanism first jointly
transforms a frame and its exemplary frames to the key
space and value space. Then, it measures the similarity
in the key space and employs the similarity to aggregate
information in the value space. As both feature transfor-
mation and similarity measurement require limited compu-
tations, the proposed exemplar-consultation mechanism is
efficient. Considering a video segment, we can effectively
model long-term dependencies by using historical frames
as exemplars based on the exemplar-consultation mecha-
nism. As we only compare one frame with its historical
frames, rather than performing self-attention on all frames,
the computational burden is alleviated. Similarly, we can
also regard representative frames of each category as ex-
emplars and conduct category-level modeling based on the
exemplar-consultation mechanism. Compared with a video
segment, category exemplars can provide complementary
guidances and make the algorithm more robust.

By consulting exemplars, we build a unified framework,
namely Colar, to perform online action detection, as shown
in Figure 2. Colar maintains the dynamic branch and the
static branch in parallel, where the former models long-term
dependencies within a video segment and the latter models
category-level characteristics. In the dynamic branch, Colar
consults previous frames and aggregates historical features.
In the static branch, Colar first obtains category exemplars
via clustering, then consults exemplars and aggregate cate-
gory features. Finally, two classification scores are fused to
detect actions. Moreover, we analyze the running time bot-
tleneck of existing works and discover the expensive costs
to extract flow features. Thus, we employ a spatio-temporal
network to only dispose of video frames and perform end-
to-end online action detection, which only takes 9.8 seconds
to tackle a one-minute video. To sum up, this paper makes
the following contributions:

• We make an early attempt to conduct category-level
modeling for the online action detection task, which
provides holistic guidance and makes the detection al-
gorithm more robust.

• We propose the exemplar-consultation mechanism to
compare similarities and aggregate information, which
can efficiently model long-term dependencies and cat-
egory particularities.

• Due to the effectiveness of the exemplar-consultation
mechanism and the complimentary guidance from
category-level modeling, our method employs a
lightweight architecture. Still, it achieves superior per-
formance and builds new state-of-the-art performance
on three benchmarks.

2. Related work
Modeling temporal dependencies. Different from image-
based task, e.g. detection [12–14, 48], localization [15, 55,
59] and segmentation [56], it is crucial to model tem-
poral dependencies for online action detection. Existing
works rely on recurrent networks, including both LSTM-
based methods [9, 45, 50] and GRU-based methods [11].
Specifically, Geest et al. [9] proposed a two-stream LSTM
[17] network. Similarly, TRN [45] employed LSTM
blocks to model historical temporal dependencies. Re-
cently, OadTR [42] drove the recurrent-network paradigm
into a transformer-based paradigm and effectively captured
the long-term relationship via self-attention. Although
OadTR [42] effectively models long-term dependencies, the
self-attention process for all frames leads to the computa-
tional burden problem. This work regards historical frames
as exemplars and utilizes the exemplar-consultation mecha-
nism to model long-term dependencies.
Anticipating future. Although online action detection al-
gorithms cannot access future frames, anticipating future
features can assist the decision of current frame. In RED
[22], Gao et al. estimated features for future frames and
calculated the classification loss and the feature regression
loss to improve the anticipation quality, which is further
developed by TRN [45] and OadTR [42]. In this paper,
the static branch employs the exemplar-consultation mech-
anism to compare a frame with representative exemplars of
each category and brings complementary information to the
dynamic branch.
Offline action detection. The offline action detection al-
gorithm aims to discover action instances from untrimmed
videos [5, 29, 30], where all video frames can be utilized.
Some algorithms [19,36,39,44] tackled video frames to per-
form localization. In addition, a majority of works [28, 62]
first extracted video features from powerful backbone net-
works [3, 40, 60, 61], then performed action localization
based on video features. From the view of anchor mecha-
nism, the representative works include anchor-based meth-
ods [28, 62] and anchor-free methods [26, 27, 47]. Besides,
multiple effective modules have been proposed, e.g. graph
convolutional module [53, 54]. Moreover, action detection
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Figure 2. Framework of the proposed Colar method for online action detection. Given a video, the dynamic branch compares a frame with
its historical exemplars and models temporal dependencies, while the static branch compares a frame with category exemplars and captures
the category particularity.

under the weakly supervised setting [46,51,52,58] was also
well explored.

The primary difference between online action detection
and offline action detection algorithms lies in whether fu-
ture frames can be accessed. In offline algorithms, Xu et
al. [44] performed data augmentation via playing the video
in reverse order, while Zhu [62] modeled the relationship
among multiple proposals within a video. However, these
procedures are unsuitable for the studied online action de-
tection task.
Space-time memory network. Oh et al. [33] proposed
the space-time memory network to efficiently connect a
frame and its previous frames via space-time memory
read. It has verified effective performance on modeling
temporal information, and has been extended to multiple
tasks, e.g. video object detection [6], video object segmen-
tation [18, 31], tracking [25]. In contrast to the space-time
memory network, our static branch employs the exemplar-
consultation mechanism to model the intra-category rela-
tionship. Specifically, it first aggregates particular features
from each category, and then combines multiple features to
obtain the category feature.

3. Method
Given a video stream, the online action detection algo-

rithm should report the occurrence once the action starts

and keep alarming until the action ends. The learning
process is guided by the frame-level classification label
y = [y0, y1, ..., yC ], where yc ∈ {0, 1} indicates whether
frame f0 belongs to the cth category. As shown in Figure
2, we first employ a backbone network to extract video fea-
tures. Then, we propose the dynamic branch to model long-
term dependencies within a segment and propose the static
branch to capture the holistic particularity for each category.
Finally, two detection results are fused to perform the online
action detection task.

3.1. Dynamic branch

As neighboring frames can provide rich contextual cues
to determine the category label of the current frame, the
core idea of the dynamic branch is to model local evolution
by comparing a frame with its previous historical frames
and dynamically aggregating the local features. The up-
per part of Figure 2 exhibits the detailed operations in the
dynamic branch. Compared with the standard multi-head
self-attention mechanism of OadTR [42], our proposed dy-
namic branch makes two reasonable designs, which suffi-
ciently benefit the online action detection task. First, we
use temporal convolution with kernel size 3 to model lo-
cal cues among historical frames, which is complementary
to the global modeling of self-attention. Second, we make
two simplifications over OadTR, i.e. removing the class to-
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ken and replacing multi-head self-attention with one-head
attention on the current frame. The simplifications reduce
learning difficulty and benefit the performance when train-
ing data is not rich enough.

Given a video feature sequence, we first transform a fea-
ture ft to the key space and the value space, where the for-
mer is responsible for comparing similarity, and the latter
can be used for feature aggregation.

fkt = Φk(ft), fvt = Φv(ft), (1)

where Φk and Φv indicate two convolutional layers in the
dynamic branch. Then, we measure the pair-wise affinity
between fk0 and other key features (e.g. fkt ) via calculating
the cosine similarity:

µt = cos(fk0 , f
k
t ) =

fk0 · fkt
||fk0 || · ||fkt ||

. (2)

Given a series of affinity values [µ−T , ..., µ−1, µ0], we
perform softmax normalization and obtain the attention
mask [µ̂−T , ..., µ̂−1, µ̂0]. As each element µt indicates the
similarity between the previous tth frame and the current
frame, we can aggregate value features among previous
frames and obtain the historical feature f :

f =

0∑
t=−T

µ̂t · fvt . (3)

In the end, the dynamic branch jointly considers value fea-
ture fv0 and the historical feature f (e.g. via summation) and
conduct online action detection:

sd = Ωd(fv0 , f |Θd), (4)

where Ωd is the classifier in the dynamic branch with pa-
rameter Θd, and sd ∈ RC+1 is the classification score from
the dynamic branch.

3.2. Static branch

Considering action instances from the same category,
some instances with distinctive appearance characteristics
and clear motion patterns can be selected as exemplars to
represent this category. We employ the K-means cluster-
ing algorithm for each category, carry out clustering, and
obtain M exemplary features. On this basis, the online ac-
tion detection task can be formulated as comparing a frame
with representative exemplars of each category. As a re-
sult, the static branch can provide complementary cues to
the dynamic branch and makes the online detection algo-
rithm robust to noises within the local video segment.

Before stepping to detailed operations in the static
branch, it is necessary to analyze its efficiency. First, using
another branch increases a certain computation. However,

compared with OadTR [42], we not only simplify the atten-
tion computation but also remove decoder layers. Thus, our
holistic computation is smaller than OadTR [42], and we re-
quire less memory as well (see experiments in Sec.4.2). In
addition, even given a dataset with millions of samples and
thousands of categories, the modern implementation [23] of
the K-Means algorithm can still efficiently generate exem-
plars, as verified by DeepCluster [2].

As shown in the bottom part of Figure 2, the static
branch operates with the category exemplars {Ec =
[ec,1, ec,2, ..., ec,M ]}Cc=0 to classify feature f0, where each
category contains M representative exemplars. At first, we
convert each exemplar ec,i to the key space and the value
space:

ekc,i = Ψk(ec,i), evc,i = Ψv(ec,i), (5)

and convert the frame feature f0 to the key space and value
space as well:

ek0 = Γk(f0), ev0 = Γv(f0), (6)

where Ψk, Ψv , Γk and Γv indicate convolutional layers. In
the key space, we can measure the similarity between fea-
ture f0 and exemplar Ec from the cth category:

νc,i = cos(ek0 , e
k
c,i) =

ek0 · ekc,i
∥ek0∥ · ∥ekc,i∥

. (7)

Based on the pair-wise similarity between ek0 and all ex-
emplars [ec,1, ec,2, ..., ec,M ] from the cth category, we can
first calculate the attention mask [ν̂c,1, ..., ν̂c,M ] via softmax
normalization, and then aggregate all exemplars to represent
the current frame from the perspective of the cth category:

ec =

M∑
i=1

ν̂c,i · evc,i. (8)

After comparing the current frame with representative
exemplars of all categories, we obtain category-specific fea-
tures [e0, e1, ..., eC ]. Considering a feature from the cth

category, it would be similar to exemplars from the cth cat-
egory while be different from other exemplars. Thus, we
use a convolutional layer to estimate the attention weight
a ∈ RC+1 and aggregate category feature e:

e =

C∑
c=0

ac · ec. (9)

The exemplary feature e is generated from all exemplars
and can reveal the category characteristics. In the end, the
static branch employs both value feature ev0 and category
feature e to predict the classification score ss:

ss = Ωs(ev0, e|Θs), (10)

where Ωs is the classifier with parameter Θs.
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3.3. Efficient online action detection

Given a series of pre-extracted video features, the dy-
namic branch connects a frame with its historical neighbors
and models local evolution, while the static branch com-
pares a frame with representative exemplars and models
category particularity. It is convenient to fuse the predic-
tions of two branches and detect actions online. However,
the feature extraction process, especially calculating optical
flows, requires heavy computations, which prevents us from
conducting online action detection in practical scenarios.

To alleviate the computational burdens, we can employ
a spatio-temporal network to tackle video frames and pro-
vide representative features for the dynamic and the static
branch. Considering the video recognition performance and
calculation efficiency, we utilize the ResNet-I3D network
[41], discard the last classification layer, and construct our
feature extraction backbone. Given a video sequence with T
frames, the output of the backbone network is x ∈ RD×T/8,
where D indicates the feature dimension. In practice, as the
benchmark datasets contain limited training videos, we find
frozen the first three blocks can produce more accurate de-
tection results.

3.4. Training and inference

Given a frame, the dynamic branch and the static branch
predict its classification score sd and ss, respectively. We
calculate the cross-entropy loss to guide the learning pro-
cess:

Ld
cls = −

C∑
c=0

yclog(ŝc
d), Ls

cls = −
C∑

c=0

yclog(ŝc
s),

(11)
where ŝc

d and ŝc
s indicate scores after softmax normaliza-

tion. Besides, as the dynamic and static branches tackle the
same frame, two classification scores should be consistent.
Thus, we introduce the consistency loss Lcons to enable mu-
tual guidance among two branches:

Lcons = LKL(ŝ
d∥ŝs) + LKL(ŝ

s∥ŝd), (12)

where LKL indicates the KL-divergence loss. As verified
by Zhang et al. [57], the consistency loss can lead to a robust
model with better generalization. To sum up, the training
process is guided by the following loss:

L = Ld
cls + Ls

cls + λLcons, (13)

where λ is a trade-off parameter.
In inference, the dynamic classification score sd and the

static classification score ss are fused via a balance coeffi-
cient β to perform online action detection:

s = β ŝs + (1− β) ŝd. (14)

Table 1. Comparison experiments on THUMOS14 dataset, mea-
sured by mAP (%).

Setups Method mAP(%)

CNN [38]ICLR15 34.7
CNN [37]NIPS14 36.2

Offline LRCN [10]CVPR15 39.3
MultiLSTM [49]IJCV18 41.3

CDC [35]CVPR17 44.4

RED [22]BMVC17 45.3
TRN [45]ICCV19 47.2

Online IDU [11]CVPR20 50.0
(TSN-Anet) OadTR [42]ICCV21 58.3

Colar 59.4

IDU [11]CVPR20 60.3
Online OadTR [42]ICCV21 65.2

(TSN-Kinetics) Colar 66.9

RGB end-to-end Colar 58.6

4. Experiments

4.1. Setups

Dataset. We carry out experiments on three widely used
benchmarks, THUMOS14 [21], TVSeries [8] and HDD
[34]. THUMOS14 [21] includes sports videos from 20 ac-
tion categories, where the validation set and test set con-
tain 200 and 213 videos, respectively. On THUMOS14,
challenges for online action detection include drastic intra-
category varieties, motion blur, short action instances etc.
We follow previous works [9,11,42,45], train the model on
the validation set, and evaluate performance on the test set.

TVSeries [8] collects about 16 hours of videos from 6
popular TV series. The dataset contains 30 daily actions,
where the total instance number is 6231. The TVSeries
dataset exhibits some challenging characteristics, e.g. tem-
poral overlapping action instances, a large proportion of
background frames and unconstrained perspectives.

HDD [34] contains 104 hours of human driving video,
belonging to 11 action categories. The videos were col-
lected from 137 driving sessions using an instrumented ve-
hicle equipped with different sensors. Following existing
works [9, 42, 45], we use 100 sessions for training and 37
sessions for testing.

Metric. We adopt mean average precision (mAP) and
calibrated mean average precision (cmAP) to measure the
performance of online action detection algorithms. As for
mAP, we first collect classification scores for all frames and
then calculate precision and recall based on sorted results.
Afterward, we calculate interpolated average precision to
obtain AP scores for a category and finally regard the mean
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Table 2. Comparison experiments on TVSeries dataset, measured
by mcAP(%).

Setups Method mcAP(%)

LRCN [10]CVPR15 64.1
RED [22]BMVC17 71.2

RGB 2S-FN [9]WACV18 72.4
TRN [45]ICCV19 75.4
IDU [11]CVPR20 76.6

Flow
FV-SVM [8]ECCV2016 74.3

IDU [11]CVPR20 80.3

RED [22]BMVC17 79.2
TRN [45]ICCV19 83.7

Online IDU [11]CVPR20 84.7
(TSN-Anet) OadTR [42]ICCV21 85.4

Colar 86.0

IDU [11]CVPR20 86.1
Online OadTR [42]ICCV21 87.2

(TSN-Kinetics) Colar 88.1

RGB end-to-end Colar 86.8

value of AP scores among all categories as mAP. Consid-
ering the drastically imbalanced frame numbers of different
categories, Geest et al. [8] proposed to calibrate the mAP
score. In particular, we first calculate the ratio w between
background frames and action frames and then calculate the
calibrated precision as:

cPre(i) =
w · TP (i)

w · TP (i) + FP (i)
. (15)

Afterward, the calibrated average precision cAP for a cate-
gory can be calculated as:

cAP =

∑
i cPre(i) · 1(i)∑

i 1(i)
, (16)

where 1(·) indicates whether the ith frame belongs to the
considered action category. Finally, cmAP can be obtained
via calculating the mean value among all cAPs.

Implementation details. Following previous works [9,
11, 42, 45], we first conduct experiments with pre-extracted
features. The feature extractor uses the two-stream net-
work [43], whose spatial stream adopts ResNet-200 [16]
and temporal stream adopts BN-Inception [20]. We report
two experiments where the two-stream network [40, 43] is
trained on the ActivityNet v1.3 dataset [1] or the Kinetics-
400 [3] dataset to verify the generalization of the proposed
Colar method. As for end-to-end online action detection,
our backbone network is based on the ResNet50-I3D archi-
tecture [41], where the last average pooling layer and clas-
sification layer are removed. The ResNet50-I3D network

Table 3. Comparison experiments on HDD dataset, measured by
mAP (%).

Setups Method mAP(%)

CNN [8]ICLR15 22.7
LSTM [34]CVPR18 23.8

Sensors ED [22]BMVC17 27.4
TRN [45]ICCV19 29.2

OadTR [42]ICCV21 29.8
Colar 30.6

Table 4. Comparison between our proposed Colar method and ex-
isting methods. The inference time (in second) is measured on
a 1080Ti GPU when tackling the same one-minute video. Both
“Colar*” and Colar† directly tackle video frames, where the for-
mer uses a fixed backbone and the latter is end-to-end trained.

Method
RGB Optical Flow Action Inference mAP

Feature Flow Feature Detection Time (%)

Given pre-extracted features, Colar is faster and more accurate.

IDU [11] 2.3 39.8 4.4 52.8 99.3 60.3
OadTR [42] 2.3 39.8 4.4 4.7 51.2 65.2

Colar 2.3 39.8 4.4 4.2 50.7 66.9

OadTR-Flow - 39.8 4.4 4.5 48.7 57.8
Colar-Flow - 39.8 4.4 4.0 48.2 59.6

OadTR-RGB 2.3 - - 4.5 6.8 51.2
Colar-RGB 2.3 - - 4.0 6.3 52.1

Given frames, Colar provides a trade-off between speed and accuracy.

Colar* 5.8 - - 4.0 9.8 53.4
Colar† 5.8 - - 4.0 9.8 58.8

is pretrained on Kinetics-400 [3] dataset, and we use the
weight file provided by MMAction2 [7]. In training, we
freeze the first three blocks of the backbone network. Video
frames are extracted with a frame rate of 25fps, where the
spatial size is set as 224×224. We use the Adam [24] algo-
rithm to optimize the whole network and set the batchsize
as 16. The initial learning rate is 3×10−4 and decays every
five epochs.

4.2. Comparison experiments

Quantitative comparisons. We make a comparison
with current state-of-the-art methods [9,11,42,45] and con-
sistently build new high performance on THUMOS14 [21],
TVSeries [8], and HDD [34] benchmarks. As shown in Ta-
ble 1, based on TSN-ActivityNet features, our Colar brings
an mAP gain of 1.1% over OadTR [42], and the improve-
ments would be an mAP of 1.7% if the comparison is based
on TSN-Kinetics features. The consistent improvements
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Table 5. Detailed online action detection performances under different action portions, measured by mcAP (%) on TVSeries dataset.

Setups Method
Portion of actions

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

RGB
CNN [8]ICLR15 61.0 61.0 61.2 61.1 61.2 61.2 61.3 61.5 61.4 61.5

LSTM [8]ICLR15 63.3 64.5 64.5 64.3 65.0 64.7 64.4 64.4 64.4 64.3

Flow FV-SVM [8]ECCV2016 67.0 68.4 69.9 71.3 73.0 74.0 75.0 75.4 76.5 76.8

TRN [45]ICCV19 78.8 79.6 80.4 81.0 81.6 81.9 82.3 82.7 82.9 83.3
Online IDU [11]CVPR20 80.6 81.1 81.9 82.3 82.6 82.8 82.6 82.9 83.0 83.9

(TSN-Anet) OadTR [42]ICCV21 79.5 83.9 86.4 85.4 86.4 87.9 87.3 87.3 85.9 84.6
Colar 80.2 84.4 87.1 85.8 86.9 88.5 88.1 87.7 86.6 85.1

IDU [11]CVPR20 81.7 81.9 83.1 82.9 83.2 83.2 83.2 83.0 83.3 86.6
Online OadTR [42]ICCV21 81.2 84.9 87.4 87.7 88.2 89.9 88.9 88.8 87.6 86.7

(TSN-Kinetics) Colar 82.3 85.7 88.6 88.7 88.8 91.2 89.6 89.9 88.6 87.3

RGB end-to-end Colar 80.8 84.4 87.2 87.5 87.8 89.4 88.4 88.5 87.3 86.4

over current state-of-the-art methods verify the efficacy of
our proposed exemplar-consultation mechanism. In addi-
tion, the proposed Colar can directly tackle video frames
and perform online action detections, which achieves 58.6%
mAP. In addition to THUMOS14, experiments on TVSeries
[8] and HDD [34] benchmarks also verify the superiority of
our method, as shown in Table 2 and Table 3.

Effectiveness and efficiency. Table 4 analyzes the per-
formance and running time under different setups. When
using pre-extracted features, Colar performs superior to ex-
isting methods [11, 42]. It is worth noting that extracting
RGB and flow features takes 46.5 seconds, of which cal-
culating optical flow costs the majority of the time. When
only flow features or RGB features are available, the feature
extraction cost is reduced, but both OadTR [34] and our Co-
lar observe performance drop. In particular, it costs 44.2s to
extract flow features, where OadTR [34] and Colar observe
7.4% and 7.3% performance drops, respectively. The cost
to extract RGB features is small, but the online detection
performance decreases a lot.

Given the ResNet50-I3D network [41], we first extract
features from video frames and then train the proposed Co-
lar method, which gets 53.4%. In contrast, the proposed
end-to-end learning paradigm achieves 58.8%. To sum
up, our proposed Colar method achieves a good balance
between effectiveness and efficiency. Given pre-extracted
features, Colar makes accurate detection results. Given
only video frames, Colar costs 9.8 seconds to tackle a one-
minute video and achieves comparable performance. In ad-
dition, we measure the memory cost under identical setups,
where Colar requires 2235M memory and OadTR [42] re-
quires 4375M memory.

Performance under different action portions. Table 5
elaborately studies the online action detection performance

Table 6. Ablation studies about the efficacy of each component,
measured by mAP(%) on three benchmarks.

Dynamic Static Lcons THUMOS14 TVSeries HDD

✓ 65.2 86.3 29.5
✓ 58.1 83.5 26.4

✓ ✓ 65.8 86.9 29.9
✓ ✓ ✓ 66.9 88.1 30.6

when different action portions are observed. The proposed
Colar achieves promising accuracy when using the TSN-
ActivityNet feature, the TSN-Kinetics feature, and only
video frames. In particular, considering the most severe
cases that only the first 10% portion of actions are observed,
the previous state-of-the-art method OadTR [42] shows in-
ferior performance to IDU [11]. However, the proposed Co-
lar consistently exceeds OadTR, due to that the static branch
effectively connects a frame with representative exemplars
of each category and provides complimentary guidance.

4.3. Ablation experiments

Efficacy of each component. The proposed Colar
method consists of the dynamic branch and the static
branch, as well as a consistency loss Lcons to enable mu-
tual guidance between two branches. Table 6 studies the ef-
ficacy of each component on all three benchmark datasets.
Firstly, the dynamic branch performs superior to the static
branch, demonstrating the necessity of carefully modeling
temporal dependencies. Besides, without the consistency
loss, directly fusing prediction scores of two branches (e.g.
using Eq. (14)) only observes limited improvements, while
Lcons can further improve the detection performance.

Ablations about the dynamic branch. As shown in
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fusing prediction scores.

Figure 3. Ablation studies about hyper-parameters in the proposed
Colar method, measured by mAP (%) on THUMOS14 dataset.

Figure 3 (a), we first study the influence of temporal scope
T in modeling temporal dependencies and find 64 is a
proper choice for the dynamic branch. The too-short tem-
poral scope is insufficient to perceive evolvement within a
video segment, while too long temporal scope would bring
noises. In addition, we vary the number of convolutional
layers and choose two layers, as shown in Figure 3 (b).

Ablations about the static branch. Based on K-Means
clustering, the number of exemplars is an influential param-
eter for the static branch. As shown in Figure 3 (c), the
ability of limited exemplars is insufficient and overwhelm-
ing exemplars would damage the performance as well.

Ablations about the complete method. Given the com-
plete method, Figure 3 (d) studies the performance un-
der different feature channels and verifies 1024 is a proper
choice. Figure 3 (e) studies the coefficient λ for the consis-
tency loss in the training phase, while Figure 3 (f) verifies
the influence of coefficient β in the inference phase. We
find λ = 1 and β = 0.3 are proper choices.

4.4. Qualitative analysis

Figure 4 qualitatively analyzes the proposed Colar
method. Figure 4 (a) exhibits the static and dynamic
scores within a video segment. Because the Volleyball Spik-
ing instance shows dramatic viewpoint changes, the dy-
namic branch predicts low confident scores for some unique
frames (shown in the yellow dotted box). In contrast, the
static branch consults representative exemplars from the
Volleyball Spiking category and consistently predicts high
scores for these unique frames. Figure 4 (b) presents a video

Dynamic score
Static score

(a) Detection scores from dynamic branch and static branch.

1

0

-1

Hammer ThrowHammer Throw BackgroundBackground

(b) Attention weights in dynamic branch.

1

0.5

0

Volleyball Spiking BackgroundBackground

Figure 4. Qualitative analysis of the proposed Colar method.

segment containing multiple action instances, exhibits the
similarity between the current frame (the last one) and its
historical frames. The similarity weights clearly highlight
historical action frames and suppress background frames,
which contributes to aggregating temporal features.

5. Conclusion
This paper proposes Colar, based on the exemplar-

consultation mechanism, to conduct category-level mod-
eling for each frame and capture long-term dependencies
within a video segment. Colar compares a frame with exem-
plar frames, aggregates exemplar features, and carries out
online action detection. In the dynamic branch, Colar re-
gards historical frames as exemplars and models long-term
dependency with a lightweight network structure. In the
static branch, Colar employs representative exemplars of
each category and captures the category particularity. The
prominent efficacy of Colar would inspire future works to
pay attention to category-level modeling. In addition, as
Colar has made a good trade-off between effectiveness and
efficiency, it is a promising direction to conduct online ac-
tion detection directly from streaming video data, which can
benefit practical usage.
Limitations. Because Colar is only verified on the bench-
mark datasets, it may observe performance drop in practi-
cal scene due to new challenges, e.g. long-tail distribution,
open-set action categories. Besides, the unintended usage
of Colar for surveillance may violate individual privacy.
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