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Abstract

Deep cross-modal hashing has become an essential tool
for supervised multimodal search. These models tend to be
optimized with large, curated multimodal datasets, where
most labels have been manually verified. Unfortunately, in
many scenarios, such accurate labeling may not be avail-
able. In contrast, datasets with low-quality annotations
may be acquired, which inevitably introduce numerous mis-
takes or label noise and therefore degrade the search per-
formance. To address the challenge, we present a general
robust cross-modal hashing framework to correlate distinct
modalities and combat noisy labels simultaneously. More
specifically, we propose a proxy-based contrastive (PC)
loss to mitigate the gap between different modalities and
train networks for different modalities jointly with small-
loss samples that are selected with the PC loss and a mu-
tual quantization loss. The small-loss sample selection from
such joint loss can help choose confident examples to guide
the model training, and the mutual quantization loss can
maximize the agreement between different modalities and
is beneficial to improve the effectiveness of sample selec-
tion. Experiments on three widely-used multimodal datasets
show that our method significantly outperforms existing
state-of-the-arts.

1. Introduction

By transforming high-dimensional data from multiple
modalities into compact binary hash codes in a common
Hamming space, cross-modal hashing offers remarkable
efficiency for large-scale multi-modal data storage and
search. Recently, supervised deep learning-based cross-
modal hashing methods have achieved promising results
and been applied to many multi-modal learning tasks [4—

,43,49]. These models usually rely on a large number
of training instances with clean and intact labels. How-
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ever, noisy labels, which are systematically corrupted, are
ubiquitous and unavoidable in our daily life, such as social-
network tagging [7], crowdsourcing [38], medical diagno-
sis [13], and financial analysis [1]. As deep networks have
large model capacities, they can easily memorize and even-
tually overfit these noisy labels, which correspondingly de-
generates the model generalization [51].

To combat the impact of noisy labels, numerous studies
have been conducted, such as correction method [14], Men-
torNet [19], Co-teaching [15], and T-revision [40]. These
methods can learn robust continuous representations for
unimodal learning tasks. However, they cannot simultane-
ously tackle multi-modal inputs, such as real-world multi-
media data. Moreover, continuous representations are in-
efficient for storage and computation, and it is non-trivial
to binarize continuous representations. Improper binariza-
tion may introduce large quantization errors and severely
degrade the model performance. Therefore, it is important
to explore how to learn robust binary codes for cross-modal
search with noisy labels. While this is rarely touched in
previous works.

We perform an empirical study on a general deep cross-
modal hashing framework trained with noisy labels. Fig-
ure la illustrates the mean average precision (mAP) values
in different epochs for the training datasets evaluated with
noisy labels. We can see that the performance continues to
increase during the training stage, which suggests that the
model will keep memorizing noisy labels during the whole
training procedure. Figure 1b shows the performance of
testing data evaluated with clean labels, which also demon-
strates that the models will fast overfit to noisy labels, thus
degrading the search performance. Furthermore, from Fig-
ure la, we can see that there exists diversity in the per-
formance of different modalities since representations from
different modalities may exist in entirely different spaces
with heterogeneity, making learning from noisy data more
difficult. Lastly, wrongly labeled data can confuse the dis-
criminative connections across distinct modalities, resulting
in challenges mitigating the heterogeneous gap. Therefore,

7551



— T2I_LmAP

12T_mAP
0.575- 0.64 -

0.600 -

0.550 -
o
< 0525-
€
0.500 -
0.475-
0.450 -

0.425-
o
Epochs

(a) Train results with noisy labels

50 100 150 200 250 300 o 50 100
Epochs

(b) Test results

— T2I_mAP

12T_mAP 0.65- /\ e

— T_T2I_mAP
a T_I2T_mAP
< 0.55- Tt
€ = F_T2I_mAP
— F_I2T_mAP
0.50

150 200 250 300 0 50 100 150 200 250 300

Epochs

(c) Train results with clean labels

Figure 1. We train a basic cross-modal hashing model with binary cross-entropy loss on MIRFlickr-25k dataset with 0.6 asymmetric noise.
The mean average precision (mAP) values with different epochs are reported in the figures: (a) mAP values based on noisy labels for the
training dataset; (b) mAP values for the testing dataset; (c) mAP values based on clean labels for the training dataset, where “T_T2I_mAP”
and “T_I2T_mAP” are for the clean training dataset, and “F_T2I_mAP” and “F_I2T_mAP” are for the corrupted training dataset. For each
line, we run five times and report the mean values. The error bar for STD in each sub-figure is highlighted as a shade.

it is more challenging and complex to simultaneously con-
sider both noisy data and inter-modal discrepancy.

To address the above problems, we first provide a more
in-depth analysis of the impact of noisy labels on deep
cross-modal search models. Then we propose our method
to combat the effect of noisy labels. Specifically, accord-
ing to the ground-truth labels, we split the noisy training
dataset into clean dataset that are accurately labeled and cor-
rupted dataset that are wrongly labeled. Then, we show the
mAP values for these two datasets based on correct labels
with different training epochs, respectively. The results are
shown in Figure 1c. As been revealed by previous studies on
image classifications, there exists a memorization effect for
deep neural networks (DNNs): DNNs tend first to memo-
rize and fit majority (clean) patterns and then overfit minor-
ity (noisy) patterns. From Figure 1b and Figure 1lc, we can
also obtain the following critical findings for cross-modal
search tasks: (1) the performance evaluated with correct la-
bels for both clean cross-modal training data and corrupted
cross-modal training data will first increase and then de-
crease, which show that, during the early learning stage, the
cross-modal search model can fit clean data and also gener-
alize well to corrupted data; (2) the performance of test data
first increase and then decrease, suggesting that the learning
from clean data can dominate the early learning stage and
then be overwhelmed by the overfitting to noisy labels.

Based on the above analysis, we propose a robust
cross-modal hashing framework called Cross-Modal Mu-
tual Quantization (CMMQ) to combat the impact of noisy
labels and narrow the heterogeneous gap simultaneously.
Firstly, to correlate different modalities, we design to gener-
ate proxy codes for each class based on the Hadamard ma-
trix [34] and adopt a proxy-based contrastive (PC) loss to
push examples from different modalities to the correspond-
ing shared proxy codes. Secondly, to excavate the discrim-

inative information from noisy labels, we exploit the mem-
orization effect of deep cross-modal models and preferen-
tially select examples with small PC losses to train the net-
work confidently. Thirdly, different models are unlikely to
agree on noisy examples. Hence we adopt a mutual quan-
tization loss to maximize the agreement of networks from
different modalities, which can further improve the effec-
tiveness of sample selection. The overall learning frame-
work is illustrated in Figure 2.

Before delving into details, we clearly emphasize our
contributions as follows.

* We propose a proxy-based contrastive (PC) loss, which
can push examples from different modalities to their
corresponding shared proxy codes and narrow the het-
erogeneous gap effectively.

* By preferentially selecting examples with small losses,
our method can effectively exploit the memorization
effect of deep cross-modal networks and combat the
impact of noisy labels.

* A mutual quantization loss is proposed to maximize
the agreement of models from different modalities,
thus can improve the quality of the predicted codes.

* Experiments on three cross-modal benchmark datasets
clearly demonstrate that the method can outperform
many state-of-the-art approaches in various settings.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review some closely related works. In
Section 3, we propose our cross-modal mutual quantization
paradigm. Section 4 shows the experimental results. Fi-
nally, concluding remarks are provided in Section 5.
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2. Related Work
2.1. Deep Cross-Modal Hamming Search

Different from the traditional “learn to hash” for Cross-
Modal Hamming Search (CMHS) [25,35]. Deep CMHS [4,
, 10,20, 42,45, 46] utilizes deep networks to transform
multi-modal inputs into binary codes in Hamming space.
Due to the high model capacity and the joint processing
of feature extraction and binary quantization, deep CMHS
usually achieves better search performance. To utilize the
semantic information in supervisory labels, some super-
vised deep CMHS methods are proposed to learn a common
discriminative Hamming space for multi-modal data. These
methods are usually learned with classification-based losses
(e.g., cross-entropy loss) [4 1] or distance-based losses (e.g.,
pair-wise or triplet losses) [9, 20]. To alleviate the de-
mand of large, correctly labeled data, some semi-supervised
learning methods [48,52,54,55] are proposed to exploit both
of labeled and unlabeled data. There is also one method
NrDCMH [36] tries to address the problem by learning with
noisy label data. Specifically, NrDCMH first detects the
noisy training examples based on the margin between the
feature similarity and the label similarity and then reweights
data pairs based on the similarity margins. However, this
work can only handle the scenario, where only the seman-
tic labels that examples do not belong to can be flipped. In
real-world applications, this assumption may be too strong.
Moreover, it is much harder to address the problems that all
the data labels can be corrupted and flipped. While this is
rarely touched in previous works.

2.2. Noisy Label Learning

Learning with noisy data has been well studied [2, 17,23,

,37,47]. Existing methods for learning with noisy labels
can be mainly categorized into model-based and model-free
methods. The first type models the relationship between
clean labels and noisy labels by estimating the noise transi-
tion matrix that denotes the probabilities of clean labels flip-
ping into noisy labels [30,39]. With a perfectly estimated
noisy transition matrix [30], these methods can guarantee
the classifier learned from the noisy data to be consistent
with the optimal classifier (i.e., the minimizer of the clean
risk) [27]. However, current methods are usually fragile
to estimate the noise transition matrix for heavy noisy data
and are also hard to handle a large number of classes [15].
The second strand usually employs heuristics to reduce the
side-effect of noisy labels. For example, many state-of-
the-art approaches in this category are specifically designed
to, e.g., select reliable examples [15, 50], reweight exam-
ples [19,31], correct labels [21, 28], employ side informa-
tion [33], and (implicitly) add regularization [14]. Although
the differences between the learned classifiers from those
methods and the optimal classifiers for clean data are not
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Figure 2. Framework of the proposed CMMQ.

guaranteed to vanish, those methods are reported to work
empirically well. However, all existing noisy labels meth-
ods are specifically designed for unimodal learning with
continuous features, and it is a challenge to extend them
to multi-modal learning with binary representations.

3. The Proposed Approach
3.1. Preliminary

For cross-modal search with m modalities, we denote a
multi-modal dataset with N examples as D = { M},
where M; = {a}, yi}1L, is the i-th modality, = € &; is
the j-th example from the i-th modality, and y; is the cor-
responding label. In real-world applications, the clean label
yj- may be randomly corrupted to noisy label 3}; before be-
ing observed. Therefore we assume that, during training,
we can only access to a noisy multi-modal training dataset
Dy = {M;}1, with M; = {xi, 7}, While, to ac-
curately evaluate the performance of the proposed method,
we assume that there exists a clean test dataset D;,.

Definition 1 (Robust Cross-Modal Hamming Search). To
achieve effective cross-modal search, multi-modal inputs
are usually transformed into a common Hamming space B
via different hash functions {h; : X; — B}. Here, h; is the
hash function for the i-th modality, which can be instanti-
ated with a DNN model parameterized with ©;. Then, given
an input data zcé-, we can obtain the corresponding binary
codes with

b, = hi(x},0;). (1)

For robust cross-modal Hamming search, we want to learn
a family of hash functions {h;,i = 1, ..., m} with the noisy
multi-modal training dataset f)t,«, so that the hash codes
obtained from Eq. (1) can perform well on the clean test
dataset Dy.

In the following, we first propose a proxy-based con-
trastive learning method to maximize the correlation be-
tween different modalities. Then, based on this framework,
we elaborate on the strategy to select confident examples
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and also the cross-modal mutual regularization to counter-
act the impact of noisy labels.

3.2. Proxy-based Contrastive Quantization

To enable effective cross-modal search, inspired by the
proxy learning techniques [29] and center representation
learning approaches [11], we first generate a set of shared
proxy codes O = {o1,...,0n}, where o; € {0,1}X
is the proxy code with length K for the i-th example.
Then, we maximize the similarities between the generated
hash codes from different modalities and the corresponding
shared proxy codes to minimize the cross-modal semantic
gap. Specifically, for an example a7, its probability belong-
ing to the j-th proxy codes can be estlmated by

P(oj|z}) = §(S(b%, 05)), )

where S (b;-, 0;) measures the similarity between the exam-
ple b’ and the proxy code o;. Since both b} and o; are
binary vectors, we set S(-,-) as the negative Binary Cross
Entropy (BCE): S(b 0j) = —% > ke (0jklog bzk +
(1 — 0j)log b; x)-  While §(-) is a function that can
transform S (bz 0;) into probabilities, here we simply set
d(x) = exp(—pLz). Then, we can formulate the Proxy-
based Contrastive (PC) Loss as

m

= 33 fostots

j=11:i=1

0;))) +aR(®))], (3)

where R(bé-) is a regularization term to reduce the quanti-
zation error of the learned binary codes, and « is a hyper-
parameter to control the two parts. Following [20], we can
set R(b) = Y1 (] — 1).

From Eq. (3), we can see that by minimizing the PC
loss, the similarity between examples and their correspond-
ing proxy codes will be maximized. As introduced in the
following, the proxy codes are constructed based on data
labels. Therefore, hash codes of examples in the same
classes from different modalities will share common proxy
codes, and minimizing Eq. (3) can explicitly improve intra-
modal discriminability and enhance cross-modal correla-
tion simultaneously.

Proxy Codes Generation. The proxy code serves as a
shared optimization target for binary codes from different
modalities. Here, we exploit the Hadamard matrix to con-
struct it. Specifically, we first build a K x K Hadamard
matrix with Sylvester’s construction [34] as

Hyn,
Hyn,

Hyn

Hy = —Hyu

= Hy® Hyn 1, (4)

where ® indicates the Hadamard product, and K = 2".
The two initial Hadamard matrix are H; = [1] and Hy =

E: _11} The Hadamard matrix has the following two
nice properties: (1) it is a binary matrix with elements being
either —1 or +1; (2) the rows of a Hadamard matrix are mu-
tually orthogonal, which means that the Hamming distance
between any two row vectors equals to K /2. Note that we
want to assign different proxy codes for different categories,
therefore, if ¢ < K, we directly choose each row to be a
proxy code. While if K < C' < 2K, we use a combination
of two Hadamard matrices Hox = [Hy, —Hyg]' to con-
struct the proxy codes. For single-label data, we assign one
proxy code for each category. While for multi-label data,
we first assign one proxy code for each class and then de-
cide the proxy code for multi-label data by majority voting.

3.3. Confident Example Selection

Optimizing with the PC loss in Eq. (3) can mitigate
the semantic gap between different modalities. However,
as Figure 1b makes clear, when trained with noisy data,
the model will finally overfit noisy labels resulting in sub-
optimal performance. Also, from Figure Ic, we can ob-
serve that the learning from clean data will dominate the
optimization at the early learning phase. This is consistent
with [26], which reveals that, for the cross-entropy loss, its
gradient is well correlated with the correct direction at the
early learning stage. In other words, the loss of clean data
will be minimized during the early learning phase.

With the above understanding, we intuitively consider
examples with small losses as confident examples (i.e., ex-
amples with high probabilities to be clean) and apply the
“small-loss” criterion to select confident examples. To be
specific, we conduct the small-loss selection as

D,= argmin  L.(D,), (5)
D},:| D}, | > R(t)| Dy |

where D,, indicates the mini-batch data, R(t) controls the
percentage of selected small-loss examples out of the mini-
batch, and £, is the adopted overall loss function. As
demonstrated in Figure 1a, deep networks can learn clean
and easy patterns in the initial epochs even with the exis-
tence of noisy labels. So they can filter out noisy examples
using the loss values at the beginning of training. Yet, the
problem is that when the number of epochs becomes large,
the model will eventually overfit noisy labels. To rectify
this problem, we want to keep more examples in the mini-
batch at the start, i.e., R(¢) is large. Then, we gradually
increase the drop rate, i.e., R(t) becomes smaller, so that
we can keep clean examples and drop the noisy ones before
our model memorize them. The detailed setting of R(¢) can
be found in Section 4.

Cross-Modal Mutual Quantization. To select small-
loss examples with Eq. (5), we consider the loss in differ-
ent modalities independently and use the sum of the losses.
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While, from the view of agreement maximization princi-
ples [3,32], different models would agree on labels of most
clean examples and are unlikely to agree on corrupted la-
bels. Based on this observation, we propose a mutual quan-
tization loss to maximize the agreement between different
modalities. Specifically, we adopt the Jensen-Shannon (JS)
Divergence. To simplify the implementation, we use the
symmetric Kullback-Leibler (KL) Divergence to surrogate
this term

Lw= Y Dxu(Bi|B;)+Dki(Bj|Bi), (6)
1,j=1,i#j

where the KL Divergence Dy (B;|B;) measures the
multi-modal agreement for hash codes B; and B;

N K ) b1 i
Dir(BilBj) =Y > bl log(—). (7)

n=1 k=1

By matching the predictions from different modalities,
the mutual quantization loss in Eq. (6) could help our al-
gorithm to select examples with clean labels since an ex-
ample with small mutual quantization loss means that net-
works from different modalities reach an agreement on its
predictions. Furthermore, the regularization from networks
in other modalities can also help the model to find a much
wider minimum, which is expected to improve the general-
ization performance [53].

3.4. Optimization

Combining the proxy-based contrastive loss in Eq. (3)
and the mutual quantization loss in Eq. (6) together, we can
set the overall loss function as

l:a == [_‘,p + AAC7n~ (8)

After selecting small-loss examples as in Eq. (5), we can
calculate the loss on these examples for further optimiza-
tion:

1 )
L= > Lalxh). )

D -
The learning procedure is summarized in Algorithm 1.

4. Experiments
4.1. Datasets

We adopt three cross-modal benchmark datasets to eval-
uate the proposed method. Table | summarizes the main
statistics of these three datasets, and the detailed informa-
tion is provided below.

MIRFlickr-25K [18] contains 25,000 images col-
lected from the Flickr website. Each image is assigned
with a related text description that is represented as a

Algorithm 1: Cross-Modal Mutual Quantization

Input: Noisy training image set Dy,., Networks
hi,i =1, ..., m, code length K, learning rate 7,
epoch T, 4., and iteration I, .

Learning the proxy codes with Eq. (4);

Assign the proxy code o; for each instance with
majority voting;

for epocht = 11to T}, do

Fetch mini-batch D,, from D, ;
b; = hL(m;,@L),Vm; € D,;
Calculate the loss L;
Obtain small-loss sets D,, by Eq. (5) from D,, ;
Obtain loss £ by Eq. (9) on D,,;
Update the network with backpropagation;
end
Output: Network parameters ©;,i = 1,...,m.

Table 1. Statistics of three datasets used in our experiments.

Dataset ‘ Train Test  Database
MIRFlickr-25k | 10,000 2,000 18,015
NUS-WIDE 10,500 2,100 178,321
MS-COCO 10,000 5,000 117,218

1386-demensional BoW vector. Following the previous
method [20], totally 20,015 image-text pairs with 24 most
frequent labels are used in our experiment.

NUS-WIDE [8] is a public web image dataset contain-
ing 269,648 web images with 81 ground-truth annotated
concepts. The associated text is represented as a 1, 000-
dimensional Bow vector. After pruning the data that has no
label or text information, we got 190,421 image-text pairs
with 10 most frequent labels as our benchmark.

MS-COCO [24] has about 120,000 images, and each
image is associated with a text, which is represented as a
2, 000-dimension BoW vector. Each image-text data pair is
annotated with at least one of the 80 categories.

4.2. Experimental Setup

Baselines. = We adopt four popular supervised deep
cross-modal hashing methods, including DCMH [20],
PRDH [44], SSAH [22], and CMHH [4] as the base-
lines. DCMH and PRDH are both based on pairwise la-
bels. SSAH employs a network to learn representations
from labels. CMHH considers to up-weight difficult pairs
to improve the performance. The code for DCMH, PRDH,
SSAH are kindly provided by the authors and we implement
CMHH by ourselves.

Implementation. For a fair comparison, we use the
ResNet18 [16] as the image modality backbone and a three-
layer multi-layer perceptron (MLP) as the text modality
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Table 2. mAP results of five methods on three cross-modal datasets, with best results shown in boldface.

Task Method MIRFlickr-25K NUS-WIDE MS-COCO
s et 32bits 64 bits 128 bits | 32 bits 64 bits 128 bits | 32 bits 64 bits 128 bits

DCMH 0.660 0.668  0.635 | 0582 0583 0576 | 0533 0542  0.505

PRDH 0.660 0.672 0.663 0.586 0.578 0.564 0.530 0.534 0.554

2T SSAH 0.658 0.665 0.631 0.575 0.577 0.581 0.536 0.532 0.545

CMHH 0.652 0.637 0.648 0.576 0.573 0.574 0.539 0.543 0.541

CMMQ(Qurs) | 0.737 0.742 0.757 0.601 0.606 0.607 0.542 0.556 0.565

DCMH 0.707 0.709 0.693 0.582 0.585 0.577 0.524 0.523 0.534

PRDH 0.671 0.696 0.692 0.577 0.579 0.592 0.529 0.534 0.522

T2I SSAH 0.662 0.653 0.678 0.566 0.570 0.576 0.502 0.529 0.525

CMHH 0.704 0.683 0.658 0.571 0.577 0.585 0.527 0.536 0.514

CMMQ(Ours) | 0.723  0.725 0.722 0.600  0.604 0.603 0.531  0.549 0.541
12% 12% 12% 12%  12% metric is based on the hash lookup protocol. Specifically,
, N . . . . mAP is one of the most widely-used criteria for evaluat-
e Wbs | s | uzms | 0ok ing retrieval accuracy since it can simultaneously evaluate
12%  12% 12% 12% 12% retrieval precision and ranking of returned results. Given
o o o o o o a query and a list of R ranked retrieval results, the aver-
05 | 828 | B2 HD | SR age precision (AP) for this query can be computed. mAP
12%  12%  12%  12% 12% is defined as the average of APs for all queries. For all the
12%  12% 12%  12%  12% three datasets, we set R as 5,000. TopN-precision is de-

Figure 3. The transition matrix of asymmetric noise with 0.6 noise
rate (using 6 classes as an example).

backbone for our method and the four baselines. For the
image modality, we replace the last fully-connected layer
with a new fully-connected layer with K hidden units fol-
lowed by a tanh(-) activation function. We initialize this
new layer randomly and initialize all the preceding layers
with the model pre-trained on ImageNet [12]. The MLP for
text modality is trained from scratch with random initial-
ization. We employ the RMSprop optimizer with the factor
of weight decay as 1075, For all the three datasets, we set
the min-batch size as 128, the learning rate as 1072, and set
a = 0.0001, 8 = 1, A = 0.7. To comprehensively evalu-
ate the robustness of the methods, we set the label noise to
be symmetric [15] and the noise rate to 0.6 in the experi-
ments. The transition matrix between the noisy labels and
ground-truth labels is illustrated in Figure 3.

Evaluation settings. Without loss of generality, all exper-
iments are conducted on bi-modal datasets to evaluate two
cross-modal tasks: using an image query to retrieve the re-
lated text samples (I2T), and using a text query to retrieve
the relevant image points (T2I). Four evaluation metrics are
used to evaluate the search performance, including mean
of average precision (mAP), TopN-precision, recall@k, and
precision-recall curves. The first three metrics are based on
Hamming ranking, which ranks data points based on their
Hamming distances to the query. While the precision-recall

fined as the average ratio of similar instances among the top
N retrieved instances for all queries in terms of Hamming
distance. In the experiments, IV is set to 100. Recall@k
counts the percentage of true neighbors from the top k re-
trieved instances among all the ground-truth. In the experi-
ments, k is set to 100. Subjects are treated as similar if they
share at least one common semantic label, otherwise, they
are considered dissimilar.

Selection setting. Following [| 5], we assume that the noise
rate p is known and set the ratio of small-loss samples R(t)
as: R(t) = 1 — min{7-p, p}, where T}, is set as 10 for all
the datasets. In practice, if the noisy rate p is not known in
advance, it can be inferred using validation sets [27].

4.3. Results and Analysis
4.3.1 Results of Hamming Ranking

We first present mAP values for all methods on the three
datasets using different lengths of hash code (i.e., K) to
provide a global evaluation. Then we select MIRFlickr-25K
dataset and report the topN-precision and recall@k curves
with K = 64 for a comprehensive contrastive study.

The mAP results for all methods on the three datasets
are reported in Table 2. From the results, we can see
that CMMH, which is more advancing in the clean label
setting, cannot outperform DCMH for noisy data. This
may be attributed to that CMMH pays more attention to
hard examples that are more likely to be corrupted data
when training with noisy labels. The results also ver-
ify that simultaneously dealing with cross-modal retrieval
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Figure 4. Precision-recall, topN-precision, and recall @k curves on MIRFlickr-25k with the hash code length of K = 64 for “I2T” task.
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Figure 5. Precision-recall, topN-precision, and recall@k curves on MIRFlickr-25k with the hash code length of K = 64 for “T2I” task.

and noisy labels is a nontrivial task. Moreover, from Ta-
ble 2, we can also obtain that CMMQ usually outperforms
other competing methods by large margins. For instance,
compared to CMHH (the state-of-the-art deep cross-modal
hashing method), CMMQ can obtain an absolute increase
of 4.78%/2.7% in average mAP on the three datasets for
the two retrieval tasks, respectively. The results clearly val-
idate the superiority of the CMMQ method over previous
approaches for cross-modal search with noisy labels.

The topN-precision and the recall@k curves for the
“I2T” task with K = 64 achieved by different methods on
MIRFlickr-25K dataset are shown in Figures 4a and 4b, and
the corresponding curves for the “T2I” task are presented in
Figures 5a and 5b. From those figures, we can obtain that
the proposed CMMQ generally achieves higher precisions
and recalls, which is consistent with the mAP evaluation.
For cross-modal nearest neighbor search, users usually fo-
cus on the top returned results. Thus, the relevance of top
returned instances with the query is more important. From
the topN-precision and recall@k curves, one can see that
CMMQ outperforms the other methods by a large margin
when the number of returned instances is small (e.g., < 40),
which further demonstrates that CMMQ can better combat
noisy labels and learn hash codes with high quality.

4.3.2 Results of Hash Lookup

Given a query object, the precision and recall values for
the returned objects within any Hamming radius can be
computed. By investigating these values with every Ham-
ming radius from 0 to K, we can draw the precision-recall
curves. Figures 4c and 5c report the precision-recall results
of different methods on MIRFlickr-25k with K = 64 for
“I2T” and “T2I” tasks, respectively. From these figures,
one can again observe that CMMQ consistently achieves
the best performance. From Table 2, Figure 4, and Fig-
ure 5, one can see that CMMQ generally obtains superior
performance in terms of both Hamming ranking metrics
(i.e., mAP, topN-precision, and recall@k) and hash lookup
metric (i.e., precision-recall), demonstrating the utility of
our method in learning binary codes for cross-modal search
with noisy labels.

4.3.3 The Effect of Sample Selection

To analyze the effect of the small-loss sample selection for
cross-modal search, we split the training data into clean
data and corrupted data as in Section 1. Then we illustrate
the histogram of the loss values of MIRFlickr-25k with 64
hash code length in Figure 6. From the results we can ob-
serve that most of the clean data have relatively small losses,
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while the losses for corrupted data are generally large. This
figure clearly demonstrates that, by selecting examples with
small losses, we can effectively construct a much cleaner
subset, thus alleviating the impact of noisy labels.

4.4. Parameter Sensitivity Analysis

In this subsection, we study the parameter sensitivity for
A. We train our model on MIRFlickr-25k dataset with 32
hash code length and vary the value of A from O to 1. The
results are presented in Figure 7. We can see that the mAP
values for both of the “I2T” and “T2I” tasks first increase
and then stay at high values when the A is larger than 0.6.
The results indicate that, in practice, we can select A from
0.6 to 0.9. In this paper, we set A as 0.7.

By setting A as 0, our model degenerates to the model
without the mutual quantization loss. Therefore, by com-
paring the results with A = 0 and other points in Figure 7,
we can also verify the role of the proposed mutual quan-
tization loss in our model. Specifically, we can observe
that the search performance for both of the two tasks can
be clearly improved by adding the mutual quantization loss,
which demonstrates the effectiveness of the proposed mu-
tual quantization loss. Besides, the results also verify that,
by maximizing the agreement between outputs from differ-
ent modalities, the model is likely to predict correct labels,
thus improving the final search performance.

4.5. Robust Analysis

To visually investigate the robustness improvement,
we plot mAP scores versus epochs on the test data for
MIRFlickr-25k with the binary cross-entropy (BCE) and
the proposed method in Figure 8, where “T2I_.mAP*” and
“I2T_mAP*” are for the BCE loss, and “T2I_.mAP” and
“I2T_mAP” are for our method. From the results, we can
see that, although the BCE loss can improve the test per-
formance at the early learning stage, noisy labels already
have a severe impact on the cross-modal search model. By
selecting confident examples with small losses, our method
can combat noisy labels and greatly improve the model per-
formance even at the early learning stage. Moreover, our

for the two search tasks with different \.

tween the BCE loss and our method.

method can continue to improve the search results when the
performance of the model with BCE loss starts to decrease.
Overall, compared with the original BCE loss, our proposed
method can achieve much superior results, which indicates
that our method can alleviate the interference of noisy labels
and embrace more robust performance.

5. Conclusions

This work presents a cross-modal mutual quantization
(CMMQ) method to simultaneously narrow the modality
gap and combat noisy labels. To mitigate the discrepancies
between different modalities, we first devise a proxy-based
contrastive (PC) loss to pull the generated hash represen-
tations from different modalities close to the shared proxy
codes. Moreover, to ameliorate the impact of noisy labels,
we propose selecting small-loss examples that are consid-
ered as more confident examples and also design a mutual
quantization loss to further improve the effectiveness of the
sample selection. Finally, by optimizing with the selected
cleaner subset, our method can significantly alleviate the
impact of noisy labels. Experiments on three benchmark
cross-modal datasets demonstrate that the proposed CMMQ
outperforms several state-of-the-arts.

Broader Impacts. The proposed method predicts content
based on learned statistics of selected training data points
and as such will reflect biases in those data.
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