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Abstract

Transfer learning, where the goal is to transfer the well-
trained deep learning models from a primary source task
to a new task, is a crucial learning scheme for on-device
machine learning, due to the fact that loT/edge devices col-
lect and then process massive data in our daily life. How-
ever, due to the tiny memory constraint in IoT/edge devices,
such on-device learning requires ultra-small training mem-
ory footprint, bringing new challenges for memory-efficient
learning. Many existing works solve this problem by re-
ducing the number of trainable parameters. However, this
doesn’t directly translate to memory saving since the ma-
jor bottleneck is the activations, not parameters. To de-
velop memory-efficient on-device transfer learning, in this
work, we are the first to approach the concept of transfer
learning from a new perspective of intermediate feature re-
programming of a pre-trained model (i.e., backbone). To
perform this lightweight and memory-efficient reprogram-
ming, we propose to train a tiny Reprogramming Network
(Rep-Net) directly from the new task input data, while freez-
ing the backbone model. The proposed Rep-Net model in-
terchanges the features with the backbone model using an
activation connector at regular intervals to mutually bene-
fit both the backbone model and Rep-Net model features.
Through extensive experiments, we validate each design
specs of the proposed Rep-Net model in achieving highly
memory-efficient on-device reprogramming. Qur experi-
ments establish the superior performance (i.e., low training
memory and high accuracy) of Rep-Net compared to SOTA
on-device transfer learning schemes across multiple bench-
marks. Code is available at https.//github.com/ASU-ESIC-
FAN-Lab/RepNet.

1. Introduction

Nowadays, the utilization of IoT devices is significantly
increased (e.g., 250 billion microcontrollers in the world
today'), which collect and then process massive new data

Thttps://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-
opportunity/
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Figure 1. The workflow of adversarial reprogramming (a) and the
Rep-Net (b). Adversarial reprogramming reprograms the input by
introducing an additive learnable parameter. Differently, Rep-Net
takes the input data directly and learns to reprogram the interme-
diate activation features.

crossing various domains/tasks in our daily life. This fact
arouses researchers great interest in on-device Al that ex-
pect not only inference but also the training or transfer-
ring of pre-trained models to new data on the device. Such
learning scheme is strongly associated with the concept of
transfer learning [5], where the goal is to transfer the well-
trained deep learning models from a primary source task to
a new task, leading to a recently rising research direction
about on-device transfer learning. Compared with conven-
tional scheme that learns the deep learning models on could
and then performs inference on device, on-device trans-
fer learning eliminates the communication issue between
cloud and edge devices, as well as data-privacy concern.
Although the benefits of learning on-device are clear, the
memory-hungry training process is a extremely challenge
for memory-constrained IoT/edge devices. Recently, the
studies on memory-efficient learning [3, 6, 37] reveal that
the bottleneck of training memory consumption is the stor-
age of intermediate activations, not parameters. Thus, re-
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ducing the training memory footprint, especially the activa-
tion storage of the pre-trained model, is the crucial issue to
enable on-device transfer learning. However, the existing
transfer learning methods either suffer from huge training
memory consumption, or having limited transfer capacity.

Usually, it is a common practice to fine-tune the models
that pre-trained on large scale dataset, like ImageNet [8],
to perform transfer learning [5,7, 12, 15,20,29,38]. Com-
pared with training from scratch, fine-tuning a pre-trained
convolutional neural network on a target dataset can signif-
icantly improve performance. Generally, there are mainly
two ways of fine-tuning: 1) Treating the pre-trained model
as a fixed feature extractor, then only fine-tuning the last
classification layer [5,38]. This method is memory efficient
for training, as it eliminates the intermediate activation stor-
age of the pre-trained model. However, the low transfer
capacity of this has method has been widely demonstrated

on previous works [7, 20, 29]. 2) Fine-tuning the full or
partial pre-trained model. This method can achieve better
accuracy [7, 15, 20, 20, 29]. However, it updates the pre-

trained model, causing a vast activation memory footprint.
Thus it is not friendly for on-device learning. In addition,
mask-based methods [28, 36] perform transfer learning by
learning a binary mask w.r.t all the wights of the pre-trained
model. But it only reduces the trainable parameter size, not
the activation memory, still resulting in high memory foot-
print.

Alternatively, adversarial input reprogramming [10]
performs transfer learning by reprogramming input. As
shown in Fig. 1 (a), input reprogramming is basically an
additive operation to change the existing input features us-
ing a trainable element-wise bias for each input pixels (re-
fer to Eq. (3)). Unlike fine-tuning methods that need to
update the model parameters, adversarial reprogramming
keeps the model architecture unchanged. Instead, it intro-
duces an additive learnable adversarial parameter for input
data and designs an output label mapping on the target-
domain data samples to perform transferring as shown in
Fig. 1(a). Such a method is memory efficient during train-
ing as it only learns additive parameters to reprogram the
input that does not require any updates to the pre-trained
model, as well eliminating the memory-dominating activa-
tion storage. However, it comes with several shortcomings:
1) the transfer capacity of only adding a learnable param-
eter to input is limited; 2) such design only works when
the input size of target data is much smaller than the source
data (e.g., ImageNet (224x224) to MNIST (28x28)), es-
sentially constraining the generality of the method on more
complex dataset; 3) the additional parameter size and train-
ing memory cost are still high. For example, considering
the ImageNet pre-trained model, it needs 224 x 224 x 3 ~
150K additional trainable parameters overhead. Despite
these shortcomings, the reprogramming concept is simple

and has the potential to solve the existing on-device learn-
ing challenges.

To tackle the challenges and shortcomings of prior
works, we propose Reprogramming Network (Rep-Net),
which, for the first time, treats the on-device transfer learn-
ing problem from a new perspective of intermediate fea-
ture reprogramming. As shown in Fig. 1(b), Rep-Net serves
as a lightweight side-network that is executed with the pre-
trained backbone model in parallel. The principle working
mechanism of this design is to reprogram the fixed back-
bone model from the input data via proposed activation con-
nector that enables feature exchange between the backbone
and Rep-Net at regular intervals. Such feature exchange
uses an additive operation that not only helps both the back-
bone model and Rep-Net model to update and improve their
features, but also inherits the property of memory-efficiency
from adversarial input reprogramming. To perform on-
device transfer learning, we only train Rep-Net model and a
task-specific last classification layer for the new task, while
freezing the backbone model. In summary, our technical
contributions include:

e In this work, for the first time, we approach the
on-device transfer learning from a new perspective
of intermediate feature reprogramming problem for
a given pre-trained backbone model. To develop
this lightweight reprogramming scheme, we propose
a novel memory-efficient Reprogramming Network
(Rep-Net) that is trained directly from the new task
input data to reprogram the intermediate features of
a backbone model. It is a small convolution network
with little memory overhead. In fact, our proposed
Rep-Net improves memory efficiency in comparison to
adversarial input reprogramming, but providing much
improved transfer capacity.

* We design dedicated activation connectors to enable
feature exchange between the backbone and the Rep-
Net models at regular intervals. Both models bene-
fit mutually from the feature exchange operation. We
perform an extensive analysis of the design specs of the
connector, investigate and answer the following design
space challenges: i.e., How to exchange the features
considering the limited memory budget during train-
ing? Why exchanging both (i.e., backbone and Rep-
Net model) features? How many activation connec-
tors are necessary? How many layers are necessary in
Rep-Net?.

* We conduct extensive experiments to corroborate the
superiority of Rep-Net over current state-of-the-art
(SOTA) transfer learning approaches across multiple
benchmarks.

12278



2. Related Works
2.1. Memory efficient learning

In recent layers, several works have been proposed to re-
duce the training memory consumption that mainly can be
categorized as activation re-computation [0, 14] and com-
pression [ 1, 23]. For the activation re-computation, the
idea is to eliminate partial or full activation storage by re-
computing when it is needed during backward pass. As a
consequence, it involves additional computation cost. For
the activation compression method, [23] proposes to reduce
the activation by pruning. In addition, [! 1] compress the
activation by adapting image compression algorithms and
then de-compress when use it during training. Note that, our
method is orthogonal to the activation compression method.

More recently, [2, 37] further analyze the memory uti-
lization and highlight that the training memory is dominated
by activations, not parameter size. To understand the train-
ing memory consumption, let’s assume a linear layer whose
forward process be modeled as: a;+1 = a;W + b, then its
back-propagation process is

oL oL oL  oC
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Where a is activation feature, W and b are learnable weights
and bias respectively. Eq. (1) reveals that the memory-
hungry activation needs to be stored for backward propaga-
tion during training if it has the multiplicative relationship
with learned parameter (i.e.,weight), while the additive rela-
tionship (e.g., bias) is activation free [37]. In this work, the
Rep-Net also has a completely additive relationship with the
fixed pre-trained model, resulting in training memory effi-
ciency.

2.2. Transfer Learning

Transfer learning via fine-tuning Currently, with the
success of the deep neural network, fine-tuning a network
that is pre-trained on large scale datasets such as Ima-
geNet [8] to a new dataset is the standard method for knowl-
edge transfer [5,7,12,13,15,20,29,38]. Generally, there are
mainly two ways of fine-tuning: 1) Treating the pre-trained
model as a fixed feature extractor, then only fine-tuning the
last classification layer [5,38]. This method is memory effi-
cient for training, as it eliminates the intermediate activation
storage of the pre-trained model. However, such method
suffer from low transfer capacity of this has method has
been widely demonstrated on previous works [20]; 2) fine-
tuning the full or partial pre-trained model This method can
achieve better accuracy [7, 15,20,20,29]. Specifically, [13]
fine-tunes the whole model on domain-specific data to boost
the accuracy on object detection. [7] proposes to only up-
date batchnorm layer. Further, [15] automatically decides
the optimal set of layers to fine-tune in a pretrained model

on a new task. However, all of the methods updates the pre-
trained model, causing a vast activation memory footprint.
Thus it is not friendly for on device learning.

Transfer learning via input reprogramming The con-
cept of reprogramming is first introduced by adversarial in-
put reprogramming [10], where additive features to the in-
put are trained to transfer a model’s knowledge to a new
domain of dataset. The idea is inspired by adversarial exam-
ple attack [26] which is the first to demonstrate how small
(Iess than 6 %) additive perturbation to the input can com-
pletely shift the performance of the target model into new
behaviour. Let’s consider an input batch to a neural net-
work be x € R¥*F*¢ which is sampled from the dataset
with an input dimension k x k x ¢. Now, we want to adopt a
pre-trained network with a forward function hy to this new
domain data « without changing the inference function h(.)
or parameter 6. One possible solution would be to introduce
a new set of learn-able additive parameters to the input p:

T=x+p 2)

The objective of reprogramming is to minimize the loss
function Lp for the correct label y by updating the input
parameter p:

min Ex (La(ho(@),v)) 3
{p}

The above process can be repeated for the whole dataset
(X,Y) of the new domain by training a single bias p. This
concept of input reprogramming is simple which does not
require any modification to the backbone model architecture
or parameters. Based on the same idea, [ | 9] proposes to im-
prove the transfer capacity by resizing input reprogramming
and re-train the last classification layer. In addition, [33] ex-
tends to black-box transfer learning which nothing but only
the input-output model responses are observable. How-
ever, these input reprogramming methods come with several
shortcomings. First, the learning capability of only adding
input bias is minimal even after adding non-linearity (e.g.,
Hard Tanh) before addition [10]. Second, it will add addi-
tional k£ x k X c learn-able parameters which is quite large
considering large-scale dataset (e.g., on Imagenet models
224 x 224 x 3 ~ 150k parameters). Third, the performance
of input reprogramming is inferior and fails on simple tasks
like MNIST [9]. To overcome these challenges, we propose
to train a lightweight side network from new task input data
and reprogram the intermediate activation features.

3. Proposed Method
3.1. Overview

In this section, we propose a lightweight Reprogram-
ming Network (Rep-Net) which learns to reprogram the
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Figure 2. The overview of Reprogramming Network (Rep-Net). The proposed Rep-Net model learns directly from the input. The input image
is directly fed into both Rep-Net and backbone model parallelly. In addition, Rep-Net consists of a small number of layers positioned at
specific locations where the backbone model observes a feature resolution reduction.

backbone model activation features directly from the input
data ( Fig. 1). The principle working mechanism of this re-
programming network is to inter-exchange the features with
the backbone model at regular intervals. The feature ex-
change operation helps both the backbone model and Rep-
Net improve their respective features by updating them us-
ing an additive operation with the exchanged features. Dur-
ing reprogramming (i.e., learning new tasks), we only train
Rep-Net and a task-specific last classification layer for the
new task. Our proposed Rep-Net has the following charac-
teristics, making it an ideal candidate for on-device learn-
ing. 1) During training, since the backbone model is frozen,
the features from the Rep-Net models helps adapt the back-
bone model features on the new task. ii) Similarly, since
the backbone is already pre-trained on a primary domain,
features transferred from this model to Rep-Net helps its
learning process on the new task. iii) We optimize the spe-
cific positioning of the feature exchange operation using
observations from prior pruning works [24, 35]. iv) Such
an optimization ensures Rep-Net model requires only a few
blocks/layers to learn the new task, which makes Rep-Net a
lightweight network with almost negligible memory over-
head. v) Finally, we ensure the feature exchange opera-
tions follow an additive rule to achieve memory-efficient
on-device learning. As already discussed in Sec. 2.1, due
to the additive nature of the learn-able parameters, the in-
termediate activations are not needed to be stored in mem-
ory during back-propagation. We present the Rep-Net de-
sign details in the following section and validate each design
specs with a relevant ablation study.

3.2. Reprogramming Network (Rep-Net)

We design a novel reprogramming network (Rep-Net)
which will be trained directly from the input data for learn-
ing new task. The overall framework of Rep-Net architec-
ture is presented in Fig. 2. In this section, we introduce the
important design specs of the proposed Rep-Net architec-
ture and reprogramming procedure.

Architecture Overview. In our framework (Fig. 2), we
feed the input data to both the backbone and Rep-Net mod-
els in parallel. The working principle of Rep-Net is to in-
terchange its intermediate feature with the backbone model
at regular intervals using an activation connector. In this
way, both models (i.e., backbone & Rep-Net) can mutu-
ally benefit and improve their features. The objective is
to reprogram the intermediate activations of the backbone
model on a new domain of knowledge. As a result, the
backbone model remains fixed (i.e., both weights and ar-
chitecture) as highlighted in grey color in Fig. 2. We only
train the Rep-Net & a shared last classification layer (high-
lighted in orange) on the new task to reprogram the back-
bone model. The proposed Rep-Net is a lightweight neural
network with only a few convolution modules which has
very minor memory overhead (i.e., activation storage, addi-
tional parameters) compared with backbone model. Follow-
ing the lightweight convolution block design in [2, 16, 32],
our convolution module consists of two stacked convolution
layers.

Activation Connector. In our design, the Rep-Net model
exchanges its intermediate activation features with the back-
bone model using an activation connector. Consider a deep
neural network with N layers as the backbone model, and
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our proposed Rep-Net model has @ layers (Q < N). In this
case, Rep-Net will exchange its features with the backbone
model @ times at activation connector. In our design, the
number of activation connectors is equal to the number of
layers in Rep-Net (i.e., Q) (Reason: refer to design intuition
3). If the backbone model sends features x; to the activation
connector at the i*" layer and Rep-Net model sends features
p; to the same connector where (i = 1,2, 3, ..., Q); then the
forward path operation inside the activation connector per-
forms a feature reprogramming as:

T =pi =x; +P; 4

The activation connector then sends the reprogrammed
features @; & p; to the backbone and Rep-Net model re-
spectively. This operation enhances the features quality of
both the backbone and Rep-Net models during training (Ev-
idence: refer to design intuition 2).

Reprogramming Step. To reprogram the backbone model
which has an inference function hy, parameterized by 6, we
omit 6 from our optimization step. Instead, we only train
the Rep-Net model function gg parameterized by § and a
shared last classification layer parameters ««. We represent
the combined function of the backbone and Rep-Net model
as fo,3,. For a given input and target pair (z, y) the repro-
gramming optimization step can be summarized as follow:

min B (£(fo,p0().y)) 5)
{B,cx

where the £ (.) is the cross-entropy loss function which
is minimized by updating parameter set {3, a}. Now that
our design and training steps of Rep-Net is summarized.
Next we introduce the design intuitions for optimizing Rep-
Net model for an efficient on-device learning scheme while
improving performance at the same time.

3.3. Design Intuition

Our proposed Rep-Net architecture has numerous design
choices which could impact the eventual performance and
efficiency of the reprogramming scheme. To validate our
adopted design specs, we discuss three key questions:

1. How to design the activation connector? (Refer to De-
sign Intuition-1)

2. Is it necessary to reprogram both the features (i.e., T;
& p;)? What if we only reprogram either x or p? (Re-
fer to Design Intuition-2)

3. How many activation connector in Rep-Net is suffi-
cient? or How many layers the Rep-Net model should
have? (Refer to Design Intuition-3)

Next, we present three design intuitions with relevant ab-
lation study to validate our design choices by discussing
those three questions.

Design Intuition 1. Typically, the feature exchange oper-
ation of the activation connector mainly has two choices:
multiplication or addition. However, due to the property
of the back-prorogation during training as mentioned in
Sec. 2.1, the complete activation of the pre-trained model
needs to be stored during training if it has the multiplicative
relationship with the learned parameter (i.e., weight, mask),
while the additive relationship (e.g., bias) is activation free.
Thus, we adapt the addition as the reprogramming operation
to exchange features using the activation connector. The ad-
ditive relationship between the features provides significant
gain in training memory efficiency.

Design Intuition 2. Following the Design Intuition 1, an-
other important design parameter for feature exchange op-
eration is highlighted in Fig. 3. Here, we present four al-
ternative designs for the feature exchange operation. First,
Fig. 3 (a) shows no-connection between Rep-Net and back-
bone model as they do not exchange any intermediate fea-
tures. For this case, the Rep-Net model only interacts with
the backbone model just before the last classification layer
using an additive operation. For the down connect case in
Fig. 3 (b), we only modify the backbone model features us-
ing Rep-Net features (i.e., © + p), but keeping the features
from Rep-Net (i.e., p) unchanged. This case highlights the
importance of proposed Rep-Net model features in repro-
gramming the backbone model. For the up connect case in
Fig. 3 (c), we only modify the Rep-Net features, but keep-
ing the intermediate backbone features unchanged. This
case will evaluate the importance of backbone model fea-
tures in training the Rep-Net model on this new task. Fi-
nally, we present the dual connection case in Fig. 3 (d).
Our design intuition is that both models should mutually
benefit by interchanging features between them. To vali-
date this, we present the summary of our ablation study in
Tab. 1. The study shows that across five dataset, our dual
connection outperforms all the other cases. Another impor-
tant observation in Tab. 1 is that up connection outperforms
down connection. The reason is that Rep-Net is a tiny neu-
ral network that requires pre-trained features from the back-
bone model to improve its learning capability. Fig. 4 further
validates that feature exchange operation mutually benefits
both models to adapt to the new task as the model converges
faster using a dual connection.

Design Intuition 3. 'We adopt the following strategy to de-
termine the number of activation connectors and number of
layers in Rep-Net:
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Table 1. The ablation study to validate the four design choices displayed in Fig. 3. ‘Adv Rep + Last’ is the adversarial reprogramming
combining with re-training last classifier. The 6" row shows the results for proposed Rep-Net. The last row (7*") shows the result for
using dual connector at all the convolution layer for the backbone model. We use the ImageNet pre-trained proxylessNAS-Mobile [1] as

the backbone model.

Method ‘ Train. mem ‘ Flowers Cars CUB Pets Aircraft
Adv Rep + Last | 36MB | 911 560 66.1 882 444
No connect (a) 34MB 93.3 51.1 655 88.0 36.9
Down connect (b) 34MB 91.8 734 67.8 89.6 56.3
Up connect (¢) 34MB 95.2 76.8 714 90.7 59.3

Dual connect (d) (proposed Rep-Net)

34MB (1 2-3MB) 96.1 8.8 771 918 77.4

| 960 858 768 912 787

Dual connect - all layers | 37MB

Res-Net P Res-Net Res-Net P Res-Net
module module module module

Main X Main Main X < XD Main
branch —— branch branch *EB—P branch
block block block block

(a) No connect (b) Down connect
P X+p p
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Figure 3. Design choices for feature exchange operation in acti-
vation connector. We summarize the impact of using each choice
in Tab. 1.
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Figure 4. The test accuracy vs learning epochs under four differ-
ence design choices highlighted in Fig. 3 on CUB dataset.

Strategy: The number of activation connectors is deter-
mined by the number of down-sampling (e.g., pooling layer,
convolutional blocks with stride 2) in the pre-trained model.
For each down-sampling in activaiton feature map in the
backbone model, we apply one Rep-Net module. Then, the

Rep-Net module features could be connected with the out-
put activation feature of the down-sampling layer/block of
the backbone model via activation connector.

Reason: Such design strategy is inspired by the recent ob-
servations from model pruning works [24, 35], where they
conclude that down-sampling reduces the resolution in the
activation feature. Hence, to compensate, more channels
need to be added to carry the same amount of information.
In our case, we compensate the activation features resolu-
tion degradation by exchanging and updating features with
Rep-Net model. To validate the design strategies, we com-
pare it with a complex version of Rep-Net model that has a
connector modules for all convolutional blocks. As shown
in Tab. 1, only having connector modules at the down-
sampling layers (6! row) can outperform a Rep-Net model
with all layers connection (7" /1ast row).

Second, since such down-sampling layers are much less
than the total number of layers/blocks in modern model ar-
chitectures, one Rep-Net layer for each downsampling layer
results in improved inference memory and computing effi-
ciency. For example, Rep-Net consists of only 6 modules
on ResNet-50 architecture. Again, as highlighted in Tab. 1,
by using only 6 modules in Rep-Net saves around 3MB of
memory with identical accuracy.

4. Experiments
4.1. Experimental Setup

Datasets and networks. Following the general setting in
previous transfer learning methods [2, 7, 20, 29], we adapt
ImageNet [8] as the dataset for all the pre-trained mod-
els, and then transfer the models to 8 downstream object
classification tasks, including Cars [21], Flowers [30], Air-
craft [27], CUB [34], Pets [31], Food [1], CIFAR10 [22],
and CIFAR100 [22]. We adapt four different model archi-
tectures to demonstrate the effectiveness of the proposed
Rep-Net, including ResNet50 [16], MobileNetv2 [32] and
MobileNetv3 [17] and proxylessNAS-Mobile [4]. Note
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Table 2. Comparison with input reprogramming works. ‘Adv. Rep’ is the original adversarial reprogramming work; ‘Adv Rep + Last’ is
the improved adversarial reprogramming work that further re-train the last classifier.

Method Net ‘ Train. Mem. | MNIST CIFARI10 Flower CUB Aircraft
ResNet50 98MB 94.3 62.8 - - -
Adv. Rep [10] MobileNetV2 53MB 93.1 58.3 - - -
- Rep MobileNetV3 42MB 93.5 594 - - -
ResNet50 99MB - 92.8 91.1 66.9 55.8
Adv. Rep + Last [19] MobileNetV2 54MB - 85.1 91.8 66.8 52.2
MobileNetV3 46MB - 92.0 92.6 62.3 54.2
ResNet50 119MB - 96.4 (1 3.6 %) 96.7 80.3 85.9
Ours MobileNetV?2 51IMB - 95.0 (1 9.9 %) 95.0 76.9 81.6
MobileNetV3 43MB - 95.3(13.3%) 95.1 77.5 78.9

that, Rep-Net consists of 6 modules for all these four mod-
els. The detailed architecture descriptions are relegated to
the Appendix.

Training details. Following the setting in [2], the models
are fine-tuned for 50 epochs using the Adam optimizer [ 18]
with batch size 8 on a single GPU. The initial learning rate is
tuned for each dataset while cosine schedule [25] is adopted
for learning rate decay.

Evaluation Metric. For all the experiments, we report the
transfer accuracy for each dataset. In addition, to measure
the training efficiency, we also report the training memory
consumption, including parameter size and activation mem-
ory storage during training.

4.2. Main Results

Comparison with input reprogramming methods As
shown in Tab. 2, we compare the proposed Rep-Net with
previous adversarial reprogramming works [10, 19] using
ResNet50 [16], MobileNetv2 [32] and MobileNetv3 [17]
models as the backbone pre-trained model. First, because
the adversarial reprogramming method can only work on
the dataset with small image resolution, we compare it
to the CIFAR10 dataset. The results show that Rep-Net
could significantly jump the accuracy by more than ~ 30
%. Furthermore, compared to the improved adversarial re-
programming work that further re-train the final classifier,
our Rep-Net could also achieve 3.6%, 9.9% and 3.3% ac-
curacy improvement on ResNet50, MobileNetv2 and Mo-
bileNetv3, respectively. In addition, proposed Rep-Net out-
performs the accuracy of adversarial reprogramming [19]
across CUB and Aircraft dataset by more than ~ 10 %.
In terms of memory, our Rep-Net requires reduced train-
ing memory overhead for the MobileNet architecture; but a
slightly higher training memory is needed for the ResNet-
50 backbone model.

Comparison with state-of-the-art methods We further
compare our method with the SOTA transfer learning tech-
niques as shown in Tab. 3, specially with the most recent
technique TinyTL [2]. However, we must highlight one cru-
cial distinction with TinyTL. By default, TinyTL [2] uses
the pre-trained weights on the pre-training dataset to ini-
tialize their additional residual modules. In contrast, we
only apply Rep-Net in the transfer learning/reprogramming
phase by training it from scratch with the random initializa-
tion, which gives TinyTL method an unfair advantage. Nev-
ertheless, compared to TinyTL, our proposed Rep-Net can
still achieve better/on-par accuracy on all the seven transfer
dataset. On top of that, our proposed Rep-Net can save ~
3-4 MB training memory compared to TinyTL. For a fair
comparison, we also report TinyTL. Random Initialization
results that show significantly inferior performance com-
pared to Rep-Net.

5. Discussions

5.1. Does Rep-Net transfer better by using better
ImageNet Models?

In [20], one exciting study shows that there is a strong
correlation between the pre-trained ImageNet accuracy and
its corresponding transfer learning domain accuracy. Such
study arouses our interest to see if the proposed Rep-Net
also follows the same phenomenon, which is summarized
in Fig. 5. We find that Rep-Net also has a similar trend.
The order of pre-trained ImageNet model accuracy predicts
fine-tuning performance order on Flowers, CUB, CIFAR10
dataset. In contrast, ImageNet pretraining does not neces-
sarily improve accuracy on Aircraft dataset. The reason
concluded by [20] is that its data distribution is far away
from the ImageNet dataset. Interestingly, our proposed
Rep-Net outperforms TinyTL [3] by the most significant 2
% accuracy increment margin on that Aircraft dataset ( see
Tab. 3).
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Table 3. Comparison with previous State-of-the-art (SOTA) transfer learning methods using different backbone neural networks, where ‘I-
V3’ is Inception-V3; ‘N-A’ is NASNet-A Mobile; ‘M2-1.4" is MobileNetV2-1.4; ‘R-50’ is ResNet-50; ‘PM’ is ProxylessNAS-Mobile. In this
table, we show our improvements in comparison to best existing transfer learning scheme TinyTL [3].

Method Net Train. | Reduce | by oo Cars CUB Food Pets  Aircraft  CIFARI0 CIFAR100
mem Ratio

-V3 [29] 850MB 1.0x 963 913 82.8 887 - 85.5 - -
FLFull R-50 [20] 802MB L1x 975 917 . 878 925 86.6 96.8 84.5
M2-14[20] |  644MB 1.3% 975 918 . 877 910 868 96.1 82.5
N-A [20] 566MB 1.5% 968  88.5 . 855 894 728 96.8 83.9

FT-Last | IV3[29] | 94MB | 9.0x | 845 550 - - - 45.9 - -
TinyTL-Random [3] PM 3IMB | 229 88.0 824 72.9 793 843 736 957 81.4
TinyTL [3] PM 3IMB | 22.9x 955  85.0 77.1 797 918 754 959 81.4
Ours PM 34MB (13) | 25x 96.1 858 77.8 80.5 918 77.4(12%)  95.9 81.9
TinyTL [3] PM@320 65MB 13.0x | 968  88.8 81.0 829 929 823 96.1 81.5
Ours PM®@320 | 6IMB(L4) | 13.9x | 971 890 82.3(11.3%) 833 925 824 96.6 82.3

Table 4. Combining the Rep-Net with learnable binary mask based method for efficient inference. ‘TinyTL-Last’ means only re-training
the last classifier on the TinyTL ImageNet pre-trained model. The inference Flops is reported on Flowers dataset.

Inference ‘ Flowers Cars CUB

Method

Food Pets Aircraft CIFAR10 CIFAR100

Flops \Acc Sparsity Acc  Sparsity Acc  Sparsity

Acc

Sparsity Acc  Sparsity Acc  Sparsity Acc  Sparsity Acc  Sparsity

394.6 90.1
346.8 96.1
280.9 96.3

50.9
85.8
85

73.3
77.8
79.2

TinyTL-Last [2]
Ours
Ours+Bin. Mask

19.3 30.3 19.4

68.7
80.5
83.7

91.3 -
91.8
922

449
77.4
82.5

85.9
95.9
96.2

68.8 -
81.9

33.8 59 21.4 30.3 82.7 31.8

[ ResNet50 [ ProxylessNAS
[l MobileNetv3 [ MobileNetv2

Test accuracy (%)
Test accuracy (%
(e}
Ul

Imagenet CIFAR10

Test accuracy (%)
Test accuracy (%)

Aircraft

Yo}
(2}

(@]
Test accuracy(%) S

Flowers

Figure 5. The accuracy comparison between pre-trained imagenet
and transfer to CIFARI10, CUB, Aircraft and Flowers on four dif-
ferent models.

5.2. Can Rep-Net combine with other transfer
learning methods for efficient inference?

The primary objective of Rep-Net is to enable on-device
learning by reducing the training memory. In this subsec-
tion, we further explore if Rep-Net could combine with
inference-efficient methods. To achieve this, we apply the
learnable binary mask [28, 36] on the fixed main branch
model combining with Rep-Net to reduce the computing
cost for inference. As shown in Tab. 4, ‘Ours+Bin. Mask”
could further boost the accuracy and achieve ~ 25% spar-
sity on average across all the datasets. In summary, our
designed Rep-Net can be incorporated in existing transfer
learning schemes that look to change/train (e.g., mask) the
backbone model as well.

6. Conclusion

In this work, we are the first to consider transfer learning
from a new perspective of feature reprogramming of pre-
trained model. To achieve on-device transfer learning, we
propose Rep-Net, a novel architecture design, which takes
the input data directly and learns to reprogram the inter-
mediate feature of the pre-trained model. Moreover, we
design dedicated activation connectors to perform feature
exchange between the backbone and the Rep-Net models.
Extensive experiments on transfer learning show the effec-
tiveness and memory-efficiency of Rep-Net.
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