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Abstract

Most of the research to date focuses on bilingual sign
language translation (BSLT). However, such models are in-
efficient in building multilingual sign language translation
systems. To solve this problem, we introduce the multilin-
gual sign language translation (MSLT) task. It aims to use
a single model to complete the translation between multiple
sign languages and spoken languages. Then, we propose
MLSLT, the first MSLT model, which contains two novel dy-
namic routing mechanisms for controlling the degree of pa-
rameter sharing between different languages. Intra-layer
language-specific routing controls the proportion of data
flowing through shared parameters and language-specific
parameters from the token level through a soft gate within
the layer, and inter-layer language-specific routing controls
and learns the data flow path of different languages at the
language level through a soft gate between layers. In order
to evaluate the performance of MLSLT, we collect the first
publicly available multilingual sign language understand-
ing dataset, Spreadthesign-Ten (SP-10), which contains up
to 100 language pairs, e.g., CSL→en, GSG→zh. Experi-
mental results show that the average performance of ML-
SLT outperforms the baseline MSLT model and the com-
bination of multiple BSLT models in many cases. In ad-
dition, we also explore zero-shot translation in sign lan-
guage and find that our model can achieve comparable
performance to the supervised BSLT model on some lan-
guage pairs. Dataset and more details are at https:
//mlslt.github.io/.

1. Introduction
Sign languages are the primary means of communica-

tion for an estimated 466 million deaf or hard-of-hearing
people worldwide [38]. However, the difference between
sign language and spoken language causes some communi-
cation barriers between them and hearing-unimpaired peo-
ple, which brings inconvenience to their daily lives. This
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Figure 1. An example to illustrate the advantages of the MSLT
model over the BSLT model in constructing a multilingual sign
language translation system.

motivates researchers to design more efficient and accurate
sign language translation systems [23, 24, 52, 56].

Due to the lack of data, almost all previous studies fo-
cus on building a bilingual sign language translation (BSLT)
model [2,3,27,37,53,57] (such as American Sign Language
to English or British Sign Language to English). However,
there are more than 300 sign languages in the world [34],
and there are 389 languages spoken by more than one mil-
lion people worldwide [9, 40]. So if each model can only
handle one language pair, then in order to handle all situa-
tions, we need to create 116,700 models. Even if all sign
languages are translated into English and then translated
into other languages with the help of a machine translation
system, we still need to create 300 models, which is unac-
ceptable for practical applications.

Therefore, we aim in this work to design a single model
to realize the translation between multiple sign languages
and spoken languages. Figure 1 shows the advantages of
the multilingual sign language translation (MSLT) model
compared to the BSLT model in constructing an MSLT
system. However, there are many challenges in building
such a MSLT model. First, we lack an MSLT corpus. Al-
most all public sign language translation datasets contain
only one sign language, and they are mainly concentrated
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in a few sign language categories such as CLS, GSG, and
ASE [2, 8, 57]. Secondly, while joint training brings bene-
ficial knowledge transfer, it also introduces language diver-
gence and representation bottlenecks as the number of data
and languages increases [6].

In order to solve the above challenges and promote
progress in the field of MSLT, we construct the first large-
scale parallel multilingual sign language understanding
dataset, Spreadthesign-Ten (SP-10). SP-10 contains videos
and corresponding spoken translations in ten sign languages
collected from spreadthesign [15]. There is also a corre-
sponding relationship between videos of different sign lan-
guages, which means that this dataset is also suitable for
the multilingual text-to-video sign language generation task
and the multilingual video-to-video sign language transla-
tion task.

Then, we propose the MLSLT model, an end-to-end
MSLT model based on the Transformer [49] architecture.
To alleviate language conflicts and representation bottle-
necks, we meticulously design two end-to-end data-driven
routing mechanisms, inter-layer language-specific routing
(InterLSR) and intra-layer language-specific routing (In-
traLSR), to help the model control parameter sharing be-
tween different languages. As shown in Figure 2, InterLSR
is used to control the degree of sharing of different sign lan-
guages in the Transformer layer. Without InterLSR, the de-
gree of sharing of all sign languages in any layer is 100%.
Any sign language on each layer has a corresponding gate to
control the proportion of this sign language flowing through
this layer. Optimizing the state of the gate during train-
ing can adjust the network structure to maximize translation
quality. IntraLSR is used to control the proportion of par-
ticular language flowing through language shared parame-
ters and language-specific parameters in the layer. During
training, each token is simply projected and then added ac-
cording to the ratio calculated by the gate. In inferencing,
we first linearly combine the shared feature extraction ex-
pert and the language-specific feature extraction expert, and
then perform matrix multiplication, which can save half of
the calculation. In addition, we also encourage shared fea-
ture extraction experts and language-specific feature extrac-
tion experts to encode different aspects of the input by using
soft orthogonal subspace constraints [1].

On the SP-10 dataset, we respectively implement the al-
gorithms proposed by Camgöz et al. [3] and Johnson et
al. [20] as the baseline for BSLT and MSLT. The experi-
mental results on the SP-10 dataset show that the average
BLEU and ROUGE scores obtained by MLSLT exceed the
MSLT baseline and the BSLT baseline, although MLSLT
uses fewer parameters than them. This fully proves the ef-
fectiveness of our proposed method and shows the great po-
tential of multilingual sign language translation. We also
explore zero-shot translation in sign language and find that

our model can achieve comparable performance to the su-
pervised BSLT model on some language pairs, which shows
that our model builds an implicit bridge between the target
language pairs.

Our main contributions are summarized as follows,

• We contribute a large-scale multilingual sign language
understanding dataset suitable for multiple tasks such
as multilingual sign language translation, multilingual
text-to-video sign language generation, and multilin-
gual video-to-video sign language translation.

• We are the first to explore the MSLT problem, and we
propose MLSLT, an MSLT framework based on dy-
namic neural network. Two novel dynamic routing
mechanisms are used to control parameter sharing be-
tween different sign languages.

• Extensive experimental results show that our proposed
single model can perform better than the MSLT base-
line and multiple BSLT models while using fewer pa-
rameters. A broad range of new baseline results can
guide future research in this field.

2. Related Work

As a research field with profound social significance, the
study of sign language understanding has a long history
[41, 44–47]. Early research mainly used Hidden Markov
Model (HMM) and other methods to model sequence in-
formation. Recently, with the continuous development of
deep learning, researchers have tried to use neural network
methods to handle sign language understanding tasks and
achieved good results.

The early stage of sign language understanding is mani-
fested as the sign language recognition task, and it aims to
recognize sign language video as the corresponding gloss
texts. The initial research direction is the isolated sign lan-
guage recognition (ISLR) task [16, 31, 36], which aims to
recognize isolated signs. With the development of action
recognition and the proposal of some large-scale datasets
[21, 26], some CNN networks [5, 10] achieve good results
on ISLR. Advances in the ISRL task promote researchers
to further explore the continuous sign language recogni-
tion (CSLR) task [17,28], which attempts to recognize sign
gloss sequences from continuous videos. However, due to
the significant grammatical differences between sign lan-
guage and spoken language, it is difficult for ordinary peo-
ple to understand the sign gloss sequence.

In order to solve this problem, Camgöz et al. [2] pro-
pose a new task, sign language translation (SLT), and a new
dataset, PHOENIX14T. SLT aims to translate sign language
videos into corresponding spoken language texts. Then,
Camgöz et al. [3] apply the Transformer network [49] to
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Figure 2. An overview of our proposed framework for multilingual sign language translation. (a). The MSLT Transformer. (b). The
MSLT Transformer Blocks. (c). The intra-layer language-specific routing. The blue squares represent ICL-specific parameters, the blue G
indicates the gate that controls the ratio of data flow through ICL parameters and shared parameters, and other languages are the same. (d).
The inter-layer language-specific routing. G represents the gate that controls the ratio of data flowing through the layer and not flowing
through the layer.

SLT and design a joint training method to utilize the align-
ment information provided by gloss. Li et al. [27] design a
hierarchical structure to extract sign language features and
explore SLT without gloss supervision. Orbay et al. [37] uti-
lize adversarial, multi-task, and transfer learning to search
for semi-supervised tokenization methods to reduce depen-
dence on gloss annotations. Zhou et al. [57] propose a data
enhancement method based on sign language back trans-
lation, which generates gloss texts from spoken language
texts. Yin et al. [52] propose a simultaneous sign language
translation method based on wait-k [32]. Gan et al. [11] use
joint point data as additional supervision information during
SLT to improve the model’s performance.

However, the current research mainly focuses on BSLT
and a few sign languages such as CLS or GSG. There are
few studies on MSLT and other sign languages. Therefore,
we try to explore the MSLT task. Multilingual translation
has made some progress in the field of neural machine trans-
lation [6, 20, 51, 55], and how to share parameters between
different languages is one of the most important issues in
this field. High-quality sign language datasets are essen-
tial for sign language research. A summary of the publicly
available sign language translation datasets is shown in Ta-
ble 1. It can be seen that the previous datasets have very few
types of sign language and only one language pair. To this
end, we propose a multilingual sign language understanding
dataset with ten sign languages and 100 types of language
pairs.

3. Methods
3.1. Preliminaries

SLT is often considered a sequence-to-sequence learn-
ing problem. Given a source video sentence V ′ =

(v1, v2, ..., vT ) with T frames, SLT can be formulated as
learning the conditional probability p(Y ′|V ′) of generating
a spoken language sentence Y ′ = (y1, y2, ..., yM ) with M
words. When performing MSLT, we follow the practice of
Johnson et al. [20] by adding language tags to the beginning
of the sequence to indicate the language category of source
and target, i.e. changing V ′ to V = (langsrc, v1, v2, ..., vT )
and Y ′ to Y = (langtgt, y1, y2, ..., yM ). To unify the stan-
dard, we abandon some traditional sign language abbrevia-
tions in this paper. All sign language categories are repre-
sented by three letters that conform to the ISO639-3 [19]
standard (for example, changing ASL to ASE, changing
DGS to GSG), and all spoken language categories are rep-
resented by a 2-letter code that conforms to the ISO639-
1 [18] standard. An overview of our proposed framework
for MSLT is shown in Figure 2. In the remainder of this
section, we will introduce each component of our approach
in detail.

3.2. Embedding Layer

Similar to the general sequence-to-sequence learning
task, we first embed the source video and target text. For
video embedding, we first use a CNN network [48] to ex-
tract video features for each frame and then use a linear
layer to project it into a denser space. For text embed-
ding, we first use MultiBPEmb [14], which is a multilin-
gual BPE [43] sub-word segmentation model learned on the
Wikipedia dataset using the SentencePiece [25] tool to seg-
ment text into sub-words. Using the BPE algorithm to split
longer words into sub-words can allow generalized mor-
phological variants or compound words. In addition, the
use of sub-words can alleviate the data sparsity problem
in multilingual vocabulary representation because different
languages may share the same root or affix. We use the

5111



pre-trained sub-word embedding in MultiBPEmb as initial-
ization and use a linear layer to adjust the dimensionality of
the sub-word vector. We formulate these operations as:

ft = CNNθ(vt)W1 + b1 (1)
wm = Emb(ym)W2 + b2 (2)

where θ denotes the parameters of the CNN network. To
provide temporal position information, we use the same po-
sition encoding method as the vanilla Transformer.

3.3. Intra-layer Language-specific Routing

As shown in Figure 2b and Figure 2c, we use intra-layer
language-specific routing (IntraLSR) to control the propor-
tion of each language flowing through the shared parameters
and language-specific parameters in the Transformer layer.
IntraLSR replaces the position of the add & norm layer in
the original Transformer, and forms a new sub-layer with
structures such as self-attention layer, feed-forward layer
and cross-attention layer. Since the proportion of shared
knowledge in different languages should be different, each
language in IntraLSR will learn a soft gate based on the
output el ∈ Rd of the previous sub-layer. These gates give
IntraLSR the ability to control the proportion of data flow-
ing through shared paths or language-specific paths freely.
We formulate these operations as:

hs = f(el)W s, hu = f(el)Wu (3)

h = gu(e
l)hu + (1− gu(e

l))hs (4)

el+1 = LayerNorm(h+ el) (5)

where f(·) represents the first layer in the sub-layer such
as the self-attention layer, W s ∈ Rd×d represents a weight
matrix shared by all languages, and Wu ∈ Rd×d represents
a weight matrix unique to each language. gu(·) represents
the gate unique to each language. We use an MLP network
to calculate the degree of opening and closing of the gate
based on the output of the previous sub-layer. The detailed
calculation method is as follows:

gu(e
l) = σ((relu(elW3 + b3) + el)W4 + b4) (6)

where σ(·) is the logistic-sigmoid function, W3 ∈ Rd×d

and W4 ∈ Rd×1 are trainable parameters, and d represents
the dimensionality of the hidden layer in Transformer.

In the inference stage, in order to reduce the amount of
calculation, we adjust the calculation method of h as fol-
lows:

h = f(el)(gu(e
l)Wu + (1− gu(e

l))W s) (7)

The adjusted calculation method can reduce one matrix
multiplication operation while ensuring that the calculation
result will not change.
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Figure 3. An example to illustrate the difference between the
model with the InterLSR module and the traditional model.

3.4. Inter-layer Language-specific Routing

Inter-layer language-specific routing (InterLSR) is de-
signed to control the degree of sharing between differ-
ent languages when flowing through the Transformer layer.
Figure 3 vividly shows the difference between the model
with the InterLSR module and the traditional model and
how the InterLSR module works. The figure shows that the
degree of parameter sharing between different languages in
the traditional model is 100%. However, because the dif-
ferences between languages are objective, complete param-
eter sharing will make it difficult for the model to capture
language-specific patterns. Although the IntraLSR we de-
signed can partially alleviate this problem, it mainly con-
trols the flow of data at the token level. In addition, we also
need a way to generate unique data transmission paths for
different languages from the language level, which is why
we proposed InterLSR. Its calculation method is as follows:

α = σ(ElangW5 + b5) (8)

zl+1 = LN(αzl + (1− α)ol+1) (9)

where Elang ∈ Rdg represents language embedding, W5 ∈
Rdg×1 represents trainable parameters, dg is the dimen-
sion of language embedding vector, σ(·) is the the logistic-
sigmoid function, zl represents the output of the previous
layer, and ol+1 represents the original output of the current
layer.

3.5. Training of MLSLT

In the MLSLT model, we use label smoothed [33] cross-
entropy loss to optimize the MSLT task:

ŷm = ym(1− ε) + ε/K (10)

Lce = −
M∑

m=1

ŷmlog(P (ym|y1:m−1, V ; θ)) (11)

where ym represents the one-hot vector with the target cat-
egory being 1, and the other categories being 0, K is the
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Table 1. Summary of publicly available sign language translation datasets. To the best of our knowledge, SP-10 is the first publicly
available multilingual sign language understanding dataset, which contains up to 100 types of language pairs, such as CSL→en, GSG→zh,
etc. The pose in the table indicates whether the dataset provides human body posture data, and Transparent indicates whether the dataset
includes videos with a transparent background. This feature allows researchers to freely replace the video background to obtain a more
robust model.

Dataset Language Vocab Duration (h) Signers Language Pairs Transcription Pose Transparent

Boston104 (2006) [54] ASE 104 0.145 3 1 (ASE→en) ✓ ✗ ✗

SIGNUM (2010) [50] GSG 450 55 25 1 (GSG→de) ✓ ✗ ✗

NCSLGR (2012) [35] ASE 1.8k 5.3 4 1 (ASE→en) ✓ ✗ ✗

BSL Corpus (2013) [42] BFI 5k - 249 1 (BFI→de) ✓ ✗ ✗

Video-Based CSL (2018) [17] CSL 178 100 50 1 (CSL→zh) ✓ ✓ ✗

Public DGS Corpus (2020) [13] GSG - 50 327 1 (GSG→de) ✓ ✓ ✗

PHOENIX14T (2020) [37] GSG 3k 11 9 1 (GSG→de) ✓ ✗ ✗

CSL-Daily (2021) [57] CSL 2.3k 20.79 10 1 (CSL→zh) ✓ ✓ ✗

How2Sign (2021) [8] ASE 16k 79 11 1 (ASE→en) ✓ ✓ ✗

SP-10 (ours) Multilingual 16.7k 14 79 100 (Multilingual) ✓ ✓ ✓

vocabulary size, ε is a hyperparameter, and θ is the train-
able parameter in the model.

In addition, we also use soft orthogonal subspace con-
straint loss [1] to encourage language-sharing weight matrix
W s and language-specific weight Wu to encode different
aspects of the input:

Lo =
1

L

L∑
i=1

∥∥(W s)⊤Wu
i

∥∥2
F

(12)

Therefore, the total loss function to train the MLSLT
model is:

L = λ1Lce + λ2Lo (13)

where λ1 and λ2 are hyperparameters used to balance
losses.

Table 2. Key statistics of the SP-10 dataset.

Train DEV Test
samples 830 142 214
segments 8300 1420 2021
duration (h) 9.9 1.7 2.4
frames/segment 112.4 113.7 119.1

4. Multilingual Sign Language Understanding
Dataset

As discussed in section 1, the lack of datasets hinders
progress in multilingual sign language translation. To solve
this problem, we propose the Spreadthesign-Ten(SP-10)
dataset, which contains videos and corresponding spoken

translations in ten sign languages collected from spreadthe-
sign 1. Almost all the samples in the dataset will contain ten
videos of different sign languages and ten translation texts
of spoken language.

Table 1 shows the information of the current publicly
available sign language translation datasets and the com-
parison between SP-10 and them. All videos in SP-10 have
a resolution of 320×240 and a frame rate of 25FPS. We dis-
tinguish different signers by using the face recognition tool-
box 2 to perform face recognition on all videos. We use the
OpenPose toolbox [4] to extract 2-dimensional (2D) pose
estimation data from the original video data. Each pose an-
notation data contains 25 body joint points, 70 face joint
points, and 42 hand joint points. We utilize Robust Video
Matting (RVM) toolbox [30] to matte the original video data
to obtain a video with transparent background. We provide
more examples of the SP-10 dataset in the supplementary
material.

Our division and statistics of the dataset are shown in
Table 2. We randomly divide the data set according to id.
Each sample in the training set has ten video and spoken
translation texts in different sign languages. Some samples
in the test set lack some types of sign language data. More
detailed dataset division distribution images and data distri-
bution data for different sign languages are also provided in
the appendix.

5. Experiments
5.1. Implementation Details

The input images are resized to 600×600, and we use
EfficientNet [48] pre-trained on Imagenet [7] to extract fea-

1The copyright of the data belongs to the non-profit association Euro-
pean Sign Language Centre. For related terms of service, please refer to
https://www.spreadthesign.com

2https://github.com/ageitgey/face_recognition
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Table 3. Comparison of the translation results from multiple sign languages to English on the SP-10 dataset. Among them, Single represents
the models trained in a single language pair using the method in [3], and Multi represents the multilingual translation model trained using
the method in [20].

Part / Metrics Method
Param
(×107)

CSL UKL RSL BQN ICL GSG ISE SWL LLS BFI Mean

Dev
/

BLEU4

Single [3] 10 × 10 4.13 5.65 4.75 4.60 6.24 5.61 6.57 6.88 5.22 6.9 5.65
Multi [20] 10 2.46 3.14 2.93 2.21 3.44 2.71 3.18 2.89 1.81 3.49 2.83

MLSLT (ours) 10 5.16 5.42 4.95 3.28 6.76 5.18 7.05 6.33 6.08 7.03 5.72
Dev

/
ROUGE

Single [3] 10 × 10 30.98 33.58 32.16 29.71 34.03 32.83 33.49 35.66 30.77 34.64 32.78
Multi [20] 10 28.50 28.93 30.01 24.66 29.91 29.75 28.33 31.01 27.7 32.42 29.12

MLSLT (ours) 10 34.59 34.04 31.62 27.98 35.29 33.5 37.96 36.02 34.48 37.25 34.27
Test

/
BLEU4

Single [3] 10 × 10 3.47 2.94 2.99 2.46 4.32 3.60 3.23 3.83 3.83 3.72 3.43
Multi [20] 10 2.28 2.38 2.06 1.10 1.38 1.82 2.09 2.13 2.68 3.27 2.12

MLSLT (ours) 10 5.19 4.18 3.66 2.85 3.93 4.97 6.70 3.70 5.72 5.73 4.66
Test

/
ROUGE

Single [3] 10 × 10 30.16 34.12 31.32 27.94 32.03 31.36 29.42 31.72 29.02 31.60 30.86
Multi [20] 10 29.37 28.63 29.57 23.95 28.53 29.36 29.30 29.83 30.03 30.76 28.93

MLSLT (ours) 10 33.33 34.07 31.54 25.75 33.25 32.13 35.37 33.09 33.11 35.34 32.70

Table 4. Comparison of the translation results from British Sign Language to multiple spoken languages on the SP-10 dataset.

Part / Metrics Method
Param
(×107)

zh uk ru bg is de it sv lt en Mean

Dev/BLEU4
Single [3] 10 × 10 0.90 4.93 1.10 4.90 0.80 6.18 4.15 3.85 3.21 6.90 3.69

MLSLT (ours) 10 4.56 4.95 3.34 6.42 5.11 5.78 4.16 5.52 2.79 7.03 4.96

Dev/ROUGE
Single [3] 10 × 10 35.21 30.77 25.28 30.85 27.46 33.29 27.51 32.52 36.11 34.64 31.36

MLSLT (ours) 10 36.76 31.97 32.80 33.03 34.24 33.60 29.88 33.95 35.20 37.25 33.87

Test/BLEU4
Single [3] 10 × 10 1.03 1.69 1.10 1.10 0.90 3.27 1.38 1.11 2.19 3.72 1.75

MLSLT (ours) 10 5.35 1.59 1.12 1.10 2.54 1.73 1.39 2.63 2.32 5.73 2.55

Test/ROUGE
Single [3] 10 × 10 36.86 27.43 25.43 27.45 28.34 31.68 26.97 28.95 32.24 31.60 29.69

MLSLT (ours) 10 34.28 29.78 31.67 28.73 30.22 31.38 27.14 32.91 33.25 35.34 31.47

tures. The dimensions of the linear layer in the sign em-
bedding layer and the word embedding layer are both set
to 512. The hidden size, feed-forward size, and the num-
ber of attention heads in the Transformer layer are set to
512, 2048, and 8, respectively. Our model contains three
encoder and decoder layers, and the dropout rate is set to
0.1 to prevent overfitting. We use Xavier initialization [12]
to initialize our network. Following [2], we use BLEU [39]
score and ROUGE [29] score to evaluate the performance
of sign language translation.

5.2. Training and Inference

We use a single NVIDIA RTX 2080ti GPU with a batch
size of 32 to train our model. We use the Adam [22] opti-
mizer with a learning rate of 5 × 10−4 (β1=0.9, β2=0.998,
ϵ = 10−8), and the weight decays to 10−3. When the BLEU
score of the validation set stops increasing 9 times, the
learning rate will decrease by a factor of 0.5 until it reaches
10−7. During training, λ1 and λ2 are set to 1 and 0.1, re-
spectively. The rate of label smoothing [33] ε=0.2. For
decoding in the inference process, we use the beam search
strategy with beam size = 3 and the length normalization
penalty α = 1

5.3. Experimental Results

We set up two comparison benchmarks. We use the
method in [3] to train the model as the benchmark for the
BSLT model, and we use the method in [20] to train the
model as the benchmark for the MSLT model. To make
a fair comparison, we control the parameters of our model
and report the parameters of all models in the experimental
results.

5.3.1 Many to One

In this section, we explore the application of our method
when there is multiple source sign language and a single
target language. The experimental results of multiple sign
languages translation to English are shown in Table 3. We
can see that the performance of our model surpasses the
MSLT baseline on all language pairs, which proves that
our model can better handle MSLT tasks. In addition, the
performance of our model on most language pairs and the
average performance of our model exceed the BSLT base-
line, although the model parameters are only one-tenth of
theirs. This shows that the method we designed can help to
share knowledge between different languages and minimize
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conflicts. On a few language pairs, the translation perfor-
mance of our model is a little lower than the bilingual sign
language translation baseline (for example, BQN→en). A
reasonable assumption is that the difference between BQN
and other sign languages is relatively more enormous. The
experimental results of the other nine spoken languages as
target languages are provided in the appendix.

5.3.2 One to Many

In this section, we explore the application of our method
when there is a single source sign language and multiple
target languages. The experimental results of the transla-
tion of British Sign Language into a variety of spoken lan-
guages are shown in Table 4. The performance of the MSLT
baseline is very poor under this setting, so we removed it
from the table and directly compared our model with the
BLST baseline. It can be seen that MLSLT is higher than
the BSLT baseline on both the BLEU and ROUGE metrics,
which shows that the method we designed is also applica-
ble to the many to one situation. It is worth noting that the
performance of the two models is relatively poor in some
language pairs (for example, BFI→ru). A reasonable hy-
pothesis is that the grammar of Russian is more complex
and has a sizeable grammatical difference with British Sign
Language, which makes it difficult for the model to gener-
ate smooth Russian sentences. The experimental results of
the other nine sign languages as source languages are also
provided in the appendix.

Table 5. Comparison of many-to-many translation results and
BSLT baseline results.

Language
Pairs

Single MLSLT Param
ratio

BLEU4 ROUGE BLEU4 ROUGE

2× 2 2.43 30.05 3.62 33.76 4:1
3× 3 2.53 30.54 3.34 32.72 9:1
4× 4 2.24 29.55 2.72 31.69 16:1
5× 5 2.37 29.00 2.81 31.25 25:1
6× 6 2.26 30.01 3.05 31.58 36:1
7× 7 2.02 29.17 2.49 29.96 49:1
8× 8 1.78 28.87 2.04 30.00 64:1
9× 9 1.71 28.92 2.09 30.01 81:1
10× 10 1.66 29.27 1.88 30.26 100:1

5.3.3 Many to Many

In this section, we report the experimental results of a model
with multiple sign language inputs and multiple spoken lan-
guage outputs, which is the most difficult situation. In or-
der to judge where the performance limit of our model is,
we gradually increase the number of language pairs that the
model needs to process and compare the average result of
MLSLT with the BSLT baseline. The experimental results
are shown in Table 5. It can be seen that our model can

achieve better results than the BSLT baseline at the begin-
ning, and the gap between them gradually becomes smaller
as the number of language pairs increases. This is because
we need to use a fixed model capacity to handle more and
more language pairs, so the model will gradually encounter
a capacity bottleneck. However, even when processing 100
language pairs, our model can achieve performance that ex-
ceeds the BSLT baseline, while our parameter amount is
only one percent of it. This shows that the method we de-
signed allows the model to efficiently use the existing pa-
rameters. Increasing the parameters of the model also help
alleviate the capacity bottleneck problem.

Table 6. Comparison of zero-shot translation results and BSLT
baseline results.

Language
Pair

BLEU4 ROUGE

Single Zero-shot diff Single Zero-shot diff

CSL→en 3.47 2.69 -0.78 30.16 30.68 0.52
UKL→en 2.94 2.65 -0.29 34.12 30.62 -3.5
RSL→en 2.99 2.40 -0.59 31.32 30.20 -1.12
BQN→en 2.46 1.03 -1.43 27.94 26.05 -1.89
ICL→en 4.32 1.78 -2.54 32.03 30.12 -1.91
GSG→en 3.60 3.44 -0.16 31.36 30.37 -0.99
ISE→en 3.23 1.69 -1.54 29.42 29.65 0.23
SWL→en 3.83 3.29 -0.54 31.72 31.96 0.24
LLS→en 3.83 3.14 -0.69 29.02 31.47 2.45
BFI→en 3.72 3.36 -0.36 31.60 31.92 0.32

5.3.4 Zero-Shot Translation

An interesting benefit of building a multilingual sign lan-
guage translation model is that it allows performing zero-
shot translation between a language pair for which no ex-
plicit parallel training data has been seen without any mod-
ification to the model. When performing zero-shot transla-
tion, although there is no training data supervision between
the input sign language and the target language, the exist-
ing training data builds an implicit bridge between them
to achieve correct translation. The model will try to map
all sign languages to a shared semantic space, and then the
model will learn how to translate sentences with the same
semantics into different spoken texts. In Table 6, we show
the performance of zero-shot translation from multiple sign
languages to English and the performance comparison with
the supervised translation model. All zero-shot models are
trained with 4× (4− 1) language pairs. It can be seen that
even in the absence of supervised data, our model can still
achieve reasonable translation performance through zero-
shot translation. Even in some language pairs, the zero-shot
translation model is a little bit better than the BSLT base-
line. The language pairs used during training have an im-
portant impact on the performance of zero-shot translation.
Related analysis experiments are provided in the appendix.
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Table 7. Results of ablation experiments on the SP-10 dataset.
We gradually add the methods we mentioned earlier to verify their
effectiveness.

Model BLEU1 BLEU4 ROUGE

Native SLT 26.01 2.27 29.80

+IntraLSR 32.35 5.19 33.33
+InterLSR 30.49 3.58 32.20

+IntraLSR+InterLSR
(MLSLT) 34.43 6.30 35.76

Figure 4. The impact of using and not using InterLSR on model
optimization.

5.4. Ablation Study

In this subsection, we will introduce the results of our
ablation experiments on the SP-10 dataset and analyze the
effectiveness of our proposed method through the experi-
mental results. The experimental results are shown in Table
7. As shown in the third row of Table 7, the performance
of the model after the addition of IntraLSR has been sig-
nificantly prompted. As shown in the fourth row of Ta-
ble 7, the performance improvement of the corresponding
model of InterLSR alone is helpful but not as obvious as
IntraLSR. Adding IntraLSR and InterLSR at the same time
can achieve the best results. In addition, we also found that
adding InterLSR can help the model converge faster and
more stably during training. The training loss curves of the
two models with and without InterLSR are shown in Fig-
ure 4. It can be seen that the jitter of the model training
loss after adding InterLSR is much smaller, and the train-
ing is finished about 8k steps earlier than the model without
InterLSR.

5.5. Qualitative Results

In this section, we show some qualitative results of our
model. As shown in Figure 5, we compare the translation
results output by MLSLT with the reference text and pro-
vide English translations for other languages. Our model

Reference(en): can i offer you anything to eat .
BFI->en: can i offer you anything to eat .

SWL->en: can i give you something to drink .

Reference(sv): kan jag ge dig något att äta .

BFI-sv: kan jag ge dig något att äta .

(can i offer you anything to eat)

SWL-sv: kan jag ge dig något att dricka .

(can i give you something to drink)

Reference(en): i am afraid of hurricanes .
BFI->en: i am afraid of tornadoes .

SWL->en: i am afraid of tornadoes .

Reference(sv): jag är rädd för orkaner .

BFI->sv: jag är rädd för åskväder .

(I'm afraid of thunderstorms)

SWL-sv: jag är rädd för orkaner .

(I'm afraid of hurricanes)

Reference: where can i find a doctor .

BFI->en: where can i find a hospital .

SWL->en: where can i find a veterinarian .
Reference: var kan jag hitta en läkare .

BFI->sv: var kan jag hitta en veterinär .

(where can i find a vet)

SWL->sv:var kan jag hitta en veterinär .

((where can i find a vet)


Figure 5. Comparison of the spoken language generated by the
MLSLT model and the reference text.

can output sentences with relatively complete semantics but
will confuse some words that are similar in sign language.
As shown in the first line, our model recognizes ”eat” as
”drink” because these two words are very similar in SWL.
In addition, the ”hurricanes” and ”doctor” in the second and
third rows are also for similar reasons.

6. Conclusion
In this paper, we introduce a challenging task, multi-

lingual sign language translation (MSLT), and propose the
first MSLT model, MLSLT. Compared with the previous re-
search, we try to use a single model to complete the trans-
lation between multiple language pairs. To reduce the con-
flict between different languages, we propose two novel dy-
namic routing mechanisms. They dynamically adjust the
flow of data from the language level and token level, re-
spectively. To evaluate the effectiveness of our proposed
method, we created the first publicly available multilin-
gual sign language understanding dataset, SP-10. Com-
pared with the previous dataset, SP-10 contains more lan-
guage pairs, and the pairing information between different
sign languages creates possibilities for multilingual text-to-
video generation tasks and video-to-video translation tasks.
We conduct extensive experiments on this dataset to support
future research and prove the effectiveness of our proposed
method. We discuss the limitations and potential negative
effects of our work in the appendix.
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