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Abstract

Previous advances in object tracking mostly reported on
favorable illumination circumstances while neglecting per-
formance at nighttime, which significantly impeded the de-
velopment of related aerial robot applications. This work
instead develops a novel unsupervised domain adaptation
framework for nighttime aerial tracking (named UDAT).
Specifically, a unique object discovery approach is provided
to generate training patches from raw nighttime tracking
videos. To tackle the domain discrepancy, we employ a
Transformer-based bridging layer post to the feature ex-
tractor to align image features from both domains. With
a Transformer day/night feature discriminator, the day-
time tracking model is adversarially trained to track at
night. Moreover, we construct a pioneering benchmark
namely NAT2021 for unsupervised domain adaptive night-
time tracking, which comprises a test set of 180 manually
annotated tracking sequences and a train set of over 276k
unlabelled nighttime tracking frames. Exhaustive experi-
ments demonstrate the robustness and domain adaptabil-
ity of the proposed framework in nighttime aerial track-
ing. The code and benchmark are available at https:
//github.com/vision4robotics/UDAT.

1. Introduction

Standing as one of the fundamental tasks in computer

vision, object tracking has received widespread attention

with multifarious aerial robot applications, e.g., unmanned

aerial vehicle (UAV) self-localization [49], target follow-

ing [25], and aerial cinematography [2]. Driven by large-

scale datasets [10,17,32] with the supervision of meticulous

manual annotations, emerging deep trackers [4, 8, 14, 22]

keep setting state-of-the-arts (SOTAs) in recent years.

Despite the advances, whether current benchmarks or

approaches are proposed for object tracking under favor-

able illumination conditions. In contrast to daytime, images

captured at night have low contrast, brightness, and signal-
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Figure 1. (a) Qualitative comparison of the proposed unsupervised

domain adaptive trackers (i.e., UDAT-CAR and UDAT-BAN) and

their baselines [8, 14]. (b) Overall performance of SOTA ap-

proaches on the constructed NAT2021-test benchmark. The pro-

posed UDAT effectively adapts general trackers to nighttime aerial

tracking scenes and yields favorable performance.

to-noise ratio (SNR). These differences cause the discrep-

ancy in feature distribution of day/night images. Due to the

cross-domain discrepancy, current SOTA trackers general-

ize badly to nighttime scenes [48, 50], which severely im-

pedes the broadening of relevant aerial robot applications.

Regarding such domain gap and the performance drop,

this work aims to address the cross-domain object tracking

problem. In particular, we target adapting SOTA tracking

models in daytime general conditions to nighttime aerial

perspectives. One possible straightforward solution is to

collect and annotate adequate target domain data for train-

ing. Nevertheless, such a non-trivial workload is expensive

and time-consuming, since backbones’ pre-training alone

generally takes millions of high-quality images [9]. We
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consequently consider the problem as an unsupervised do-

main adaptation task, where training data in the source do-

main is with well-annotated bounding boxes while that in

the target domain has no manually annotated labels. There-

fore, an unsupervised domain adaptive tracking framework,

referred to as UDAT, is proposed for nighttime aerial track-

ing. To generate training patches of the target domain, we

develop an object discovery strategy to explore potential ob-

jects in the unlabelled nighttime data. Besides, a bridging

layer is proposed to bridge the gap of domain discrepancy

for the extracted features.

Furthermore, the feature domain is distinguished by

virtue of a discriminator during adversarial learning. Draw-

ing lessons from the huge potential of the Transformer [43]

in feature representation, both the bridging layer and the

discriminator utilize a Transformer structure. Figure 1 ex-

hibits some qualitative comparisons of trackers adopting

UDAT and the corresponding baselines. UDAT raises base-

lines’ nighttime aerial tracking performance substantially.

Apart from methodology, we construct NAT2021, a bench-

mark comprising a test set of 180 fully annotated video se-

quences and a train set of over 276k unlabelled nighttime

tracking frames, which serves as the first benchmark for un-

supervised domain adaptive nighttime tracking. The main

contributions of this work are fourfold:

• An unsupervised domain adaptive tracking framework,

namely UDAT, is proposed for nighttime aerial track-

ing. To the best of our knowledge, the proposed UDAT

is the first unsupervised adaptation framework for ob-

ject tracking.

• A bridging layer and a day/night discriminator with

Transformer structures are incorporated to align ex-

tracted features from different domains and narrow the

domain gap between daytime and nighttime.

• A pioneering benchmark namely NAT2021, consisting

of a fully annotated test set and an unlabelled train set,

is constructed for domain adaptive nighttime tracking.

An object discovery strategy is introduced for the un-

labelled train set preprocessing.

• Extensive experiments on NAT2021-test and the re-

cent public UAVDark70 [21] benchmark verify the ef-

fectiveness and domain adaptability of the proposed

UDAT in nighttime aerial tracking.

2. Related work
2.1. Object tracking

Generally, recent object tracking approaches can be cate-

gorized as the discriminative correlation filter (DCF)-based

approaches [12, 16, 19, 27] and the Siamese network-based

approaches [4, 8, 14, 22]. Due to the complicated online

learning procedure, end-to-end training can be hardly re-

alized on DCF-based trackers. Therefore, restricted to infe-

rior handcrafted features or inappropriate deep feature ex-

tractors pre-trained for classification, DCF-based trackers

lose their effectiveness in adverse conditions.

Benefiting from considerable training data and end-

to-end learning, Siamese network-based trackers have

achieved robust tracking performance. This line of ap-

proaches is pioneered by SINT [41] and SiamFC [1], which

regard object tracking as a similarity learning problem and

train Siamese networks with large-scale image pairs. Draw-

ing lessons from object detection, B. Li et al. [23] in-

troduce the region proposal network (RPN) [33] into the

Siamese framework. SiamRPN++ [22] further adopts a

deeper backbone and feature aggregation architecture to im-

prove tracking accuracy. To alleviate increasing hyperpa-

rameters along with the introduction of RPN, the anchor-

free approaches [8, 14, 47] adopt the per-pixel regression

to directly predict four offsets on each pixel. Recently,

Transformer [43] is incorporated into the Siamese frame-

work [4,6,45] to model global information and further boost

tracking performance.

Despite the great progress, object tracking in adverse

conditions, for instance, nighttime aerial scenarios, lacks

thorough study so far. In [21], a DCF framework integrated

with a low-light enhancer is constructed while lacking trans-

ferability and being restricted to handcrafted features. Some

studies [48, 50] design tracking-related low-light enhancers

for data preprocessing in the tracking pipeline. However,

such a paradigm suffers from weak collaboration with the

tracking model and the cascade structure can hardly learn

to narrow the domain gap at the feature level.

2.2. Domain adaptation

Towards narrowing the domain discrepancy and trans-

ferring knowledge from the source domain to the target do-

main, domain adaptation attracts considerable attention and

is widely adopted in image classification [3, 26, 40]. Be-

yond classification, Y. Chen et al. [7] design a domain adap-

tive object detection framework and tackle the domain shift

on both image-level and instance-level. In [18], an image

transfer model is trained to perform day-to-night transfor-

mation for data augmentation before learning a detection

model. Y. Sasagawa and H. Nagahara [37] propose to merge

a low-light image enhancement model and an object detec-

tion model to realize nighttime object detection. For the

task of semantic segmentation, C. Sakaridis et al. [36] for-

mulate a curriculum framework to adapt semantic segmen-

tation models from day to night through an intermediate

twilight domain. X. Wu et al. [46] employ an adversar-

ial learning manner to train a domain adaptation network

for nighttime semantic segmentation. S. Saha et al. [35]
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Figure 2. Illustration of the proposed unsupervised domain adaptation framework for nighttime aerial tracking. The object discovery

module is employed to find potential objects in raw videos for training patch generation. Features extracted from different domains are

aligned via the Transformer bridging layer. A Transformer day/night discriminator is trained to distinguish features between the source

domain and the target domain.

mine cross-task relationships and build a multi-task learning

framework for semantic segmentation and depth estimation

in the unsupervised domain adaptation setting. Despite the

rapid development in other vision tasks, domain adaptation

for object tracking has not been investigated yet. Therefore,

an effective unsupervised domain adaptation framework for

object tracking is urgently needed.

3. Proposed method

The paradigm of the proposed UDAT framework is illus-

trated in Fig. 2. For data preprocessing of the unlabelled tar-

get domain, we employ a saliency detection-based strategy

to locate potential objects and crop paired training patches.

In the training pipeline, features generated by the feature

extractor are modulated by the bridging layer. In this pro-

cess, adversarial learning facilitates the reduction of fea-

ture distribution discrepancy between the source and target

domains. Through this simple yet effective process, track-

ers can achieve pleasant efficiency and robustness for night

scenes comparable to daytime tracking.

3.1. Data preprocessing

Since deep trackers take training patches as input in each

training step, we develop an object discovery strategy for

data preprocessing on the unlabelled train set. Figure 3

illustrates the preprocessing pipeline. The object discov-

ery strategy involves three stages, i.e., low-light enhance-

ment, salient object detection, and dynamic programming.

Given the low visibility of nighttime images, original im-

ages are first lighted up by a low-light enhancer [24]. Af-

terward, enhanced images are fed into the video saliency

detection model [52]. Candidate boxes are then obtained

by building the minimum bounding rectangle of detected

salient regions. To generate a box sequence that locates

the same object across the timeline, motivated by [55], we

Original 
images

Object 
discovery

Cropped 
patches

#85 #99 #121 #131

Figure 3. Illustration of object discovery, which contains low-light

enhancement, salient object detection, and dynamic programming.

The pink masks indicate detected salient regions, while the boxes

are circumscribed rectangles of these regions. Dynamic program-

ming selects red boxes and filters blue ones. The green box is ob-

tained by linear interpolation between two adjacent frames. Note

that the cropped patches are enhanced for visualization, original

patches are utilized in the practical training process instead.

adopt dynamic programming to filter noisy boxes. Assum-

ing two boxes from the j-th frame and the k-th frame as

[xj,m, yj,m, wj,m, hj,m] and [xk,n, yk,n, wk,n, hk,n], where

m and n indicate the box indexes, and (x, y), w, h denote

the top-left coordinate, width, and height of the box, respec-

tively, the normalized distance Dnorm is obtained as:

Dnorm =(
xj,m − xk,n

wk,n
)2 + (

yj,m − yk,n
hk,n

)2

+ (log(
wj,m

wk,n
))2 + (log(

hj,m

hk,n
))2 .

(1)

In dynamic programming, the normalized distance of

candidate boxes between frames serves as a smooth reward,

while adding a box in a frame to the box sequence means

an incremental reward. For frames where none of the boxes

is selected by dynamic programming, linear interpolation is

adopted between the two closest frames to generate a new

box. Ultimately, paired training patches are cropped from

original images according to the obtained box sequence.
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3.2. Network architecture

Feature extractor. Feature extraction of Siamese networks

generally consists of two branches, i.e., the template branch

and the search branch. Both branches generate feature maps

from the template patch Z and the search patch X, namely

ϕ(Z) and ϕ(X), by adopting an identical backbone net-

work ϕ. Generally, trackers adopt the last block or blocks of

features for subsequent classification and regression, which

can be represented as follows:

ϕ(X) = Concat(FN−i(X), ...,FN−1(X),FN (X)) ,

ϕ(Z) = Concat(FN−i(Z), ...,FN−1(Z),FN (Z)) ,
(2)

where F∗(·) indicates features extracted from the ∗-th block

of a backbone with N blocks in total, and Concat denotes

channel-wise concatenation. Since both ϕ(X) and ϕ(Z)
will pass through the following Transformer bridging layer

and discriminator, we take the instance of ϕ(X) in the fol-

lowing introduction for clarity.

Transformer bridging layer. Features extracted from day-

time and nighttime images are with a huge gap, such domain

discrepancy leads to inferior tracking performance at night.

Before feeding the obtained features to the tracker head for

object localization, we propose to bridge the gap between

the feature distributions through a bridging layer. In con-

sideration of the strong modeling capability of the Trans-

former [43] for long-range inter-independencies, we design

the bridging layer with a Transformer structure. Taking the

search branch as instance, positional encodings P are first

added to the input feature ϕ(X) ∈ RN×H×W . Next, the

summation is flattened to (P + ϕ(X)) ∈ RHW×N . Multi-

head self-attention (MSA) is then conducted as:

ϕ̂(X)
′
= MSA(P+ ϕ(X)) +P+ ϕ(X) ,

ϕ̂(X) = LN(FFN(Mod(LN(ϕ̂(X)
′
))) + ϕ̂(X)

′
) ,

(3)

where ϕ̂(X)
′

is an intermediate variable and LN indicates

layer normalization. Moreover, FFN denotes the fully con-

nected feed-forward network, which consists of two linear

layers with a ReLU in between. Mod is a modulation layer

in [4] to fully explore internal spatial information. The final

output is flattened back to N × H × W . For each head of

MSA, the attention function can be formulated as:

Attention(Q,K,V) = Softmax(
QKT

√
dk

)V . (4)

In our case, the queries Q, keys K, and values V are

equal to the product of (P + ϕ(X)) and the corresponding

projection matrix. By virtue of superior information inte-

gration of self-attention, the proposed Transformer bridging

layer is adequate to modulate the nighttime object features

output by the backbone for effective similarity maps.

Target domain

Source domain

Target domain

Source domainFeature 
extractor

Bridging 
layer

Domain-adaptive 
tracker

Pre-trained tracker

Feature 
extractor

Figure 4. Feature visualization by t-SNE [42] of day/night sim-

ilar scenes. Gold and purple indicate source and target domains,

respectively. The scattergrams from top to down depict day/night

features from feature extractor in the pre-trained tracker, feature

extractor in the domain-adaptive tracker, and the bridging layer.

The proposed Transformer bridging layer effectively narrows do-

main discrepancy.

Remark 1: Figure 4 displays the t-SNE [42] visualizations

of features from feature extractor in the baseline, feature

extractor in the domain-adaptive tracker, and the bridging

layer. From which we can observe that features extracted by

backbones have a clear discrepancy, while those modified

by the bridging layer show a coincidence in distribution.

Transformer discriminator. The proposed UDAT frame-

work is trained in an adversarial learning manner. A

day/night feature discriminator D is designed to facilitate

aligning the source and target domain features, which con-

sists of a gradient reverse layer (GRL) [13] and two Trans-

former layers. Given the modulated feature map ϕ̂(X), the

softmax function is performed and followed by a GRL:

F = GRL(Softmax(ϕ̂(X))) . (5)

The intermediate feature F ∈ RN×H×W is then passed

through a convolution layer with a kernel size of 4 × 4 and

stride of 4 for patch embedding. F is then flattened to (H4 ×
W
4 )×N and concatenated with a classification token c as:

F′ = Concat(c,Flat(Conv(F))) . (6)

Afterward, F′ is input to two Transformer layers. Ulti-

mately, the classification token c is regarded as the final pre-

dicted results. In the adversarial learning process, the dis-

criminator is optimized to distinguish whether the features

are from the source domain or the target domain correctly.

Tracker head. After the Transformer bridging layer, cross-

correlation operation is conducted on the modulated fea-

tures ϕ̂(X) and ϕ̂(Z) to generate a similarity map. Finally,

the tracker head performs the classification and regression

process to predict the object position.

3.3. Objective functions

Classification and regression loss. In the source domain

training line, the classification and regression loss LGT be-
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tween the ground truth and the predicted results are applied

to ensure the normal tracking ability of trackers. We adopt

tracking loss consistent with the baseline trackers without

modification.

Domain adaptation loss. In adversarial learning, the least-

square loss function [30] is introduced to train the gener-

ator G, aiming at generating source domain-like features

from target domain images to fool the discriminator D while

frozen. Here the generator G can be regarded as the feature

extractor along with the Transformer bridging layer. Con-

sidering both the template and search features, the adversar-

ial loss is described as follows:

Ladv = (D(ϕ̂(Xt))− �s)
2 + (D(ϕ̂(Zt)))− �s)

2 , (7)

where s and t refer to the source and the target domains,

respectively. Besides, �s denotes the label for the source

domain, which has the same size as the output of D. In

summary, the total training loss for the tracking network is

defined as:

Ltotal = LGT + λLadv , (8)

where λ is a weight to balance the loss terms. We set λ as

0.01 in implementation.

During the training process, the tracking network and

discriminator D are optimized alternatively. We define the

loss function of D as:

LD =
∑

d=s,t

(D(ϕ̂(Xd))−�d)
2+(D(ϕ̂(Zd))−�d)

2 . (9)

Trained with true domain labels of input features, D
learns to discriminate feature domains efficiently.

4. NAT2021 benchmark
The nighttime aerial tracking benchmark, namely

NAT2021, is developed to give a comprehensive perfor-

mance evaluation of nighttime aerial tracking and provide

adequate unlabelled nighttime tracking videos for unsuper-

vised training. Compared to the existing nighttime track-

ing benchmark [21] in literature, NAT2021 stands a two

times larger test set, an unlabelled train set, and novel

illumination-oriented attributes.

4.1. Sequence collection

Images in NAT2021 are captured in diverse nighttime

scenes (e.g., roads, urban landscapes, and campus) by a

DJI Mavic Air 2 UAV1 in a frame rate of 30 frames/s. Se-

quence categories consist of a wide variety of targets (e.g.,

cars, trucks, persons, groups, buses, buildings, and motor-

cycles) or activities (e.g., cycling, skating, running, and ball

1More information of the UAV can be found at https://www.dji.
com/cn/mavic-air-2.

N08008 N05006 N01003 N02043

N09006 N02027 N03009 N07004

N08014 N01011 N04028 N04013

Figure 5. First frames of selected sequences from NAT2021-test.
The green boxes mark the tracking objects, while the top-left cor-

ner of the images display sequence names.

games). Consequently, the test set contains 180 nighttime

aerial tracking sequences with more than 140k frames in

total, namely NAT2021-test. Figure 5 displays some first

frames of selected sequences. In order to provide an evalu-

ation of long-term tracking performance, we further build a

long-term tracking subset namely NAT2021-L-test consist-

ing of 23 sequences that are longer than 1400 frames. More-

over, the training set involves 1400 unlabelled sequences

with over 276k frames totally, which is adequate for the

domain adaptive tracking task. A statistical summary of

NAT2021 is presented in Tab. 1.

Remark 2: Sequences in NAT2021 are recorded by our-

selves using UAVs with permission. No personally identifi-

able information or offensive content is involved.

4.2. Annotation

The frames in NAT2021-test and NAT2021-L-test are

all manually annotated by annotators familiar with object

tracking. For accuracy, the annotation process is con-

ducted on images enhanced by a low-light enhancement ap-

proach [24]. Afterward, visual inspection by experts and

bounding box refinement by annotators are conducted iter-

atively for several rounds to ensure high-quality annotation.

4.3. Attributes

To give an in-depth analysis of trackers, we annotate the

test sequences into 12 different attributes, including aspect

ratio change (ARC), background clutter (BC), camera mo-

tion (CM), fast motion (FM), partial occlusion (OCC), full

Table 1. Statistics of NAT2021. test: test set; L-test: long-term

tracking test set; train: train set.

NAT2021-test NAT2021-L-test NAT2021-train

Videos 180 23 1,400
Total frames 140,815 53,564 276,081
Min frames 81 1,425 30
Max frames 1,795 3,866 345
Avg. frames 782 2,329 197
Manual annotation � �
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Ambient intensity: 7 Ambient intensity: 12 Ambient intensity: 26 Ambient intensity: 36

Figure 6. Ambient intensity of some scenarios. With an average

ambient intensity of less than 20, objects are hard to distinguish

with naked eyes. Such sequences are annotated with the low am-

bient intensity attribute.

occlusion (FOC), out-of-view (OV), scale variation (SV),

similar object (SOB), viewpoint change (VC), illumination

variation (IV), and low ambient intensity (LAI). In partic-

ular, to take a closer look at how illumination influences

trackers, we rethink and redesign the illumination-related

attributes. Concretely, the average pixel intensity of the lo-

cal region centered at the object is computed and regarded

as the illuminance intensity of the current frame. The aver-

age illuminance level of a sequence is considered the ambi-

ent intensity of the tracking scene. Sequences with different

ambient intensities are displayed in Fig. 6, we observe that

objects are hard to distinguish with naked eyes with an am-

bient intensity of less than 20. Therefore, such sequences

are labelled with the LAI attribute.

Remark 3: In contrast to annotating the attribute of IV

intuitively as previous tracking benchmarks do, this work

judges IV according to the maximum difference of the illu-

minance intensity across a tracking sequence. More details

of the attributes can be found in supplementary material.
Moreover, we evaluate current top-ranked trackers on the

proposed benchmark (see Sec. 5.2), the results show that

SOTA trackers can hardly yield satisfactory performance at

a nighttime aerial view as in daytime benchmarks.

5. Experiments

5.1. Implementation details

We implement our UDAT framework using PyTorch on

an NVIDIA RTX A6000 GPU. The discriminator is trained

using the Adam [20] optimizer. The base learning rate is set

to 0.005 and is decayed following the poly learning rate pol-

icy with a power of 0.8. The bridging layer adopts a base

learning rate of 0.005 and is optimized with the baseline

tracker. The whole training process lasts 20 epochs. The

top-ranked trackers [8, 14] in the proposed benchmark are

adopted as baselines. To achieve faster convergence, track-

ing models pre-trained on general datasets [10,17,28,32,34]

are served as the baseline models. For fairness, tracking

datasets [17, 32] that the pre-trained models learned on are

adopted and no new datasets are introduced in the source

domain. We adopt the one-pass evaluation (OPE) and rank

performances using success rate, precision, and normalized

precision. Evaluation metric definitions and more experi-

ments can be found in the supplementary material.

5.2. Evaluation results

To give an exhaustive analysis of trackers in night-

time aerial tracking and facilitate future research, 20 SOTA

trackers [1, 4, 5, 8, 11, 14, 15, 22, 29, 39, 44, 47, 51, 53, 54, 56]

are evaluated on NAT2021-test, along with the proposed

UDAT. For clarity, two trackers further trained by UDAT are

named UDAT-BAN and UDAT-CAR, respectively. More-

over, UAVDark70 [21] contains 70 nighttime tracking se-

quences with 66k frames in total, which can also serve as

an evaluation benchmark.

5.2.1 Overall performance

NAT2021-test. As shown in Fig. 7 (a), the proposed UDAT-

BAN and UDAT-CAR rank first two places with a large

margin compared to their baselines. A performance com-

parison of UDAT and baseline trackers is reported in Tab. 2.

Specifically, UDAT promotes SiamBAN over 7% on all

three metrics. In success rate, UDAT-BAN (0.469) and

UDAT-CAR (0.483) raise the original SiamBAN (0.437)

and SiamCAR (0.453) by 7.32% and 6.62%, respectively.

UAVDark70. Results in Fig. 7 (b) demonstrate that the per-

formance of existing trackers is still unsatisfactory. UDAT

trackers raise the performance of their baselines by ∼4%.

Note that the data distribution in UAVDark70 is fairly dif-

ferent from that in NAT2021, while UDAT can still bring

favorable performance gains, which demonstrate its gener-

alization ability in variant nighttime conditions.

Gains brought by UDAT for different trackers on differ-

ent benchmarks verify the effectiveness and transferability

of the proposed domain adaptation framework.

5.2.2 Long-term tracking evaluation

As one of the most common scenes in aerial tracking, long-

term tracking involves multiple challenging attributes. We

further assess trackers on NAT2021-L-test. Top-10 perfor-

mances are reported in Tab. 3. Results show that UDAT

realizes competitive long-term tracking performances, con-

siderably arousing the performance upon baseline trackers.

Table 2. Performance comparison of UDAT and baseline trackers.

Δ denotes gains of percentages brought by UDAT.

Benchmarks
NAT2021-test UAVDark70

Prec. Norm. Prec. Succ. Prec. Norm. Prec. Succ.

SiamCAR 0.663 0.542 0.453 0.669 0.580 0.491
UDAT-CAR 0.687 0.564 0.483 0.695 0.592 0.512
ΔCAR (%) 3.62 4.06 6.62 3.89 2.07 4.28

SiamBAN 0.647 0.509 0.437 0.677 0.570 0.489
UDAT-BAN 0.694 0.546 0.469 0.702 0.597 0.510
ΔBAN (%) 7.26 7.27 7.32 3.69 4.74 4.29
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(a) Precision, normalized precision, and success plots on NAT2021-test.
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(b) Precision, normalized precision, and success plots on UAVDark70.

Figure 7. Overall performance of SOTA trackers and UDAT on nighttime aerial tracking benchmarks. The results show that the proposed

UDAT trackers realize top-ranked performance and improve baseline trackers favorably.
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(a) Illumination variation on NAT2021-test.
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(b) Low ambient intensity on NAT2021-test.
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(c) Illumination variation on UAVDark70.
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Figure 8. Normalized precision plots and success plots of illumination-related attributes on NAT2021-test and UAVDark70.

Table 3. Performance of top-10 trackers on NAT2021-L-test. Δ represents the percentages of UDAT trackers exceeding the corresponding

baselines. The top-2 performance is emphasized with bold font. UDAT trackers yield competitive long-term tracking performance.

Trackers HiFT [4] SiamFC++ [47] Ocean [54] SiamRPN++ [22] UpdateNet [51] D3S [29] SiamBAN [8] SiamCAR [14] UDAT-BAN UDAT-CAR ΔBAN(%) ΔCAR(%)

Prec. 0.433 0.425 0.454 0.431 0.434 0.492 0.464 0.477 0.496 0.506 6.94 5.99
Norm. Prec. 0.316 0.344 0.370 0.342 0.314 0.364 0.366 0.375 0.406 0.413 11.01 9.96
Succ. 0.287 0.297 0.315 0.299 0.275 0.332 0.316 0.330 0.352 0.376 11.51 14.25

5.2.3 Illumination-oriented evaluation

Since the greatest difference between daytime and night-

time tracking is illumination intensity, we perform an in-

depth illumination-oriented evaluation for a better analysis

of illumination influence on trackers. The results are shown

in Fig. 8. Note that we additionally annotate sequences in

UAVDark70 with the proposed LAI attribute. The results

show that existing trackers suffer from illumination-related

attributes. For the IV challenge, the best success rates of

existing trackers are 0.408 on NAT2021-test and 0.468 on

UAVDark70. Assisted by the proposed domain adaptive

training, UDAT-CAR realizes a success rate of 0.442 and

0.485, respectively, which fairly improve the existing best

performance. As for LAI, UDAT-BAN raises the normal-

ized precision of its baseline SiamBAN by over 9% on both

benchmarks. From the comparison, we can see that track-
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ers’ illumination-related performance remains a large room

for improvement and the adoption of domain adaptation in

adverse illumination scenes is effective and crucial.

5.2.4 Visualization

As shown in Fig. 9, we visualized some confidence maps

of UDAT and its baseline using Grad-Cam [38]. The base-

line model fails to concentrate on objects in adverse illu-

minance, while UDAT substantially enhances the baseline’s

nighttime perception ability, thus yielding satisfying night-

time tracking performance.

5.2.5 Source domain evaluation

Apart from favorable performance at nighttime, we expect

that trackers do not suffer degradation at the source domain

during adaptation. Evaluation on a daytime tracking bench-

mark UAV123 [31] is shown in Tab. 4. The results show

that UDAT brings slight performance fluctuation within 2%

in success rate and 0.5% in precision.

5.3. Empirical study

To demonstrate the effectiveness of proposed modules,

i.e., domain adaptive training (DA), object discovery pre-

processing (OD), and bridging layer (BL), this subsection

provides empirical studies of UDAT. Concretely, we first

ablate BL and substitute OD with random cropping to adopt

naive DA on the baseline tracker. The results on the sec-

ond row of Tab. 5 show that DA slightly promotes nighttime

tracking, with a slight upgrade in success rate. However,

adopting random cropping as preprocessing leads to abun-

dant meaningless training samples, the model therefore can

hardly learn the data distribution on the target domain. In

that case, further activation of BL only makes a limited dif-

ference. As shown in the fourth row of Tab. 5, when em-

Table 4. Evaluation on the source domain. The results show

the adaptation only brings slight performance fluctuation on the

source domain.

Trackers SiamBAN UDAT-BAN SiamCAR UDAT-CAR

Succ. 0.603 0.5911.96%↓ 0.601 0.5921.58%↓
Prec. 0.788 0.7840.52%↓ 0.793 0.7930.04%↓

Table 5. Empirical Study of the proposed UDAT on NAT2021-

test. DA, OD, and BL denote domain adaptive training, object dis-

covery preprocessing, and bridging layer, respectively.

DA OD BL Prec. Norm. Prec. Succ.

0.663 0.542 0.453

� 0.6620.19%↓ 0.5400.33%↓ 0.4591.33%↑
� � 0.6640.16%↑ 0.5471.04%↑ 0.4642.45%↑
� � 0.6761.95%↑ 0.5491.42%↑ 0.4673.24%↑

� � � 0.6873.62%↑ 0.5644.17%↑ 0.4836.82%↑

Frames SiamCAR UDAT-CAR

N02051

N03009

N04012

Figure 9. Visual comparison of confidence maps generated by the

baseline and the proposed UDAT. Target objects are marked by

green boxes. The baseline struggles to extract discriminable fea-

tures in dim light. UDAT substantially raises the perception ability

of baseline in adverse illuminance.

ploying OD instead of random cropping, performance on the

target domain obtains a 3.24% boost in success rate, which

verifies the effectiveness of the proposed saliency detection-

based data preprocessing. Further, BL doubles the promo-

tion brought by OD, complete UDAT realizes a precision

of 0.687 and a success rate of 0.483, achieving favorable

nighttime tracking performance. The results verify that the

proposed bridging layer fairly enables the tracker to gener-

ate discriminative features from nighttime images.

6. Conclusion
In this work, a simple but effective unsupervised do-

main adaptive tracking framework, namely UDAT, is pro-

posed for nighttime aerial tracking. In our UDAT, an ob-

ject discovery strategy is introduced for unlabelled data

preprocessing. The Transformer bridging layer is adopted

to narrow the gap of image features between daytime and

nighttime. Optimized through adversarial learning with a

Transformer discriminator, the learned model substantially

improves nighttime tracking performance upon SOTA ap-

proaches. We also construct NAT2021, a pioneering bench-

mark for unsupervised domain adaptive nighttime track-

ing. Detailed evaluation on nighttime tracking benchmarks

shows the effectiveness and domain adaptability of UDAT.

The limitation of this work lies in the absence of pseudo su-

pervision in the target domain. Future work will focus on

reliable pseudo supervision, with which we believe the per-

formance of nighttime tracking can be further improved. To

sum up, we are convinced that the UDAT framework along

with the NAT2021 benchmark can facilitate research on vi-

sual tracking at nighttime and in other adverse conditions.
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