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Abstract

Referring image segmentation is a fundamental vision-
language task that aims to segment out an object referred
to by a natural language expression from an image. One
of the key challenges behind this task is leveraging the re-
ferring expression for highlighting relevant positions in the
image. A paradigm for tackling this problem is to leverage a
powerful vision-language (“cross-modal”) decoder to fuse
features independently extracted from a vision encoder and
a language encoder. Recent methods have made remarkable
advancements in this paradigm by exploiting Transformers
as cross-modal decoders, concurrent to the Transformer’s
overwhelming success in many other vision-language tasks.
Adopting a different approach in this work, we show that
significantly better cross-modal alignments can be achieved
through the early fusion of linguistic and visual features in
intermediate layers of a vision Transformer encoder net-
work. By conducting cross-modal feature fusion in the
visual feature encoding stage, we can leverage the well-
proven correlation modeling power of a Transformer en-
coder for excavating helpful multi-modal context. This way,
accurate segmentation results are readily harvested with a
light-weight mask predictor. Without bells and whistles, our
method surpasses the previous state-of-the-art methods on
RefCOCO, RefCOCO+, and G-Ref by large margins.

1. Introduction
Given an image and a text description of the target

object, referring image segmentation aims at predicting a
pixel-wise mask that delineates that object [8, 18]. It yields
great value for various applications such as language-based
human-robot interaction [55] and image editing [5]. In con-
trast to conventional single-modality visual segmentation
tasks based on fixed category conditions [30, 65], referring
image segmentation has to deal with the much richer vocab-
ularies and syntactic varieties of human natural languages.
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Figure 1. The task of referring image segmentation takes one im-
age and one text description as inputs, and predicts a mask de-
lineating the object specified in the description. (a) The previ-
ous state-of-the-art method (i.e., VLT [12]) leverages a vision-
language Transformer decoder for cross-modal feature fusion. (b)
Conversely, we propose to directly integrate linguistic informa-
tion into visual features at intermediate levels of a vision Trans-
former network, where beneficial vision-language cues are jointly
exploited. A light-weight mask predictor can thus readily replace
the complicated cross-modal decoder in previous counterparts.

In this task, the target object is inferred from a free-form ex-
pression, which includes words and phrases presenting the
concepts of entities, actions, attributes, positions, etc., or-
ganized by syntactic rules. Therefore, the key challenge of
this task is to exploit visual features that are relevant to the
given text conditions.

There have been growing efforts devoted to referring im-
age segmentation over the past few years. A widely adopted
paradigm is to first independently extract vision and lan-
guage features from different encoder networks, and then
fuse them together to make predictions with a cross-modal
decoder. Concretely, the fusion strategies include recurrent
interaction [28,31], cross-modal attention [4,20,48], multi-
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modal graph reasoning [21], linguistic structure-guided
context modeling [22], etc. Recent advances (e.g., [12])
bring performance improvements via employing a cross-
modal Transformer [54] decoder (illustrated in Fig. 1 (a))
to learn more effective cross-modal alignments, which is in
concurrence with Transformer’s overwhelming success in
many other vision-language tasks [19, 27, 37, 45].

Although great progress has been achieved, the poten-
tiality of the Transformer for enhancing referring image
segmentation is still far from being sufficiently explored in
the conventional paradigm. Specifically, cross-modal in-
teractions occur only after feature encoding, and a cross-
modal decoder is solely responsible for aligning the visual
and linguistic features. As a result, previous methods fail to
effectively leverage the rich Transformer layers in the en-
coder for excavating helpful multi-modal context. To ad-
dress these issues, a potential solution is to exploit a visual
encoder network for jointly embedding linguistic and visual
features during visual encoding.

Accordingly, we propose a Language-Aware Vision
Transformer (LAVT) network, in which visual features are
encoded together with linguistic features, being “aware” of
their relevant linguistic context at each spatial location. As
shown in Fig. 1 (b), LAVT makes full use of the multi-stage
design in a modern vision Transformer backbone network,
leading to a hierarchical language-aware visual encoding
scheme. Specifically, we densely integrate linguistic fea-
tures into visual features via a pixel-word attention mecha-
nism, which occurs at each stage of the network. The ben-
eficial vision-language cues are then exploited by the fol-
lowing Transformer blocks, e.g., [33], in the next encoder
stage. This approach enables us to forgo a complicated
cross-modal decoder, since the extracted language-aware
visual features can be readily adopted to harvest accurate
segmentation masks with a lightweight mask predictor.

To evaluate the effectiveness of the proposed method, we
conduct extensive experiments on various mainstream re-
ferring image segmentation datasets. Our LAVT achieves
72.73%, 62.14%, 61.24%, and 60.50% overall IoU on the
validation sets of RefCOCO [63], RefCOCO+ [63], G-Ref
(UMD partition) [42], and G-Ref (Google partition) [40],
improving the state of the art for these datasets by absolute
margins of 7.08%, 6.64%, 6.84%, and 8.57%, respectively.

To summarize, our contributions are twofold:

• We propose LAVT, a Transformer-based referring im-
age segmentation framework that performs language-
aware visual encoding in place of cross-modal fusion
post feature extraction.

• We achieve new state-of-the-art results on three
datasets for referring image segmentation, demonstrat-
ing the effectiveness and generality of the proposed
method. Source code is available at LAVT-RIS.

2. Related work
Referring image segmentation has attracted growing at-
tention in the research community and there are two main
processes in conventional pipelines: (1) extracting features
from the text and image inputs respectively, and (2) fus-
ing the multi-modal features to predict the segmentation
mask. In the first process, previous methods adopt recur-
rent neural networks [17,18,25,28,31] and language Trans-
formers [2, 11] to encode language inputs. To encode vi-
sual inputs, vanilla fully convolutional networks [18,31,35],
DeeplabV3 [2, 6, 28], and DarkNet [25, 39, 47] have been
successively employed in previous methods with the pur-
pose of learning discriminative representations.

The multi-modal feature fusion module is the key com-
ponent that prior arts focus on. For example, Hu et al. [18]
propose the first baseline based on the concatenation oper-
ation, which is improved by Liu et al. [31] with a recurrent
strategy. Shi et al. [48], Chen et al. [4], Ye et al. [60],
and Hu et al. [20] model cross-modal relations between
language and vision features via various attention mecha-
nisms. Yu et al. [62] and Huang et al. [21] leverage knowl-
edge about sentence structures to capture different concepts
(e.g., categories, attributes, relations, etc.) in multi-modal
features, while Hui et al. [22] exploit syntactic structures
among words for guiding multi-modal context aggregation.

The methods most related to ours are VLT [12] and
EFN [14], where the former designs a Transformer decoder
for fusing linguistic and visual features, and the latter adopts
a convolutional vision backbone network for encoding lan-
guage information. Differently from [12], we propose an
early fusion scheme which effectively exploits the Trans-
former encoder for modeling multi-modal context. Com-
pared to [14], we do not rely on a complicated cross-modal
decoder, leading to a clearer and more effective framework.
Under fair comparisons, our method outperforms these two
previous counterparts by large margins.
Transformer is first introduced as a sequence-to-sequence
deep attention-based language model [54], and has domi-
nated the natural language processing (NLP) field [9,11,58]
due to its strong capability on global context modeling.
More recently, it has achieved great success on various com-
puter vision tasks, e.g., image classification [13,33,52], ac-
tion recognition [1, 34], object detection [3, 33, 66], and se-
mantic segmentation [33, 51, 64].

There has also been a rich line of work on Transformers
in the intersection area of computer vision and NLP [26,46].
For example, Radford et al. devise a large-scale pretraining
model, named CLIP [45], which applies contrastive learn-
ing [15, 16, 50] on features learned by a vision Transformer
and a language Transformer. Hu et al. [19] propose a Uni-
fied Transformer (UniT) model that jointly learns multi-
ple vision-language tasks across different domains. Be-
sides, growing efforts have been devoted to other tasks
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Figure 2. Overall pipeline of the proposed LAVT. We leverage a hierarchical vision Transformer [33] to perform language-aware visual
encoding. At each stage, visual feature maps Vi, i ∈ {1, 2, 3, 4} are encoded from the corresponding stage of Transformer layers (which
are described in Sec. 3.1 and for diagrammatic clarity, are not illustrated in this figure). Then Vi are used as queries for generating a set
of position-specific language feature maps Fi, i ∈ {1, 2, 3, 4} in the pixel-word attention module (Sec. 3.2). Next, we adaptively fuse Fi

with the original Vi via a language pathway (Sec. 3.3). The new visual feature maps Ei, i ∈ {1, 2, 3} are then passed into the next stage of
Transformer layers for further processing. A standard segmentation decoder head (Sec. 3.4) produces the final segmentation output.

such as visual question answering [37] and text-to-video re-
trieval [27]. However, to the best of our knowledge, there
have been very few attempts on designing a unified Trans-
former model for the task of referring image segmentation.

3. Method
Fig. 2 illustrates the pipeline of our Language-Aware Vi-

sion Transformer (LAVT), which leverages a hierarchical
vision Transformer to jointly embed language and vision in-
formation to facilitate cross-modal alignments. In this sec-
tion, we start by introducing our language-aware visual en-
coding strategy in Sec. 3.1, which is achieved with a pixel-
word attention module detailed in Sec. 3.2 and a language
pathway detailed in Sec. 3.3. Then in Sec. 3.4 we describe
the light-weight mask predictor used to obtain final results.

3.1. Language-aware visual encoding

Given an input pair of an image and a natural language
expression that specifies an object from the image, our
model outputs a pixel-wise mask that delineates the object.
To extract language features, we employ a deep language
representation model to embed the input expression into
high-dimensional word vectors. We denote the language
features as L ∈ RCt×T , where Ct and T denote the number
of channels and the number of words, respectively.

After obtaining the language features, we perform joint
visual feature encoding and vision-language (which is also
called “cross-modal” or “multi-modal” in the following
contents) feature fusion through a hierarchy of vision Trans-
former layers organized into four stages. We index each
stage using i ∈ {1, 2, 3, 4} in the bottom-up direction. Each

stage employs a stack of Transformer encoding layers (with
the same output size) ϕi, a multi-modal feature fusion mod-
ule θi, and a learnable gating unit ψi. Within each stage,
language-aware visual features are generated and refined
via three steps. First, the Transformer layers ϕi take the fea-
tures from the previous stage as input, and output enriched
visual features, denoted as Vi ∈ RCi×Hi×Wi . Then, Vi are
combined with language featuresL via the multi-modal fea-
ture fusion module θi to produce a set of multi-modal fea-
tures, denoted as Fi ∈ RCi×Hi×Wi . Finally, each element
in Fi is weighted by the learnable gating unit ψi and then
added element-wise to Vi to produce a set of enhanced vi-
sual features embedded with linguistic information, which
we denote as Ei ∈ RCi×Hi×Wi . We refer to the computa-
tions in this final step as the language pathway. Here, Ci,
Hi, and Wi denote the number of channels, the height, and
the width of feature maps in the i-th stage, respectively.

The four stages of Transformer encoding layers corre-
spond to the four stages in a Swin Transformer [33], which
is an efficient hierarchical vision backbone suitable for ad-
dressing dense prediction tasks. The multi-modal feature
fusion module within each stage is our proposed pixel-word
attention module (PWAM), which is designed with the aim
to densely align linguistic meanings with visual clues. And
the gating unit is what we refer to as the language gate (LG),
a special unit that we devise for regulating the flow of lin-
guistic information along the language pathway (LP).

3.2. Pixel-word attention module

In order to separate a target object from its background,
it is important to align the visual and linguistic representa-
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Figure 3. Pipeline of the pixel-word attention module (PWAM).
First, a single-head scaled dot-product attention [54] is performed
using the input visual feature maps Vi as queries and the input lin-
guistic feature maps L as keys and values. The result, Gi, is a
set of linguistic feature maps of the same spatial size as Vi. Gi is
then multiplied element-wise with a projection of the input visual
feature maps Vim, followed by another projection before final out-
put. A detail which we found important empirically is the adoption
of an instance normalization [53] layer in the projection functions
ωiq and ωiw (see the text below and Table 3).

tions of the object across modalities. One general approach
is to combine the representation of each pixel with the repre-
sentation of the referring expression, and learn multi-modal
representations that are discriminative of a “referent” class
and a “background” class. Previous approaches have devel-
oped various mechanisms for addressing this challenge, in-
cluding dynamic convolutions [41], concatenations [18, 28,
41], cross-modal attentions [14,20,38,49,60], graph neural
networks [32], etc. Compared to most of the previous cross-
modal attention mechanisms [14, 20, 38, 49, 60], our pixel-
word attention module (PWAM) produces a much smaller
memory footprint as it avoids computing attention weights
between two image-sized spatial feature maps, and is also
simpler due to fewer attention steps.

Fig. 3 illustrates PWAM schematically. Given the in-
put visual features Vi ∈ RCi×Hi×Wi and linguistic fea-
tures L ∈ RCt×T , PWAM performs multi-modal fusion
in two steps, as introduced in the following. First, at
each spatial location, PWAM aggregates the linguistic fea-
tures L across the word dimension to generate a position-
specific, sentence-level feature vector, which collects lin-
guistic information most relevant to the current local neigh-

borhood. This step generates a set of spatial feature maps,
Gi ∈ RCi×Hi×Wi . Concretely, we obtain Gi as follows

Viq = flatten(ωiq(Vi)), (1)
Lik = ωik(L), (2)
Liv = ωiv(L), (3)

G′
i = softmax(

V T
iqLik√
Ci

)LT
iv, (4)

Gi = ωiw(unflatten(G′T
i )), (5)

where ωiq , ωik, ωiv , and ωiw are projection functions. Each
of the language projections ωik and ωiv is implemented as a
1×1 convolution with Ci number of output channels. And
the query projection ωiq and the final projection ωiw each
is implemented as a 1×1 convolution followed by instance
normalization, with Ci number of output channels. Here,
‘flatten’ refers to the operation of unrolling the two spatial
dimensions into one dimension in row-major, C-style or-
der, and ‘unflatten’ refers to the opposite operation. These
two operations and transposing are used to transform fea-
ture maps into proper shapes for calculation. Eqs. 1 to 5
implement the scaled dot-product attention [54] using vi-
sual features Vi as the query and linguistic features L as the
key and the value, with instance normalization after linear
transformation in the query projection function ωiq and the
output projection function ωiw.

Second, after obtaining the linguistic features Gi which
have the same shape as Vi, we combine them to produce a
set of multi-modal feature maps Fi via element-wise multi-
plication. Specifically, our step is described as follows

Vim = ωim(Vi), (6)
Fi = ωio(Vim ⊙Gi), (7)

where ⊙ denotes element-wise multiplication and ωim and
ωio are a visual projection and a final multi-modal projec-
tion, respectively. Each of the two functions is implemented
as a 1×1 convolution followed by ReLU [43] nonlinearity.

3.3. Language pathway

As described earlier, at each stage, we merge the out-
put from PWAM, Fi, with the output from the Transformer
layers, Vi. We refer to the computations in this merging
operation as the language pathway. In order to prevent Fi

from overwhelming the visual signals in Vi and to allow
an adaptive amount of linguistic information flowing to the
next stage of Transformer layers, we design a language gate
which learns a set of element-wise weight maps based on
Fi to re-scale each element in Fi. The language pathway
is schematically illustrated in Fig. 4 and mathematically de-
scribed as follows

Si = γi(Fi), (8)
Ei = Si ⊙ Fi + Vi, (9)
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Figure 4. The schema of the language pathway, which leverages a
language gate (LG) for controlling multi-modal information flow.
LG is implemented as a two-layer perceptron.

where ⊙ indicates element-wise multiplication and γi is a
two-layer perceptron, with the first layer being a 1×1 con-
volution followed by ReLU [43] nonlinearity and the sec-
ond layer being a 1×1 convolution followed by a hyper-
bolic tangent function. As detailed in the ablation studies
in Table 3, we have experimented with and without using a
language gate along the language pathway, as well as differ-
ent final nonlinear activation functions in the language gate,
and found that using the gate with tanh final nonlinearity
works the best for our model. The summation operation
in Eq. 9 is an effective way of utilizing pre-trained vision
Transformer layers for multi-modal embedding, as the treat-
ment of multi-modal features as “supplements” (or “residu-
als”) avoids disrupting the initialization weights pre-trained
on pure vision data. We have observed much worse results
in the case of adopting replacement or concatenation.

3.4. Segmentation

We combine the multi-modal feature maps, Fi, i ∈
{1, 2, 3, 4}, in a top-down manner to exploit multi-scale se-
mantics for final segmentation. The decoding process can
be described by the following recursive function{

Y4 = F4,
Yi = ρi([υ(Yi+1);Fi]), i = 3, 2, 1.

(10)

Here ‘[ ; ]’ denotes feature concatenation along the chan-
nel dimension, υ represents upsampling via bilinear inter-
polation, and ρi is a projection function implemented as two
3×3 convolutions connected by batch normalization [24]
and ReLU [43] nonlinearity. The final feature maps, Y1, are
projected into two class score maps via a 1×1 convolution.

3.5. Implementation

We implement our method in PyTorch [44] and use the
BERT implementation from HuggingFace’s Transformer li-
brary [56]. The Transformer layers in LAVT are initial-
ized with classification weights pre-trained on ImageNet-
22K [10] from the Swin Transformer [33]. Our language
encoder is the base BERT model with 12 layers and hidden

size 768 from [54] (hence Ct in Sec. 3 is 768) and is ini-
tialized using the official pre-trained weights. The rest of
weights in our model are randomly initialized. Ci in Sec. 3
is set to 512 and the model is optimized with cross-entropy
loss. Following [33], we adopt the AdamW [36] optimizer
with weight decay 0.01 and initial learning rate 0.00005
with polynomial learning rate decay. We train our model
for 40 epochs with batch size 32. We iterate through each
object (while randomly sampling one referring expression
for it) exactly once in an epoch. Images are resized to
480×480 and no data augmentation techniques are applied.
During inference, argmax along the channel dimension of
the score maps are used as predictions.

4. Experiments

4.1. Datasets and metrics

We evaluate our method on three standard benchmark
datasets, RefCOCO [63], RefCOCO+ [63], and G-Ref [40,
42]. Images in the three datasets are collected from the
MS COCO dataset [30] and annotated with natural lan-
guage expressions. Each of RefCOCO, RefCOCO+, and
G-Ref contains 19,994, 19,992, and 26,711 images, with
50,000, 49,856, and 54,822 annotated objects and 142,209,
141,564, and 104,560 annotated expressions, respectively.
Expressions in RefCOCO and RefCOCO+ are very succinct
(containing 3.5 words on average). In contrast, expressions
in G-Ref are more complex (containing 8.4 words on av-
erage), which makes the dataset particularly challenging.
Conversely, RefCOCO and RefCOCO+ tend to have more
objects of the same category per image (3.9 on average)
compared to G-Ref (1.6 on average), therefore they bet-
ter evaluate an algorithm’s ability to comprehend instance-
level details. A characteristic of RefCOCO+ is that location
words are banned in its expressions, which also makes it
more challenging. Additionally, there are two different par-
titions of the G-Ref dataset, one by UMD [42] and the other
by Google [40]. We report results on both. When evaluat-
ing on each dataset, we train our model on the training set of
that dataset. Finally, we make note of the ambiguities and
foul language found in many expressions of RefCOCO with
the hope that future community efforts will address them.

We adopt the common metrics of overall intersection-
over-union (oIoU), mean intersection-over-union (mIoU),
and precision at the 0.5, 0.7, and 0.9 threshold values. The
overall IoU is measured as the ratio between the total inter-
section area and the total union area of all test samples, each
of which is a language expression and an image. This met-
ric favors large objects. The mean IoU is the IoU between
the prediction and ground truth averaged across all test sam-
ples. This metric treats large and small objects equally. The
precision metric measures the percentage of test samples
that pass an IoU threshold.
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Method Language RefCOCO RefCOCO+ G-Ref
Model val test A test B val test A test B val (U) test (U) val (G)

DMN [41] SRU 49.78 54.83 45.13 38.88 44.22 32.29 - - 36.76
RRN [29] LSTM 55.33 57.26 53.93 39.75 42.15 36.11 - - 36.45
MAttNet [62] Bi-LSTM 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61 -
CMSA [61] None 58.32 60.61 55.09 43.76 47.60 37.89 - - 39.98
CAC [7] Bi-LSTM 58.90 61.77 53.81 - - - 46.37 46.95 44.32
STEP [4] Bi-LSTM 60.04 63.46 57.97 48.19 52.33 40.41 - - 46.40
BRINet [20] LSTM 60.98 62.99 59.21 48.17 52.32 42.11 - - 48.04
CMPC [21] LSTM 61.36 64.53 59.64 49.56 53.44 43.23 - - 49.05
LSCM [23] LSTM 61.47 64.99 59.55 49.34 53.12 43.50 - - 48.05
CMPC+ [32] LSTM 62.47 65.08 60.82 50.25 54.04 43.47 - - 49.89
MCN [39] Bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
EFN [14] Bi-GRU 62.76 65.69 59.67 51.50 55.24 43.01 - - 51.93
BUSNet [57] Self-Att 63.27 66.41 61.39 51.76 56.87 44.13 - - 50.56
CGAN [38] Bi-GRU 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 46.54
LTS [25] Bi-GRU 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 -
VLT [12] Bi-GRU 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76
LAVT (Ours) BERT 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50

Table 1. Comparison with state-of-the-art methods in terms of overall IoU on three benchmark datasets. U: The UMD partition. G: The
Google partition. We refer to the language model of each reference method as the main learnable function that transforms word embeddings
before multi-modal feature fusion. Interested readers can refer to the respective papers for embedding initialization and other details.

4.2. Comparison with others

In Table 1, we evaluate LAVT against the state-of-
the-art referring image segmentation methods on the Ref-
COCO [63], RefCOCO+ [63], and G-Ref [40, 42] datasets
using the oIoU metric. LAVT outperforms all previous
methods on all evaluation subsets of all three datasets.
Compared with the second-best method, VLT [12], LAVT
achieves higher performance with absolute margins of
7.08%, 7.53%, and 6.06% on the validation, testA, and
testB subsets of RefCOCO, respectively. Similarly, LAVT
attains noticeable improvements over the previous state of
the art on RefCOCO+ with wide margins of 6.64%, 9.18%,
and 5.74% on the validation, testA, and testB subsets, re-
spectively. On the most challenging G-Ref dataset (which
contains significantly longer expressions), LAVT surpasses
the respective second-best methods on the validation and
test subsets from the UMD partition by absolute margins
of 6.84% and 5.44%, respectively. Similarly on the val-
idation set from the Google partition, LAVT outperforms
the second-best method EFN [14] by an absolute margin of
8.57%. This performance is achieved without using Ref-
COCO as additional training data in contrast to EFN.

4.3. Ablation study

We conduct several ablations to evaluate the effective-
ness of the key components in our proposed network.
Language pathway (LP). Table 2 shows that removing
LP (which corresponds to, mathematically, the removal of

LP PWAM P@0.5 P@0.7 P@0.9 oIoU mIoU
✓ ✓ 84.46 75.28 34.30 72.73 74.46

✓ 81.46 70.80 30.95 70.78 71.96
✓ 81.76 72.76 32.46 71.03 72.31

77.87 66.93 27.95 68.82 68.87

Table 2. Main ablation results on the RefCOCO validation set.

Eqs. 8 and 9, or schematically, the removal of the orange
stream in Fig. 2) leads to a drop of 1.95 and 2.50 absolute
points in overall IoU and mean IoU, respectively. In addi-
tion, precision drops by 3 to 4 points across all three thresh-
olds. These results demonstrate the benefit of exploiting our
vision Transformer encoder network for jointly embedding
linguistic and visual features.
Pixel-word attention module (PWAM). In this ablation
study, we replace the spatial language feature maps Gi in
PWAM with a sentence feature vector globally pooled from
all words [59]. As shown in Table 2, this ablation leads to
a drop of 1.70 and 2.15 absolute points in overall IoU and
mean IoU, respectively, and a drop of 1 to 2 absolute points
in precision across the three thresholds. These results il-
lustrate the effectiveness of densely aggregating linguistic
context via our proposed attention mechanism for enhanc-
ing cross-modal alignments.
Activation function in the language gate (LG). Our pro-
posed LG learns a set of spatial weight maps, which give
our network the flexibility to control the flow of language
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Figure 5. Visualized predictions and feature maps on an example from the RefCOCO validation set. From top to bottom, the left-most
column illustrates the input expression, the input image, and the ground-truth mask overlaid on the input image. In each row, we visualize
the predicted mask and the feature maps used for final classification (i.e., Y4, Y3, Y2, and Y1) from left to right. LP represents the language
pathway and PWAM represents the pixel-word attention module.

P@0.5 P@0.7 P@0.9 oIoU mIoU
(a) activation function in the language gate (LG)

Tanh (*) 84.46 75.28 34.30 72.73 74.46
Sigmoid 81.89 72.71 33.35 70.49 72.47
(b) normalization layer in pixel-word attention module (PWAM)

InstanceNorm (*) 84.46 75.28 34.30 72.73 74.46
LayerNorm 82.97 74.15 33.99 71.92 73.32
BatchNorm 82.89 73.82 33.53 71.59 73.09
None 81.91 72.73 33.11 70.66 72.34
(c) features used for final classification

F4, F3, F2, F1 (G*) 84.46 75.28 34.30 72.73 74.46
F4, F3, F2, F1 (NG) 84.00 74.96 33.47 72.24 73.94
E4, E3, E2, E1 (G) 83.84 74.96 34.48 72.06 73.98
E4, E3, E2, E1 (NG) 84.33 74.94 34.77 72.27 74.12
V4, V3, V2 (G) 83.36 74.47 32.61 71.38 73.29
V4, V3, V2 (NG) 83.83 74.76 32.14 72.29 73.67
(d) multi-modal attention module

PWAM (*) 84.46 75.28 34.30 72.73 74.46
BCAM [20] 82.26 72.81 33.31 70.19 72.42
GA (GARAN) [38, 39] 83.22 74.09 32.71 71.20 73.16

Table 3. Ablation studies on the RefCOCO validation set. (G)
indicates that LG is adopted in the language pathway and (NG)
indicates the opposite. Rows with (*) indicate default choices.

information in the language pathway. In Table 3 (a), we
compare the sigmoid function and the hyperbolic tangent
function as the final activation function in LG. Using the
sigmoid function leads to inferior results.
Normalization layer in PWAM. As described in Sec. 3.2,
we adopt a final instance normalization layer in the pro-
jection functions ωiq and ωiw in PWAM. As we illustrate
in Table 3 (b), this particular choice of normalization func-
tion has a non-trivial effect. In addition to instance nor-
malization (our default choice), we experiment with batch

normalization, layer normalization, and without having a
normalization layer in the functions ωiq and ωiw. All three
other choices lead to 1 to 2 absolute points drop in the over-
all IoU and mean IoU metrics. Among these three choices,
using batch normalization or layer normalization produces
better results than not using a normalization layer.

Features used for prediction. As shown in Fig. 4, the
language-aware visual encoding process of LAVT produces
three kinds of spatial feature maps which encapsulate visual
and linguistic information, i.e., the outputs from PWAMs
(Fi, i ∈ {1, 2, 3, 4}), the outputs from the Transformer lay-
ers (Vi, i ∈ {2, 3, 4}), and the inputs to the following Trans-
former layers (Ei, i ∈ {1, 2, 3}). While our default choice
is to use Fi for predicting the object mask, we also con-
sider the other two types of feature maps natural candidates
for this purpose. As shown in Fig. 2, E4 is not generated
in the standard architecture of LAVT. To have a convincing
ablation study, we compute E4 with an additional language
pathway as defined in Eqs. 8 and 9. Therefore, we use Ei,
i ∈ {1, 2, 3, 4} to predict the segmentation masks. In com-
parison, as multi-modal information has been progressively
integrated into V2, V3, and V4 along the bottom-up computa-
tion pathway while V1 contains pure visual information, we
do not use V1 for prediction. In Table 3 (c), we report seg-
mentation results when using each type of features with and
without our proposed LG (indicated by “G” and “NG”, re-
spectively). Table 3 (c) shows that using our default choice
of Fi with LG produces the best overall results among all
choices. Also, we observe that while LG has a positive ef-
fect when using Fi for segmentation, it slightly degrades
the results when Ei (72.06% vs. 72.27% in oIoU) or Vi
(71.38% vs. 72.29% in oIoU) are used for segmentation.

Multi-modal attention module. In Table 3 (d), we com-
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“white cell phone in middle”“blue phone” “phone on very bottom” “flip phone on right”

Image Ours Ground truth

“guy by the red wall
with arms crossed”

Expressions:

Expressions: “gal touching hair”
“guy in black sitting 
to left leaned over” “guy in strip shirt, on laptop”

Ours Ours OursGround truth Ground truth Ground truth

Figure 6. Visualizations of our predicted masks and the ground-truth masks on two examples from the RefCOCO validation set.

pare PWAM with two state-of-the-art attention modules
by directly replacing PWAM with them in our framework,
using the same backbone, language model, and training
recipes. Compared to both the grouped attention (GA or
GARAN) [38, 39] and the bi-directional cross-modal atten-
tion module (BCAM) [20], PWAM achieves higher scores
across all metrics. Note that BCAM is representative of
the computationally-heavy attention modules and GA is the
most recent top-performing module.

Visualized predictions. In Fig. 5, we visualize the pre-
dictions and feature maps of our full model and two ab-
lated models (without the language pathway (“w/o LP”) and
without the pixel-word attention module (“w/o PWAM”),
respectively). From the first row, we can observe that
the higher-level feature maps (i.e., Y4, Y3, Y2) in our full
model can accurately locate the semantic concept given
in text, while the low-level feature maps (i.e., Y1) contain
rich boundary information important to binary segmenta-
tion. Comparing the predicted masks between the three
models, we can observe that the removal of LP and the re-
moval of PWAM both lead to false negative predictions on
the front window area of the target bus, while the removal of
LP additionally results in the false positive identification of
the middle bus. These qualitative results further validate the
effectiveness of our proposed LP and PWAM mechanisms.
More example visualizations are shown in Fig. 6.

Fair comparison with reference methods. To further
validate the effectiveness of our proposed method of fus-
ing cross-modal information via a vision Transformer en-
coder network, in Table 4, we provide fair comparisons be-
tween our method and three previous state-of-the-art meth-
ods, LTS [25], VLT [12] and EFN [14]. All models use
BERTBASE as the language encoder and Swin-B as the vi-
sion backbone network, following the same training settings
(described in Sec. 3.5). While LTS employs a “locate-then-
segment” pipeline, VLT is representative of methods that
employ a cross-modal Transformer decoder. Conversely,
EFN is representative of methods which fuse cross-modal

Method P@0.5 P@0.7 P@0.9 oIoU mIoU
LTS (Swin-B+BERT) [25] 80.59 69.48 26.13 69.94 70.56
EFN (Swin-B+BERT) [14] 82.55 73.27 31.68 70.76 72.95
VLT (Swin-B+BERT) [12] 83.24 72.81 24.64 70.89 71.98
Ours + VLT [12] 84.57 75.14 26.36 72.12 73.57
Ours 84.46 75.28 34.30 72.73 74.46

Table 4. Comparison between our method, LTS [25], VLT [12],
and EFN [14] on the RefCOCO validation set, where all models
use the same backbone, language model, and training recipes.

information via an encoder network and additionally rely
on a complicated decoder for obtaining the best results. As
shown in Table 4, our method outperforms LTS, VLT, and
EFN on the validation set of RefCOCO across all metrics.
To further verify that our proposed LAVT encoding scheme
is more effective than its counterpart cross-modal decoder
approach, we combine our approach with VLT by substitut-
ing our original light-weight mask predictor with the cross-
modal Transformer decoder from VLT. As shown in this
experiment (indicated by “ours + VLT” in Table 4), em-
ploying a Transformer decoder to perform additional cross-
modal feature fusion after language-aware visual encoding
by LAVT generally does not bring extra gains (except a
marginal 0.11% improvement in P@0.5).

5. Conclusion
In this paper, we have proposed a Language-Aware Vi-

sion Transformer (LAVT) framework for referring image
segmentation, which leverages the multi-stage design of a
vision Transformer for jointly encoding multi-modal inputs.
Experimental results on three benchmarks have demon-
strated its advantage with respect to the state of the art.
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